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1. Introduction

In the collision of two hadrons, double parton scattering (DPS) describes interactions in the
form of two hard processes, each initiated by a separate set of partons. DPS was already considered
long ago [1, 2] and its understanding is relevant for studying physics at particle colliders such as the
LHC [3, 4]. In these proceedings we will focus on DPS with color singlet final states. An example
of such a process is e.g. double Drell-Yan (DY), for which a factorization formula was first written
down in the Refs. [5, 6].

In DPS processes, correlators are described by double parton distribution functions (DPDFs)
and double transverse momentum dependent distributions (DTMDs). In configuration space the
correlator is described by a combination of the parametersz1, z2 andy, see Fig. 1 for an illustration.
The transverse distanceyyy is a measure for the separation between the two hard processes [5, 6, 7].
In momentum space the situation is described by a combination of the momentak1, k2 andr. For
the discussion in these proceedings, we will consider the short-distance expansion, where the two
hard processes have a large spatial separation and where both transverse momentakkk1 andkkk2 are
perturbative. As such,zzz1 andzzz2 are small compared with a nonperturbative scale 1/Λ andyyy is of
the order 1/Λ. Although we use these approximations, many results we present are valid beyond
it.

In these proceedings, we will give details of factorizing the DPS soft factor intoz1, z1 and
y-dependent parts. An evolution kernelK, familiar from the context of single parton scattering
(SPS) [8, 9, 10, 11], is related to this soft factor. Furthermore, one can choose the two hard pro-
cesses to have separate renormalization scalesµ1 andµ2. There is a scaleζ on top that plays the
role of a rapidity regularization scale. We will solve theircorresponding evolution equations. Fi-
nally, we provide the matching equations of DTMDs onto DPDFsfor processes with a colorless
final state, which is the main goal of these proceedings. For more details we refer to a forthcoming
paper [12].

2. Soft factors and color

In DPS not only the two hard interactions have to be treated, also Wilson lines have to be
taken into account. First of all there are Wilson lines needed for ensuring gauge invariance of
the correlators. Such Wilson lines come from diagrams with gluons coupling to partons involved
in the hard scatterings. Furthermore, the presence of a softfactor is required, coupling the two

Figure 1: The momenta involved in double parton scattering illustrated for a double parton correlator. The
momentum space configuration involves the momentaki andr, whereaszi andy (blue color online) are the
configuration space variables.
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Figure 2: Illustration of interactions in a single pair of two Wilson lines in the soft function. As explained
in the main text, short-distance interactions (red online)are located in the boxed section in the center of this
figure.

correlators to each other. Factorization proofs ensure that the different contributions to the cross
section factorize, see e.g. Ref. [13] and references therein. The soft factor ensures a cancellation
of the rapidity divergence and is required to define the subtracted DTMDs from the unsubtracted
ones. We note that in the situation where all transverse distances are short (this is different from
our situation), the soft factor for DPS has been calculated at the two loop level [14].

We focus on a single pair of two Wilson lines first, which is illustrated in Fig. 2. Each double
line in the Feynman graph represents a Wilson line given by

Wi j(zzz,v) = P exp

[

−igta
∫ 0

−∞
dλ vAα(z+λv)

]z+=z−=0

i j
(2.1)

and similarly for the adjoint representation. For the Wilson lines, the first argument indicates the
position of the gauge field, whereasv is a vector that is associated with the rapidity.

Consider a short-distance expansion of the Wilson line operator structure of the soft function
that contains Wilson lines of the formW (ξξξ ± 1

2zzz,v) aroundzzz = 0. Short-distance interactions
are then located closest to the pointξ+ = ξ− = 0 of the Wilson lines, since this will result in a
minimization of the number of Eikonal propagators with a large momentum. This is illustrated in
Fig. 2 for a single pair of two Wilson lines, where these kind of contributions are located in the
boxed region in the center. It is necessary to keep open indices for the Wilson lines in this region,
since this obect will appear in the matching procedure. A second pair of two Wilson lines should be
included for DPS with the same type of short-distance interactions as the pair of two Wilson lines
in Fig. 2. Although these short-distance interactions for the Wilson lines then are pairwise at the
same point, the structure still contains nonperturbative interactions between Wilson lines separated
by yyy. In Fig. 2 this corresponds to the gluons outside the box. Schematically, the structure of the
soft function reads

S(zzz1,zzz2,yyy) =Cs(zzz1)Cs(zzz2)S(yyy), (2.2)
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(a) (b)

Figure 3: (a) The soft function for double parton scattering decomposed in individual Wilson lines. Color
projectors act on the indices in the middle. We have shown forzzz1 = zzz2 = 000 that it is equivalent to contract
the indices in the middle and let the color projectors act on the indices at the ends of the Wilson lines,
schematically giving us the structure in (b). Note that the picture includes gluon exchanges between the
Wilson lines.

whereS(yyy) has half as many indices asS(zzz1,zzz2,yyy), since it includes the open indices in the middle
of the soft function. The coefficientsCs are the contributions to the soft factor that contain all the
zzz1 or zzz2 contributions respectively.

The most general soft factor for DPS is illustrated in Fig. 3(a). Regarding the soft function
in this figure, the indicesi at the top and the indicesl at the bottom represent the start and end
of the Wilson lines at the two correlators, whereas the indices j andk in the middle involve the
coupling of these Wilson lines. The indices are not contracted yet because we wish to do matching
later on. Hard scattering in the DPS couples four parton lines, for which we choose to insert
color projectorsPR in order to simplify the color structure. The indexR labels the different color
configuration that are possible (singlet, octet, etc.) [15], since the color structure for DPS has more
possible configurations than for the SPS case. Two color projectors coupling the various indices in
the middle of Fig. 3(a) are required, since there are two processes involved. Examples are the color
singlet and octet quark projectors, given as

P
j1 j′1 k1k′1

1 =
1

Nc
δ j1 j′1

δk1k′1
, P

j1 j′1 k1k′1
8 = 2ta

j1 j′1
ta
k1k′1

. (2.3)

For gluons more color projectors exist and mixed quark-gluon projectors also have to be consid-
ered [7, 15], since in double parton scattering one of the partons could be a quark and the other one
a gluon. We generalize the notation for the projectors introduced in Eq. 2.3 asP

ji j′i kik′i
R . In SPS the

situation is simple and we would haveP j j′

1 only.

Coming back to simplifying the soft function, we would in particular like to simplify the non-
perturbative contributionS(yyy). Transforming the soft function in Fig. 3(a) to that in Fig. 3(b) is a
convenient and simple way of ensuring this. For the nonperturbative sector, where it is desirable
to have as few functions as possible, a simplification is especially helpful, since a procedure trans-
forming the soft function in Fig. 3(a) to that in Fig. 3(b) reduces the number of open indices in the

3



P
o
S
(
Q
C
D
E
V
2
0
1
6
)
0
1
5

Double parton scattering for perturbative transverse momenta Maarten G.A. Buffing

Figure 4: Illustration of moving the color projector through the Wilson line structure. As explained before
and illustrated in a previous figure, this allows for contracting the Wilson lines in the center region for
zzz1 = zzz2 = 000. As before, note that the picture includes gluon exchangesbetween the Wilson lines.

soft factor significantly. This transformation can be achieved by using color projectors forS(yyy) for
zzz1 = zzz2 = 000.

In order to prove that the Wilson lines can be contracted in a way that would allow the above
sought simplification, we have to prove that we can commute color projectors acting on the Wilson
lines in the soft factor through the Wilson lines. Then, the projectors would no longer be acting on
the indices in the middle, but on indices at the ends of the Wilson lines and we could contract the
Wilson lines, which would reduce the number of open indices.The identity we have to prove is

Wi j P j j′,k′k
R W †

j′i′ =Wjk Pii′, j′ j
R W †

k′ j′ , (2.4)

which is illustrated graphically in Fig. 4. We have proven this identity using the color Fierz identity

2ta
ii′2ta

j j′ = δi j′δi′ j −
1

Nc
δii′δ j j′ . (2.5)

Note that this relation only holds for the collinear situation, where the Wilson lines are at the same
transverse position. For our purposes this is fine, since we will use it to study matching. The
factorization also works for adjoint Wilson lines, which weneed as soon as gluons are involved,
implying

Wab Pbb′,cc′

R W †
b′a′ =Wbc Paa′,bb′

R W †
c′b′ . (2.6)

Using the color projector identity in Fig. 4, we can relate the full soft factor in Fig. 3(a) to the
soft function in Fig. 3(b), where the indices in the middle are contracted. Rather than making the
color projections at the color indices of the fields atξ+ = ξ− = 0, the same projection can be made
for the indices of the fields at infinity. The fact that this relation holds implies that the collinear soft
matrix for DPS is diagonal in the color representations of the left and right moving Wilson lines.
The color structure of Eq. 2.2 then reads

RR′
Sa1a2(zzz1,zzz2,yyy) =

RCs,a1(zzz1)
RCs,a2(zzz2)

RRS(yyy)δRR′ . (2.7)

Using projector identities one can also show that the soft factor RR′
S(yyy) is color diagonal. It follows

from the proof of the above equation that the soft factorRR′
Sa1a2(zzz1,zzz1,yyy) is diagonal in the color

representationsR andR′ in the limit |zzz1|, |zzz2| ≪ |yyy|.
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Now we come back to DPDs. They evolve with the evolution kernel RR′
K, which is closely

related to the soft factorRR′
S in a similar way as for SPS, but more complicated. The multiplicative

structure of Eq. 2.7 results in

RR′
Ka1a2(zzzi,yyy;µi) = δRR′

[RKa1(zzz1;µ1)+
RKa2(zzz2;µ2)+

RJ(yyy;µi)
]

, (2.8)

see a forthcoming paper for the details [12]. In Eq. 2.8 and all following equations,µi implies a
dependence on bothµ1 andµ2 and similarly for the other parameters where this notation is used.
It should further be stressed that in contrast to SPS both thesoft functionRR′

S and the evolution
kernelRR′

K are matrix valued expressions. The fact that the evolution kernel in Eq. 2.8 is a sum of
three separate contributions simplifies dealing with evolution.

3. Evolution equations

A description of DTMDs involves rapidity and scale parameters, for which evolution equations
have to be derived and solved. Earlier descriptions of evolution for DTMDs using a different
framework can be found in literature, see e.g. the Refs. [7, 16]. We give results for the situation
|zzz1|, |zzz2| ≪ |yyy|, but as was the topic of the talk of M. Diehl at this conference, many of our results
have a wider applicability than the small distance expansion only. In these proceedings, on the other
hand, we are looking at the small distance expansion, where the two hard processes are separated
from each other. As such, we have two different renormalization scales,µ1 andµ2, for which we
need two separate evolution equations, namely

∂
∂ logµ1

RFa1a2(xi,zzzi,yyy;µi,ζ ) = γF,a1(µ1,x1ζ/x2)
RFa1a2(xi,zzzi,yyy;µi,ζ ) (3.1)

and a similar equation for theµ2 evolution. Furthermore, the DTMD carries a color representation
index R. Here, theγF,ai are anomalous dimensions of the DTMDs, equal to the same objects in
the TMD evolution [11, 17]. Also,γF,a depends only on whether one is dealing with (anti)quarks,
involving fundamental Wilson lines, or with gluons, involving adjoint Wilson lines. In theµ-
evolution equations, the anomalous dimensionsγF depend on the rapidity regularization scaleζ .
A closer analysis shows thatζ has to be rescaled withx1/x2 or x2/x1. This rescaling is required,
since we have chosen to use a singleζ scale per DTMD. It then follows from Eq. 3.1 that theµ
evolution of DTMDs is given by

RFa1a2(xi,zzzi,yyy;µi,ζ ) =RFa1a2(xi,zzzi,yyy;µ0i,ζ )

×exp

[

∫ µ1

µ01

dµ
µ

γF,a1(µ ,x1ζ/x2)+

∫ µ2

µ02

dµ
µ

γF,a2(µ ,x2ζ/x1)

]

(3.2)

from the starting scalesµ01 andµ02 for µ1 andµ2. The rapidity evolution of DTMDs is given by

∂
∂ logζ

RFa1a2(xi,zzzi,yyy,µi,ζ ) =
1
2∑

R′

RR′
Ka1a2(zzzi,yyy;µi)

R′
Fa1a2(xi,zzzi,yyy;µi,ζ ) , (3.3)

where we can split the evolution kernelK in the short-distance limit into the three separate contri-
butionsRKa1(zzz1;µ1), RKa2(zzz2;µ2) andRJ(yyy;µi) as in Eq. 2.8.
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The anomalous dimensionsγF in the µ evolution equations contain aζ dependence and the
evolution kernelK in theζ evolution equation isµ-dependent. Before we can write down the full
DTMD evolution equation, it has to be understood how they evolve. The evolution kernelRR′

K can
be written as a sum of terms as in Eq. 2.8. Taking the derivative with respect toµ1 of the separate
contributions gives

∂
∂ logµ1

RKa(zzz;µ1) =−RγK,a(µ1), (3.4)

∂
∂ logµ1

RJ(yyy;µi) =−R γJ(µ1) (3.5)

and similar equations for the derivative with respect toµ2. The anomalous dimensions in the
Eqs. 3.4 and 3.5 satisfy

γK,a(µ) = RγK,a(µ)+ RγJ(µ). (3.6)

Furthermore, the rapidity dependence of the anomalous dimensionγF,a1 that came from theµ-scale
equation is given by

∂
∂ logζ

γF,a(µ ,ζ ) =−
1
2

γK,a(µ) . (3.7)

Note that theµ dependence of the anomalous dimensions is understood to be through the coupling
αs(µ) only. Combining the above information regarding the evolution with respect toµ1, µ2 and
ζ , the solution of the evolution equations for DTMDs is then given by

RFa1a2(xi,zzzi,yyy;µi,ζ ) = RFa1a2(xi,zzzi,yyy;µ0i,ζ0)

×exp

{

∫ µ1

µ01

dµ
µ

[

γF,a1(µ ,µ
2)− γK,a1(µ) log

√

x1ζ/x2

µ

]

+
∫ µ2

µ02

dµ
µ

[

γF,a2(µ ,µ
2)− γK,a2(µ) log

√

x2ζ/x1

µ

]

+
[

RKa1(zzz1,µ01)+
RKa2(zzz2,µ02)+

RJ(yyy,µ0i)
]

log

√

ζ
√

ζ0

}

(3.8)

for the starting scalesµ01, µ02 andζ0.

4. Matching

The matching equation for DTMD/DPDF matching is given by [12]

RFa1a2(xi,zzzi,yyy;µi,ζ ) = ∑
b1b2

RCa1b1(x
′
1,zzz1;µ1,µ2

1)⊗
x1

RCa2b2(x
′
2,zzz2;µ2,µ2

2)⊗
x2

RFb1b2(x
′
i,yyy;µi,ζ ),

(4.1)

where the convolution between two functionsA andB is given by

A(x′)⊗
x

B(x′) =
∫ 1

x

dx′

x′
A(x′)B

(

x
x′

)

. (4.2)
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The summation overb1 and b2 is over parton species and polarization as in Ref. [7]. The two
coefficient functions are both TMD/PDF matching coefficientfunctions, a statement that can be
seen more easily when writing down the formalism for DTMD/DPDF matching at the level of
operators [12].

In Eq. 3.8 the evolution of DTMDs from a set of starting scalesis given. Combining this result
with the matching equation in Eq. 4.1, we can write the matching equation for the DTMD in the
short-distance limit, where the rapidity dependence of thecoefficient functions will be split off in
separate terms containingRKa1(zzz1,µ01) andRKa2(zzz2,µ02). It can be shown that this transforms the
matching equation into

RFa1a2(xi,zzzi,yyy;µi,ζ )
= ∑

b1b2

RCa1b1(x
′
1,zzz1;µ01,µ2

01)⊗
x1

RCa2b2(x
′
2,zzz2;µ02,µ2

02)⊗
x2

RFb1b2(x
′
i,yyy;µ0i,ζ0)

×exp

{

∫ µ1

µ01

dµ
µ

[

γF,a1(µ ,µ
2)− γK,a1(µ) log

√

x1ζ/x2

µ

]

+ RKa1(zzz1,µ01) log

√

x1ζ/x2

µ01

+
∫ µ2

µ02

dµ
µ

[

γF,a2(µ ,µ
2)− γK,a2(µ) log

√

x2ζ/x1

µ

]

+ RKa2(zzz2,µ02) log

√

x2ζ/x1

µ02

+ RJ(yyy,µ0i) log

√

ζ
√

ζ0

}

. (4.3)

For color singlet configurations the above combined evolution and matching equation in essence
consists of doubling the single TMD/PDF formalism. For other color configurations there is an
additional Sudakov suppression coming fromRJ(yyy,µ0i), which is zero for color singlet configu-
rations. Note that the evolution kernel contributionsRKa1(zzz1,µ01) andRKa2(zzz2,µ02) have a color
dependence.

At the level of the cross section for DPS in proton-proton collisions, two DTMDs have to be
involved. The matching equation for a cross section contribution involving two such objects is
given by

Wlargeyyy = ∑
c1c2d1d2

∑
R

exp

{

∫ µ1

µ01

dµ
µ

[

γF,a1(µ ,µ
2)− γK,a1(µ) log

Q2
1

µ2

]

+ RKa1(zzz1,µ01) log
Q2

1

µ2
01

+
∫ µ2

µ02

dµ
µ

[

γF,a2(µ ,µ
2)− γK,a2(µ) log

Q2
2

µ2

]

+ RKa2(zzz2,µ02) log
Q2

2

µ2
02

}

× RCb1d1(x̄
′
1,zzz1;µ01,µ2

01)⊗
x̄1

RCb2d2(x̄
′
2,zzz2;µ02,µ2

02)⊗
x̄2

× RCa1c1(x
′
1,zzz1;µ01,µ2

01)⊗
x1

RCa2c2(x
′
2,zzz2;µ02,µ2

02)⊗
x2

×
[

Φ(νyyy)
]2

exp

[

RJ(yyy,µ0i) log

√

Q2
1Q2

2

ζ0

]

RFd1d2(x̄i,yyy;µ0i,ζ0)
RFc1c2(xi,yyy;µ0i,ζ0). (4.4)

In this equation, the energiesQ1 andQ2 of the two hard partonic interactions are related to the scale
parametersζ andζ of the two DTMDs through the relationζζ = Q2

1Q2
2. Coming from Eq. 4.3,

each DTMD contributes two coefficient functions, giving a grand total of four for the cross section
contribution. In addition, there is ayyy contribution in the form of

[

Φ(νyyy)
]2

. This function regulates

7
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the ultraviolet region and ensures that the integral converges at small distances [18]. It should be
noted that the Eqs. 4.3 and 4.4 are valid for both quarks and gluons.

5. Discussions and conclusions

In our work we use the short-distance expansion, valid if thetwo partons initiating the two
different hard processes in DPS have perturbative transverse momentakkk1 andkkk2. We also consider
the largeyyy situation, such that the hard processes are spatially well separated from each other. In
this limit the DPS soft function can be factorized in three separate contributions, namelyzzz1, zzz2

and yyy-dependent ones. From this, it follows that the evolution kernel has three separate terms.
Using this important result we have given the evolution equations for DPDs and solved them.
We furthermore presented the matching equations for DTMDs as well as for the cross section
contribution for the production of colorless final states.

An important result is that the matching equation for the DTMDs, Eq. 4.3, has two coefficient
functions, with each of them equal to a single TMD/PDF coefficient function. The reason for this is
the use of the short-distance expansion and considering thelargeyyy situation. As such, for DPS the
coefficient functions can be recycled from the coefficient functions for the TMD/PDF matching. In
a derivation at the level of operators this is apparent from the start. In our forthcoming paper [12]
we will give the matching coefficients for all polarization modes, complementing results for TMDs
in SPS [11, 17, 19, 20].
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