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1. Introduction

The spin of the hadrons depends on the distributions of spin and orbital angular momenta
(OAM) of the fundamental constituents, quarks and gluons. The quark and gluon field correla-
tions in the nucleon are indirectly measurable through electroproduction processes. The angular
momenta associated with the quark and gluon fields within QCD, are encoded in the transverse mo-
mentum distributions (TMDs) [1], the Generalized Parton Distributions (GPDs) [2] and the even
more “General" TMDs (GTMDs) [3]. We developed an extensive spectator model for the valence
quark chiral even and chiral odd GPDs that we will summarize. We have begun to extend the spec-
tator model of the GPDs to include sea quark and gluon distributions. When assembled together
and Fourier Transformed, these can provide a 3-dimensional picture of the angular momentum
structure of the nucleon.

Initial work [4] in constructing a spectator model for the chiral even GPDs, Hq(X ,ζ , t) and
Eq(X ,ζ , t), showed considerable promise in incorporating constraints and in confronting data. This
approach was extended to include all four of the chiral even valence quark GPDs, in conjunction
with Deeply Virtual Compton Scattering (DVCS), in a series of papers that developed the “flexible
model", which is a “Reggeized diquark model" (RxDq) [5, 6].

Of particular interest among spin dependent pdf’s were the nucleon’s transversity structure
functions, e.g. h1(x) - the probability of finding a definite transversity quark inside a transversely
polarized nucleon. These distributions are chiral odd, and can be observed indirectly in Semi In-
clusive Deep Inelastic Scattering (SIDIS), where they are convoluted with fragmentation functions,
or in the Drell-Yan process in conjunction with another chiral-odd partner. We realized that they
also contribute to exclusive electroproduction processes, particularly Deeply Virtual Meson Pro-
duction (DVMP), for pseudoscalar mesons through leading twist chiral odd GPDs. These enter
at next order in DVMP for the factorized meson distribution function - twist 3. The transversity
GPDs Hq

T (x,ξ , t) have the limiting form Hq
T (x,0,0) = hq

1(x), hence, from the DVMP processes,
transversity can be determined. This had been one focus of the model in the past. However, to
begin to parameterize the chiral odd GPDs, the more far-reaching chiral even GPDs were modeled.
Subsequently, noting that the gluon GPDs can have a major role in processes measurable at lepton
accelerators, the LHC and at a future Electron-Ion-Collider we have begun to extend the spectator
model. We will present some preliminary developments for those GPDs. Novel measurements that
relate to GTMDs will be mentioned also.

2. Formalism

It is useful for later applications to begin the formalism for GPDs with the more generalized
objects, the quark GTMDs [3]. Then the form of quark distributions in the nucleon is given by
off-diagonal matrix elements of bilocal field operators,

W [Γ]
ΛΛ′(P̄,x,~kT ,∆,N;η) =

1
2

∫
dk−

d4z
(2π)4 eikz 〈P′,Λ′ | ψ

(
− z

2

)
ΓW (− z

2
,

z
2
| n)ψ

( z
2

)
| P,Λ〉

(2.1)
with Γ a Dirac matrix, W the appropriate gauge link, P̄ = (P+P′)/2, ∆ = P′−P and N = M2n/P̄ ·n,
with n the usual light-like vector, and η = sign(n0) (see [3] for details). The integration over k−
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places the matrix element at z+ = 0 on the light cone. These GTMDs have both the nucleon momen-
tum transfer ∆ and the outgoing parton momentum k as variables. As such, they are “unintegrated"
parton distributions. Geometrically, the orientation of the partons requires the specification of two
planes: the kT plane formed by~kT , P̄3; the ∆ plane formed by the~∆T , P̄3.

The TMDs are obtained by setting ∆ = 0 in Eq. 2.1,

Φ
[Γ]
ΛΛ′(P̄,x,~kT ,N;η) = W [Γ]

ΛΛ′(P̄,x,~kT ,∆ = 0,N;η), (2.2)

so that this becomes a distribution and the kT with the P̄3 defines a single plane. This kT plane
will be distinct from the lepton plane, as will be seen in the TMD-based SIDIS process l + N →
l′+ γ or hadron +X , the planes being related by an azimuthal angle, φ .

The GPDs are obtained from Eq. 2.1 by integrating over all k, leaving ∆ a kinematic variable
and forming the ∆ kinematic plane with,

F [Γ]
Λ′,Λ(P̄,x,∆,N) =

∫
d2~kTW [Γ]

ΛΛ′(P̄,x,~kT ,∆,N;η)

=
1
2

∫ dz−

2π
eixP+z− 〈P′,Λ′ | ψ

(
− z

2

)
Γψ

( z
2

)
| P,Λ〉

∣∣∣
z+=0,zT =0

, (2.3)

These quark GPDs are defined (at leading twist) as the matrix elements of the projections of
the unintegrated quark-quark proton correlator (see Ref.[7] for a detailed overview), where Γ =
γ+,γ+γ5, iσ i+γ5(i = 1,2) for leading twist, and the target’s spins are Λ,Λ′. These are amplitudes
rather than distributions, and appear in bilinear form for exclusive processes. The spin structures
of GPDs that are directly related to spin dependent observables are most effectively expressed in
term of helicity dependent amplitudes, developed extensively for the covariant description of two
body scattering processes (see also Ref.[7]). For the GPDs, decomposing the quark fields into
definite helicities, λ , λ ′, produces a form analogous to 2-body quark-nucleon helicity amplitudes,
AΛ′λ ′,Λλ (X ,ζ , t) [7].

There are four chiral-even, helicity conserving quark GPDs, H,E, H̃, Ẽ [8] and four additional
chiral-odd GPDs, at leading twist 2, that flip quark helicity by one unit, HT ,ET , H̃T , ẼT [7, 9]. There
are two questions to address: How to model the 8 GPDs? How to measure them? We have done
extensive work on answering these questions [5, 6, 10, 11].

At this point the discussion has been aimed at the quark distributions. On the same level - at
leading “twist" - and of growing importance are the gluon distributions. The helicity conserving
gluon GPDs with t-channel even parity are defined analogously to quark and/or antiquark correla-
tors:

Fg =
1

P̄+

∫ dz−

2π
eixP̄+z−〈P′,Λ′|G+µ(−1

2
z)Gµ

+(
1
2

z)|P,Λ〉
∣∣∣
z+=0,~zT =0

→

1
P̄+

∫ dz−

2π
eixP̄+z−〈P′,Λ′|G+ j(−1

2
z)G+ j(

1
2

z)|P,Λ〉
∣∣∣
z+=0,~zT =0

=

1
2P̄+Ū(P′,Λ′)[Hg(x,ξ , t)γ+ +Eg(x,ξ , t)

iσ+α(−∆α)
2M

]U(P,Λ) (2.4)

and for t-channel odd parity

F̃g =
−i
P̄+

∫ dz−

2π
eixP̄+z−〈P′,Λ′|G+µ(−1

2
z)G̃µ

+(
1
2

z)|P,Λ〉
∣∣∣
z+=0,~zT =0

→

2



P
o
S
(
Q
C
D
E
V
2
0
1
6
)
0
1
7

GPDs in Deeply Virtual Lepton Scattering Processes Gary Goldstein

−i
P̄+

∫ dz−

2π
eixP̄+z−〈P′,Λ′|G+ j(−1

2
z)G̃+ j(

1
2

z)|P,Λ〉
∣∣∣
z+=0,~zT =0

=

1
2P̄+Ū(P′,Λ′)[H̃g(x,ξ , t)γ+

γ5 +Eg(x,ξ , t)
γ5(−∆+)

2M
]U(P,Λ), (2.5)

summing over transverse indices j = 1,2, and using the dual gluon field strength

G̃µν(x) =
1
2

ε
µναβ Gαβ (x).1

The transverse polarization components enter here because we take leading twist 2 and the “good"
components of the gluon polarization 4-vectors, which are transverse polarization (helicity ±1)-
on-shell. The longitudinal polarization (helicity 0) enters at twist 3 (having one fewer transverse,
good component of spin). There are also contributions involving the transverse helicity flip (±1→
∓1), which can be thought of as gluon states of transversity, or equivalently, linear polarization
states [12]. The gluon “transversity" distributions are defined as (Ref. [7])

Fg
T =− 1

P̄+

∫ dz−

2π
eixP̄+z−〈P′,Λ′|SG+ j(−1

2
z)G+k(

1
2

z)|P,Λ〉
∣∣∣
z+=0,~zT =0

= S
1

2P̄+
P̄+∆ j−∆+P̄ j

2MP̄+

×Ū(P′,Λ′)
[

Hg
T (x,ξ , t)iσ+k + H̃g

T
P̄+∆k−∆+P̄k

M2

+Eg
T (x,ξ , t)

γ+∆k−∆+γk

2M
+ Ẽg

T
γ+P̄k− P̄+γk

M

]
U(P,Λ) (2.6)

wherein S symmetrizes in ( j,k) and removes the trace. The modeling of these gluon transversity
distributions will be considered in a forthcoming publication. It is interesting to note that such
double flip gluon transitions can be accessed through double photon helicity flip in DVCS, for
which the quarks will not contribute. Measurement of outgoing photon helicity, though, is not
accessible. Alternatively, Deeply Virtual vector meson production and lepton pair production have
been studied and will be developed further in the near future.

3. Flexible Model

The basis of our model of parton distributions is the connection to observables through the
“handbag” approximation and evolution. The various distributions are then related to quark or
gluon plus nucleon scattering-type amplitudes. We model these via nucleon transitions into quark
(or antiquark or gluon) and a spectator (or light front wave functions or lowest Fock states). That is
to say, the leading Fock state for the nucleon is assumed to be a quark (color 3) and diquark (color 3̄)
configuration, like the lowest two-body orbital angular momentum L = 0 bound state, wherein the
diquark can be a scalar of antisymmetric flavor or an axial vector of symmetric flavor. The quark-
proton “scattering amplitudes" at leading order are convolutions of proton-quark-diquark vertices.
The quark proton helicity amplitudes describe a two body process, q′(k′)P→ X → q(k)P′, where
q(k) corresponds to the “struck quark". The intermediate diquark system, X , can have JP = 0+

1With this convention Hg reduces to the pdf xg(x,0,0).
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(scalar), or JP = 1+ (axial vector). The amplitudes for the Scalar diquark are (see [5, 10] for the
full set of relations):

A(0)
Λ′λ ′,Λλ

=
∫

d2k⊥φ
∗
Λ′λ ′(k

′,P′)φΛλ (k,P), (3.1)

where φΛλ (k,P) is the nucleon-quark-scalar diquark vertex or light front wave function.
Next we consider “Reggeization”, that is, we extend the diquark model formalism to low X

by allowing the spectator system’s mass to vary up to very large values. This is accomplished by
convoluting the GPD structures obtained in Eqs.(3.1) with a “spectral function", ρ(M2

X), where M2
X

is the spectator’s mass,

Fq
T (X ,ζ , t) = Nq

∫
∞

0
dM2

X ρ(M2
X)F(mq,M

q
Λ
)

T (X ,ζ , t;MX)≈ R
αq,α

′
q

pq (X ,ζ , t)GMΛ

MX ,m(X ,ζ , t) (3.2)

with F(mq,M
q
Λ
)

T (X ,ζ , t;MX) any of the quark-diquark model GPDs for definite mass diquark. The
spectral function was constructed in Refs.[5, 6] so that it approximately behaves as (M2

X)α for
M2

X → ∞ and δ (M2
X −M2

X) for M2
X at a few GeV 2, where 0 < α < 1, and MX is in the GeV range,

with α ′q(X) = α ′q(1−X)pq . The functions GMq
Λ

MX ,mq
and R

αq,α
′
q

pq are the quark-diquark and Regge
contributions, respectively. The chiral even quark GPDs integrate to the nucleon form factors,
which constrains the GPD t-dependence,∫ 1

0
Hq(X ,ζ , t) = Fq

1 (t),
∫ 1

0
Eq(X ,ζ , t) = Fq

2 (t),
∫ 1

0
H̃q(X ,ζ , t) = Gq

A(t),
∫ 1

0
Ẽq(X ,ζ , t) = Gq

P(t).

(3.3)
where Fq

1 (t) and Fq
2 (t) are the Dirac and Pauli form factors for the quark q components in the

nucleon. Gq
A(t) and Gq

P(t) are the axial and pseudoscalar form factors. Furthermore, H(x,0,0) =
f1(x) and H̃(x,0,0) = g1(x). With these constraints, the quark GPDs that fit DVCS results [5] are
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Figure 1: Left: Chiral even u and d-quark GPDs at the initial scale and Q2 = 2GeV2 Adapted from Ref. [5].
Right: Contributions to EM Form Factors F1(t), F2(t) from best fit valence quark integrated GPDs. [6], [13].
Adapted from Ref. [6].

shown in Fig. 1 along with the improved constraints [6] determined by precision measurements
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of the EM form factors [13]. The u and d GPDs are shown for two values of Q2, obtained by
application of the DGLAP evolution equations.

Our model for evaluating the chiral-odd GPDs extended the Reggeized diquark model for
chiral-even GPDs, to the chiral-odd transversity sector, using parity relations for the vertices in
Eq. 3.1. See Fig. 2 (Left) for all four of the predicted complex Compton Form Factors vs. t at
one low Q2 value. The successful phenomenology for the chiral-odd GPDs applied to π0 electro-
production is shown in several publications [10, 11] - experimental comparisons were presented in
Refs. [14, 15], among others. An example of the t-dependence for one kinematic bin of xB j and Q2

is shown in Fig. 2 (Right), as we discuss below.
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Figure 2: Left: Chiral Odd CFFs entering the process γ∗p→ πo p′. From top to bottom ℑmHT (left),
ℜeHT (right); ℑm[2H̃T + ET ] (left), ℜe[2H̃T + ET ] (right); ℑmH̃T (left), ℜeH̃T (right); ℑmẼT (left),
ℜeẼT (right). The various CFFs are plotted vs. −t for the kinematic bin xB j = 0.13, Q2 = 1.1 GeV2. .
Right: Unpolarized cross section components, FUU,T + ε FUU,L, Fcos2φ

UU , and Fcosφ

UU in the kinematical bin,
xB j = 0.27, Q2 = 2.2 GeV2. The upper left panel shows all components along with the data from Ref.[14].
The other panels show the contributions from the various GPDs to particular sub-cross sections. Adapted
from Ref. [11].

For the gluon GPDs, the model is generalized from the spectator picture for quark GPDs [16].
The nucleon decomposes into a gluon and a color octet baryon, so that the overall color is a singlet.
The color octet baryon contains components that have the same flavor as the nucleon, are Fermionic
(with color⊗flavor⊗spin being antisymmetric under quark label exchanges), and include spin 1/2
and spin 3/2 flavor octets (belonging to the mixed symmetry 70-plet of flavor⊗spin SU(6)). We can
select spin 1/2 for simplicity. This provides sufficient parameterization to fit the Hg(x,0,0) to the
pdf g(x). Evolving with Q2 also requires a sea quark contribution, which we take in an analogous
spectator picture with N→ ū⊕(uuud) or d̄⊕(uudd). The constraints on the gluon distributions are
the unpolarized gluon pdfs for Hg(X ,0,0). This is shown for one Q2 value in Fig. 3 (Left) for the
complete set of partons: for the gluons, the valence and sea u-quarks at Q2 = 5. The full DGLAP
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evolution is applied to obtain the best parametrization. To extend the unpolarized gluon GPDs to
non-zero t, constraining form factors would be useful. One available functional form is provided by
QCD sum rules for gluons [18]. We show the t-dependence of our spectator model by itself, without
Regge behavior incorporated, compared to the sum rules and pure Regge behavior (for small x), in
Fig. 3 (Right). This indicates that the spectator model already incorporates appropriately declining
t-dependence. This can be seen in the (preliminary) Fig. 4.

Figure 3: Left: Fits of unpolarized valence u-quark, sea u-quark and gluon form factor xHg(x,0,0) as a
function of x from spectator model [16], compared with Alekhin [17]. Right: Unpolarized gluon form factor
Fg(t,Q2) as a function of t from spectator model [16], compared with QCD Sum Rule [18] and Regge
behavior.

t=	  0	  	  	  	  	  	  	  	  -‐-‐-‐	  
t=	  -‐0.2	  	  	  -‐-‐-‐	  
t	  =-‐0.5	  	  	  	  -‐-‐-‐	  	  

Hg(X,0.2,t)	  

X	  

Hg(X,0,t)	  
x=	  0.001	  	  	  	  	  	  	  	  -‐-‐-‐	  
x=	  0.01	  	  	  	  	  	  -‐-‐-‐	  
X=0.1	  	  	  	  	  	  	  	  	  	  	  	  	  -‐-‐-‐	  	  

-‐t	  

Figure 4: (color online) Left: Graphs of Hg(X ,0.2, t), i.e. ζ = 0.2, plotted against X for the initial scale of
Q2 with three values of −t. Note that the graph is in the DGLAP region only. Right: Graphs of Hg(X ,0, t)
plotted against -t for three values of X and the initial scale of Q2. Courtesy J. Poage and adapted from
Ref. [16].

4. Observables and data

DVCS accesses Chiral Even GPDs through various cross sections and asymmetries. The
GPDs, or their corresponding Compton Form Factors, enter as bilinears in pure DVCS or pure

6
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Bethe-Heitler in these observables, or linearly via Bethe-Heitler ⊗ DVCS interference. On the
other hand, DVπ0S accesses 2 Chiral Even + 4 Chiral Odd GPDs that enter bilinearly via dσ/dΩ

& polarization asymmetries. The result of experimental observations that dσT > dσL is that the
chiral odd GPDs dominate, even though these GPDs enter the overall amplitudes through twist 3
π0 distribution amplitudes.

In Ref.[10], after showing how DVπ0P can be described in terms of chiral-odd GPDs, we
estimated all of their contributions to the various observables with particular attention to the ones
which were sensitive to the values of the tensor charge. The connection of the correlator, Eq.(2.3),
with the helicity amplitudes for π0 electroproduction proceeds by introducing a factorized form
[10, 11],

f ΛΛ′
Λγ 0 (ζ , t) = ∑

λ ,λ ′
gλλ ′

Λγ 0(X ,ζ , t,Q2)⊗AΛ′λ ′,Λλ (X ,ζ , t), (4.1)

where the helicities of the virtual photon and the initial proton are, Λγ , Λ, and the helicities of the
produced pion and final proton are 0, and Λ′, respectively. This describes a factorization into a
“hard part”, gλλ ′

Λγ 0 for the partonic subprocess γ∗+q→ π0 +q, and a “soft part” given by the quark-
proton helicity amplitudes, AΛ′,λ ′;Λ,λ that contain the GPDs. We assumed this can be factorized,
within the assumptions of the model, which goes beyond the proven leading twist factorization
with chiral even GPDs [19]. The expressions for the chiral-odd quark-nucleon helicity amplitudes
in terms of GPDs [7] are of the form

A++,−− =
√

1−ξ 2

[
HT +

t0− t
4M2 H̃T −

ξ 2

1−ξ 2 ET +
ξ

1−ξ 2 ẼT

]
, . . . (4.2)

where we use the symmetric notation for the kinematic variables. Analogous forms have been
written for the chiral even and the remaining chiral odd sectors [7].

The fitting procedure of GPDs is quite complicated owing to its many different steps. We
described the “recursive procedure" that we used for the chiral even GPDs, the flexible model, in
Ref. [5]. The main points are that the parametrization is constrained by EM form factors, pdf’s,
sum rules and some DVCS relations. A more detailed description of the other transversity func-
tions including the first moment of h⊥1 ≡ 2H̃q

T + Eq
T is given in [11]. In Fig. 2 (Right) we show a

small sampling of results, compared with data from Jefferson Lab, Hall B [14]. The various GPDs
enter the helicity amplitudes and those, in turn, determine all the cross section terms for π0 elec-
troproduction. Note that the azimuthally independent FUU,T + εFUU,L is determined primarily by
HT , and thus provides a determination of the pdf h1 and the tensor charge δq. The transverse and
longitudinal cross sections have been separated experimentally at small t [15]. Some preliminary
data were shown and compared favorably with our predictions (see Fig.4(Right) in Ref. [20]).

DVCS observables that depend on the gluon GPDs are generally suppressed by one power of
αs, since the photons connect to the gluons through quark loops. These gluon contributions will be
difficult to access, being in the helicity amplitudes along with the dominant quark GPDs. The one
case that directly exposes gluon contributions is through double helicity flip of the photons, which
connects to the transversity gluon distributions of Eq. 2.6. To observe that effect requires precise
measurements of azimuthal asymmetries, up to cos3φ terms. Alternatively, electroproduction of
vector mesons or lepton pairs will enable this. This phenomenolgy is being studied [16].
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5. Observing GTMDs

We introduced the GTMDs above in Eq. 2.1, without reproducing the extensive decomposi-
tions into many structure functions [3]. Since these functions appear like unintegrated parton +
nucleon amplitudes, they have both kT and ∆T . The kT variation arises from the patron’s transverse
3-momenta relative to the nucleon average, longitudinal 3-momentum direction. ∆T is the momen-
tum transfer between incoming and outgoing nucleon. As we noted in Eq. 2.1, for the GTMDs
then, there are 2 planes for the kinematics, the kT plane formed by~kT , P̄3; the ∆ plane formed by
the ~∆T , P̄3. We have asked whether or not the GTMDs can be accessed experimentally. Processes
that have 3 irreducible planes, like exclusive electroproduction of γ +π+ +π−+N, are candidates
for indirect measurements of interesting GTMDs, particularly F14, connected to orbital angular
momentum [21]. In particular, we are considering

γ
∗(q)+N(p)→ π(q̃′′)+π(q̃′)+ γ

∗(q′)+N(p′) (5.1)

as a means to isolate the relevant GTMDs, as shown in Fig. 5.

Figure 5: (color online) Left: Diagram for 3-body off-forward scattering of π, +γ + p. Right: Orientation
of 3 planes for e+ p→ e′+π+ +π−+ γ + p′.

6. Conclusions & Outlook

We have extended all the distributions that can be accessed with our “flexible spectator” model,
focusing on chiral even and odd quark GPDs, the latter entering the transversity parton distribu-
tions in the nucleon that were accessed through deeply virtual exclusive π0 meson production. This
represents a consistent quantitative step with respect to our previous work [10]. It should be noted
that, in particular, HT and the combination 2H̃T +ET , now are separated. A similar, somewhat sim-
plified approach was taken also in Ref.[22] - we differ in the importance attached to the skewedness
dependence of ET , ẼT .

We see the results of our extended approach for some of the many measured and measurable
observables. What is especially gratifying is that certain asymmetries constrain the GPDs well
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enough to separately determine HT , and consequently transversity through the limit HT (x,0,0),
and the combination 2H̃T +(1±ξ )ET . (See Ref. [11] for details.)

We sketched the extension of the model to the gluon distributions, which is work in progress [16]
and suggested an experimental means to indirectly measure some GTMDs.
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