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An important question in the theory of double parton scattering is how to incorporate the possi-

bility of the parton pairs being generated perturbatively via 1→ 2 splitting into the theory, whilst

avoiding double counting with single parton scattering loop corrections. Here, we describe a con-

sistent approach for solving this problem, which retains the notion of double parton distributions

(DPDs) for individual hadrons. Further, we discuss the construction of appropriate model DPDs

in our framework, and the use of these to compute the DPS part,presenting DPS ‘luminosities’

from our model DPDs for a few sample cases.
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1. Perturbative 1→ 2 splitting in DPS

Whenever one has a final state in hadron-hadron collisions that can be split up into two subsets
A andB with a hard scale in each (e.g.WW , W j j, 4j), the possibility exists for that final state
to be produced in two separate hard collisions (double parton scattering, or DPS) rather than one
(the more well-studied case of single parton scattering, or SPS). On the level of integrated cross
sections, DPS is a power correction to SPS, but it is enhanced at smallx with respect to SPS (since
it involves two parton ladders rather than one), and can compete with SPS for certain processes
where the SPS mechanism is suppressed by small or multiple coupling constants(e.g.W±W±).

Earliest studies of DPS were conducted using the lowest order Feynman diagrams – essentially
the parton model framework [1, 2] (see also [3]). These studies indicated the following factorisation
structure for this contribution:

dσDPS

dx1dx̄1 dx2dx̄2
=

1
C

σ̂ik→A σ̂ jl→B

∫

d2y F i j(x1,x2,y)Fkl(x̄1, x̄2,y) , (1.1)

Here,σ̂i j→X is the partonic cross section for the production of final stateX from partonsi and
j, C is a symmetry factor that is 2 ifA = B and 1 otherwise, and theF i j(x1,x2,y) are the double
parton distributions (DPDs). These depend on twox fractions and flavours (for the two partons),
as well as the quantityy that measures the transverse separation between the two partons. This
formula would then be simply added to the usual SPS cross section when computing the total cross
section for production ofAB.

In recent years, efforts have been made to upgrade this picture to full QCD incorporating
pQCD evolution effects. Some of these effects are similar as are encountered in SPS – i.e. diagonal
parton emission from one of the parton legs. These can be straightforwardly incorporated in a
similar way as is done for SPS. However, for DPS a new effect is possible– as one goes backward
from the hard interaction, one can find that the DPS parton pair arose from a perturbative ‘1→ 2’
splitting (see figure 1(a)). The perturbative splitting mechanism yields a contribution to the DPD
of the following form:

F i j(x1,x2,y) =
1
y2

αs

2π2 ∑
k

fk(x1 + x2)

x1 + x2
Tk→i j

(

x1

x1 + x2

)

(1.2)

f is the usual single PDF,T is a splitting function, andy ≡ |y|. The 1/y2 behaviour of this contri-
bution can be deduced already from dimensional counting grounds.

(a)

F (x̄1, x̄2, y)

F (x1, x2, y)

(b) (c)

Figure 1: (a) Perturbative splitting contribution to a DPD. (b) Contribution of double perturbative splitting
to DPS, also called “1v1” graph. (c) Single hard scattering contribution.

1



P
o
S
(
Q
C
D
E
V
2
0
1
6
)
0
1
4

DPS in the UV Jonathan R. Gaunt

F (x̄1, x̄2, y)

(a) (b)

Figure 2: (a) Contribution of single perturbative splitting to DPS, also called “2v1” graph. (b) Graph with
a twist-two distribution for one proton and a twist-four distribution for the other.

Consistently incorporating the effects of 1→ 2 splittings in the theory is not straightforward.
If one simply adds in a naive way the contribution of eq. (1.2) to the DPD, the integral overy in
eq. (1.1) becomes power divergent at smally. This power divergence appears in ‘1v1’ diagrams
with perturbative 1→ 2 splittings in both protons, as in figure 1(b). Note that the graph in figure
1(b) can also be viewed as a higher-loop correction to the leading power SPS process, as in figure
1(c). This fact actually explains in an intuitive way the appearance of the power divergence in figure
1(b) – it comes from the 1v1 DPS diagram at smally ‘leaking’ into the higher-power SPS region.
The divergence at smally is not present in reality (it arises from using DPS approximations in the
smally region where they are not valid) – it should be removed, and replaced withthe appropriate
SPS expression, in an appropriate way to avoid double counting between SPS and DPS.

A divergence also appears in they integral for ‘2v1’ diagrams with a 1→ 2 splitting in only one
proton – see figure 2(a). However, in this case we have only a logarithmic divergence, which one
can associate with the overlap of the DPS contribution with the same-power twist-two vs twist-four
contribution (see figure 2(b)).

In one previously-suggested approach for treating the 1→ 2 splitting effects [4], one makes a
separation of the DPD into a ‘perturbative splitting’ piece, and an ‘intrinsic’piece where the parton
pair existed already at the nonperturbative scale. One includes the intrinsic⊗ intrinsic (‘2v2’)
and splitting⊗ intrinsic (‘2v1’) contributions in DPS, but simply discards the splitting⊗ splitting
(‘1v1’) contribution. This avoids double counting with the SPS. The troublewith this approach
is in the definition of ‘splitting’ versus ‘intrinsic’ pieces – we do not know howsuch a separation
could be achieved in a field theoretic definition valid at ally.

Another suggestion [5] involves regulating they integral in eq. (1.1) using dimensional reg-
ularisation. This also avoids double counting with the SPS, but a drawback isthat one loses the
concept of the DPD of an individual hadron – the appropriate operators for DPS then involve both
hadrons at once.

A further past suggestion [6] is somewhat similar to [4], but involves including the 1v1 con-
tribution with an ad-hoc lower cut-off in they integral at values of order 1/Q (in [6] the cut-off is
actually imposed in the Fourier conjugate space, but the principle is the same).This renders the
DPS contribution finite. However, there is now inevitably some double countingbetween DPS and
SPS. There is in general a sizeable contribution to 1v1 DPS coming from the small y region where
the DPS picture is not valid. Finally, there is a strong (quadratic) dependence of the DPS cross
section on the unphysical cut-off – adjusting the cut-off to other reasonable values such as 2/Q or
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1/(2Q) will significantly affect the cross section.

2. A consistent scheme

We now outline an alternative prescription which overcomes the drawbacksof the previous
approaches. First, we regulate the DPS cross section through the insertion of a cutoff function
Φ(u) in they integral of eq. (1.1):

∫

d2y
[

Φ(νy)
]2 F i j(x1,x2,y)Fkl(x̄1, x̄2,y) , (2.1)

whereΦ(u) → 0 for u → 0 andΦ(u) → 1 for u ≫ 1. This cuts out contributions with 1/y much
bigger than the cutoff scaleν from what we define as DPS, and regulates the power divergence.
An appropriate choice for this cutoff scale isν ∼ Q. Note that hereF i j(x1,x2,y) is the full DPD
incorporating both parton pairs that had their origin in a perturbative 1→ 2 splitting, and those
that did not. This enables us to define DPDs via operator matrix elements, without recourse to
perturbation theory.

Thus far, the prescription resembles closely that of [6], and suffers from double counting
between SPS and DPS. To fix this, we introduce a double counting subtraction term into the total
cross section formula including both SPS and DPS:

σtot = σDPS−σsub+σSPS, (2.2)

The subtraction term is given by the DPS cross section with both DPDs replaced by a fixed order
1→ 2 splitting expression (at lowest order one simply has eq. (1.2) for each DPD) – i.e. combining
the approximations used to compute 1v1 splitting graphs in the two approaches.Note that at any
order inαs, the computation ofσsub is technically much simpler than that ofσSPS.

Let us demonstrate how this prescription works. At smally, of order 1/Q, the dominant con-
tribution to the DPD comes from the (fixed order) perturbative splitting expression (eq. (1.2) at
lowest order) – thus one hasσDPS≃ σsub andσtot ≃ σSPShere as desired. The dependence on the
unphysical cut-offν cancels between the subtraction and DPS terms. At largey ≫ 1/Q, the domi-
nant contribution toσSPScomes from the region of 1v1-type loops where the DPS approximations
are valid, such thatσSPS≃ σsub and we haveσtot ≃ σDPS as appropriate. The construction just
explained is a special case of the general subtraction formalism discussed in chapter 10 of [7], and
it works order by order in perturbation theory.

So far we skirted over the issue of double counting between the 2v1 diagrams and the twist-
two vs. twist-four contributions. This can be fixed in an analogous way to the1v1/SPS double
counting, yielding the following for the total cross section:

σtot = σDPS−σsub (1vs1)+σSPS−σsub (1vs2)+σtw2× tw4 . (2.3)

One can show that the sum(−σsub (1vs2)+ σtw2× tw4) is subleading in logarithms log(Q/Λ)

compared to the other terms (whereΛ is an infrared scale), so can be dropped at leading logarithmic
order.

Our formalism also appropriately resums DGLAP logarithms in the 1v1 and 2v1 diagrams
in regimes where this is appropriate, and can be extended in a straightforward way to the case of
measured transverse momentum. We will not discuss these issues further here, referring the reader
to [8] for more detail.
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3. Double Parton Scattering Luminosities

Here we make quantitative estimates of the DPS part of the cross section in ourframework. In
particular, we will present values for they integral in eq. (2.1), which we shall refer to as the DPS
luminosityL . We remind the reader that this is only part of the cross section for the production
of AB, and can have a strong dependence on the cut-off parameterν . We will discuss in these
proceedings only the luminosity in the unpolarised case.

To make such estimates, one needs numerical values for the DPDF i j(x1,x2,y,µ) (we take
the renormalisation scale for the two partons to be equal, and write this scaleµ explicitly here).
At perturbatively smally ≪ 1/Λ, the DPD at corresponding scaleµ ≃ 1/y should be given by
eq. (1.2) (at leading order inαs, which we restrict ourselves to here). In the unpolarised case we
haveTi→ jk(x) = Pi→ j(x), wherePi→ j(x) is the leading-order splitting function appearing in single
PDF evolution, without the virtual terms proportional toδ (1− x). At nonperturbativey ∼ 1/Λ, an
ansatz is required. We use the following form:

F i j(x1,x2,y,µy) = F i j
spl(x1,x2,y,µy)+F i j

int(x1,x2,y,µy) (3.1)

F i j
int(x1,x2,y,µy) =

1
4πhi j

e
−

y2

4hi j fi(x1,µy) f j(x2,µy)(1− x1− x2)
2(1− x1)

−2(1− x2)
−2 (3.2)

F i j
spl(x1,x2,y,µy) =

1
πy2 e

−
y2

4hi j
αs(µy)

2π ∑
k

fk(x1 + x2,µy)

x1 + x2
Pk→i

(

x1

x1 + x2

)

(3.3)

with

µy =
2e−γE

y∗
≡

b0

y∗
, y∗ =

y
√

1+ y2/y2
max

(3.4)

Fspl is essentially the contribution to the DPD from perturbative splitting, whilstFint represents
a contribution to the DPD from parton pairs already existing at the low scaleΛ. The prescription
in eq. (3.4) is designed to freeze the scale in the PDFs andαs asy approachesymax, whereymax is
taken of order 1/Λ. This avoids evaluations of the PDFs andαs at very low scale, and is similar to
theb∗ prescription used in TMD phenomenology [9, 10]. Here we takeymax = 0.5GeV−1.

For the non-splitting pieceF i j
spl we make the traditional ansatz of a product of single PDFs,

multiplied a smooth function with width iny of order of the transverse proton size. Here we
additionally multiply by a function of thexi that doesn’t affect the DPD at smallxi, but smoothly
cuts it off near the kinematic boundx1 + x2 = 1 – the function we use is that given in eq. (3.12)
of [11], with n set to 2. For they-dependent function, we use a simplified version of the one used
in section 4.1 of [12], where we now take the widthh to bex-independent (corresponding to the
h(x1,x2) of [12] evaluated atx1 = x2 = 10−3), and we set eachh with q− indices to be the same as
the one withq+. Then we have:

hi j = hi +h j (3.5)

with

hg = 3.53GeV−2 hq = hq̄ = 2.33GeV−2 (3.6)
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We include the same Gaussian damping inFspl to ensure the overallF dies off quickly to zero
at y values much larger than the transverse proton size.

The DPD is evolved from the initial scaleµy to final scaleµ using the appropriate renormal-
isation group equation for the DPDs – namely the homogeneous double DGLAPequation (given
in, for example, eq. (5.93) of [3]). In practice this is achieved using a modified version of the code
developed in [11].

For the cut-off, a theta function is used for simplicity – i.e.Φ(νy) = Θ(νy−b0). We setµ in
the DPDs to 80 GeV (appropriate for the production of aW boson pair). In this investigation, we
take the collider energy to be 14 TeV, and setx1 andx̄1 to correspond to the central production of a
W boson, withx2 andx̄2 corresponding to the production of aW boson with rapidityY1:

x1 = x̄1 = 5.7×10−3 x2 = 5.7×10−3exp(Y1) x̄2 = 5.7×10−3exp(−Y1) (3.7)

In figure 3, we plotL i jkl(Y1) in the range−4 ≤ Y1 ≤ 4 for the parton combinationsi jkl =

uūūu+ ūuuū (figure 3(a)),i jkl = gggg (figure 3(b)), andi jkl = ud̄d̄u+ d̄uud̄ (figure 3(c)). The first
parton combination appears in e.g.ZZ production, the second is important in four-jet production,
and the last appears inW+W+. We split the overall luminosity into a 1v1 contribution (Fspl⊗Fspl),
2v1 contribution (Fspl⊗Fint+Fint⊗Fspl) and 2v2 contribution (Fint⊗Fint). We also varyν by a factor
of 2 around a central value of 80 GeV in each contribution to show how the DPS contribution alone
is affected by variation of this cutoff. The bands in each figure are generated using the extremal
values ofν , whilst the line denotes the luminosity withν = 80 GeV.

We immediately notice in figures 3(a) and (b) that the 1v1 contribution is generally much
larger than the 2v2 and 2v1 contributions, with enormousν variation in this former piece. This
shows that for these channels, and for these scales andx values, that one must include the SPS
corrections up to the order that includes figure 1(b) together with the subtraction, so as to cancel
theν dependence and obtain a sensible prediction. By contrast, in figure 3(c)the 1v1 contribution
is small compared to the 2v1 and 2v2, with smallν dependence. This is because, as opposed touū
andgg, there is no leading-order splitting directly givingud̄ (generation of aud̄ pair requires at least
two steps, such asu → u+g → u+d + d̄). Here, there is less of a need to compute the SPS term up
to the order that contains the first nonzero DPS-type loop (in both amplitude and conjugate), and
corresponding subtraction, to compensate theν dependence. This is fortunate, since in this case
one would require an SPS calculation two orders higher than that of figure1(b) (two-step rather
than one-step splittings are required in both protons), which is well beyondthe current state of the
art.
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