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1. Introduction

At past and present day collider experiments, collimated jets of hadrons [1, 2, 3] play an impor-
tant role in testing the fundamental properties of Quantum Chromodynamics (QCD), the search of
physics beyond the Standard Model or for probing the quark-gluon plasma produced in heavy-ion
collisions. In addition, in recent years studies of the substructure of jets have emerged as a power-
ful probe of QCD dynamics. Examples include the jet fragmentation function, jet broadening, jet
shapes, jet mass, etc.

Studies of jets depend on the choice of jet definition and the jet radius parameter R. This pa-
rameter serves as a distance measure between particles and determines when particles are clustered
together in the same jet. For inclusive jet observables, the jet radius parameter shows up in the
perturbative expansion as single logarithms (o, InR)" [4, 5, 6]. For narrow jets, i.e. small values of
R, these logarithms can be large and need to be resummed to all orders in perturbation theory [7, 8].
This can be achieved with the framework presented in this work. In [9, 10] the so-called “semi-
inclusive jet functions” were first introduced and applied to the calculation of jet cross sections.
Their exact definition will be given below. In this work, we consider both the inclusive production
of jets as well as the jet fragmentation function (JFF). The JFF describes the longitudinal momen-
tum distribution of hadrons inside a fully reconstructed jet [11, 12, 13, 14, 15, 16]. It is one of
the phenomenologically most relevant jet substructure observables [17, 18, 19]. For inclusive jet
production and for the JFF, we consider jets that are produced in proton-proton collisions. We rely
on the framework of Soft Collinear Effective Theory (SCET) [20, 22, 21]. In past years, SCET
has emerged as a valuable tool to describe various jet observables. A resummation of small-R
logarithms is highly desired since small values of R are frequently used in jet observables by the
experiments, especially for jet substructure. Relatively small jet radii, as small as R = 0.2, are also
commonly used in heavy ion collisions [23, 24], in order to suppress the heavy-ion background.

In this paper, within the framework of SCET, we review the definition of the semi-inclusive
jet functions J;(z, @y, i) that describe a jet with energy @, and radius R carrying a fraction z of the
light cone energy of the parton i that initiates the jet [9]. This new kind of jet function can be used
to calculate inclusive jet cross sections. We present results for J;(z, @y, 1) up to next-to-leading
order (NLO) and its renormalization group (RG) equations. The resulting RG equations take the
form of standard timelike DGLAP equations, satisfied also by collinear fragmentation functions.
By working out their solution, we are able to resum single logarithms in the jet radius parameter
(asInR)" at next-to-leading logarithmic (NLLg) accuracy. We present a factorization theorem for
the process pp — jetX which may be written in terms of hard-scattering functions for inclusive
hadron production [25] and the evolved semi-inclusive jet function. Analogously, we introduce the
semi-inclusive fragmenting jet function (FJF) gih (z,zn, @7, R, ) [10]. The only additional variable,
Zp, 18 given by the ratio of the longitudinal momentum components of the hadron and the jet. The
factorized form of the cross section for pp — (jeth)X is essentially the same as for pp — jetX
but the semi-inclusive jet function is replaced with the semi-inclusive FJF. Finally, we present
numerical results for both observables for LHC kinematics at a combined accuracy of NLO+NLLg.

The remainder of this paper is organized as follows. In Sec. 2, we give the definition of the
semi-inclusive jet function. In addition, we present its RG equations and outline their solution.
We present a factorized form of the cross section in terms of hard-scattering functions and the
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semi-inclusive jet functions for the process pp — jetX and present numerical results for the LHC.
In Sec. 3, we proceed by introducing the semi-inclusive FJE. We present numerical results for the
process pp — (jeth)X and compare to available data from the LHC. We conclude our paper in
Sec. 4.

2. Inclusive jet production
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Figure 1: Three situations that contribute to the semi-inclusive quark jet function: (A) both tha quark and
tha gluon are inside the jet, (B) only the quark is inside the jet, (C) only the gluon is inside the jet. The
dashed (curly-solid) line represents a collinear quark (gluon).

We start by presenting the definition of the semi-inclusive jet functions for quarks and gluons
Jy(z,0y) and J4(z, 0y), respectively [9]

e=0r/@,0,8) =T [500L0)8 (@1 2)X)UXLOI0)], @D
Je(a= 1)@, 1) = 725 (018,408 (0 — 7 2) X)X L (0)[0). @)

Here, @ is the energy of the initiating parton i, & is the label momentum operator and ,, %# | are
gauge invariant building blocks for quark and gluons fields in SCET, respectively. Furthermore,
|[JX) represents the final state, where J is the observed jet and X the unobserved hadronic remnant.
See [9] for more details. To leading-order, we simply have Jq(?; (z,7) = 6(1 —z). As an example,
we present the NLO result for the semi-inclusive jet function for an initial quark. To NLO, we need
to consider the diagrams shown in Fig. 1. All three diagrams show the same ¢ — gg branching
process but we need to distinguish the situation A) where both partons remain inside the jet and B),
C) where one parton exits the jet. For example, for the anti-k7 algorithm at order &' (), we find

the following result after renormalization

+(1 z)] —8(1—2)Cr (123 — 23”2> + Pgq(2)2In (1 —2) +CFz} : (2.3)

Here, P,,(z) and P,,(z) are the standard Altarelli-Parisi splitting functions. Note that we are left
with only a single logarithmic dependence on the jet parameter R, here In (u?/(wj tan*(R/2))),
which we eventually want to resum. For exclusive jet observables a double logarithmic dependence
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is obtained, see e.g. [26, 27]. Due to renormalization, the semi-inclusive jet functions J, /, (z, 05, 1)
satisfy the following RG equation
1 7./

#;LJ:'(Z,(W,N) = Oésfzu);/z CIZP/:‘ (Zz,aﬂ) Ji(Z, 5, 1). (2.4)
The anomalous dimensions that appear here on the right hand side, Pj(z), are again the usual
Altarelli-Parisi splitting functions. Therefore, the RG equation is exactly the same as the timelike
DGLAP equations satisfied by collinear fragmentation functions, Df’ (z, 1), which describe the non-
perturbative fragmentation of a parton i into a hadron h. The fact that we obtain DGLAP-type
evolution equations is a characteristic feature of inclusive jet observables. In contrast, for exclusive
jet observables multiplicative RG equations are obtained, see e.g. [26, 27]. This new type of RG
equations for semi-inclusive jet functions in Eq. (2.4), necessary for inclusive jet cross sections,
constitutes the main new result of our work. From the NLO expressions in Eq. (2.3), it can be

do [/ doro
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Figure 2: NLO (red) and NLO + LLj (blue) cross sections normalized to the leading-order result for differ-
ent values of R = 0.99 —0.05. The small-R approximation is only up to R = 0.7. As an example, we choose
Vv/s=8TeV and || <0.5.

seen that the natural scale for the semi-inclusive jet function is given by 1 ~ w;tan(R/2) for which
the large logarithmic terms are eliminated. Thus, by solving the evolution equations in Eq. (2.4)
above from the scale ; ~ @, tan(R/2) to a higher scale u ~ pr, we resum logarithms of the form
(asInR)". Following the methods developed in [28, 29, 30], we can work out the solution of the
DGLAP-type evolution equations in Mellin space at NLLg. See [9] for more details.
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We proceed by presenting a factorization theorem for inclusive jet production in proton-proton
collisions. Following [4, 9, 14, 25, 31], one finds that the cross section for pp — jetX can be cast
into the following form

doPp=ieX  2p 'L dx, U dx, U dz d6S,(3, pr, 0, 1)
= a\Xa, - s — 1 Je(ze, @y, .

dprdn § a%}c/xfzm" Xa folx 'u)/x;,“‘“ Xp Jols 'u)/z;"in z2 dvdz (ze, @7, 1)
(2.5)

Here, J. is the evolved semi-inclusive jet function, f;  are the parton distribution functions (PDFs)
for the initial protons and the d6;, /dvdz are the hard functions. As demonstrated in [9], the hard

functions here are the same as for inclusive hadron production [25]. In addition, pr and 1 denote
the transverse momentum and the rapidity of the observed final state jet respectively. The definition
of all other kinematic variables and the lower integration limits in Eq. (2.5) can be found in [9].
Note that an analogous version of Eq. (2.5) was already formulated in [14] using only the fixed
order results for the semi-inclusive jet function as in Eq. (2.3).

Finally, in Fig. 2, we present numerical results showing the phenomenological relevance of
InR resummation for LHC kinematics. We show the NLO (red) and NLO + LL% (blue) cross
sections normalized to the leading-order result for different values of R = 0.99 — 0.05. We choose
/s =8 TeV and |n| < 0.5 and, throughout this work, we use the PDFs of [32]. The difference
between the NLO calculation and the In R resummed result can be as large as 30% for R = 0.1 and
pr = 1700 GeV.

3. The jet fragmentation function

In order to describe the jet fragmentation function, where a hadron is identified inside a recon-
structed jet, we need to introduce a different kind of semi-inclusive jet function. In analogy to the
derivation outlined in section 2, we define the semi-inclusive fragmenting jet function for quarks
and gluons as

93canoni) = 520 (- 2 ) x| 01 (01 2) 1,0 G (A2 0)0)]

3.1
G et 00 ) = (g8 (3 ) (008 (07 7) B, 0)| (X)

x((Jh)X |2 (0)|0). (3.2)

The additional variable z; is given by the ratio of the longitudinal momenta of the hadron and the
jet, as mentioned above. When evaluating the semi-inclusive FJF at NLO, we need to consider
again the diagrams shown in Fig. 1. To this order in perturbation theory, we find that either z =1 or
zp = 1. See [10] for a detailed calculation. The renormalization of UV poles and the derivation of
an analogous RG equation as in (2.4) follows the same steps as outlined in section 2. The resulting
DGLAP-type RG equation can be used again to resum single logarithms in the jet parameter R.
The remaining IR poles are matched onto collinear fragmentation functions as

Ldz, F4
%h(Z,Zh,(l)‘],,U):Z fhflj (szgnwfa.u)D? <7’“) . (33)
FIRE <p Zp
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Figure 3: Comparison of our numerical calculations (solid blue lines) to LHC data in proton-proton col-
lisions at /s = 2.76 TeV. The solid red circles correspond to the preliminary ATLAS data form Ref. [19]
and the green triangles are the CMS data from Ref. [17]. The numbers in the square brackets correspond to
different jet transverse momentum bins in the range of 45 — 300 GeV.

The final results for the matching coefficients _#;; and a factorized form of the cross section for
proton-proton scattering similar to (2.5) can be found in [10]. See also [14]. We present numerical
results for the jet fragmentation function which is given by the ratio

dep%(jeth)X doPpr—ietX

dprdndz, /' dprdn

F(ZhapT) = ) (34)

where z;, = p}} /pr, pr and N are integrated over certain bins. In Fig. 3, we show our numerical
results at NLO+NLLg accuracy for /s = 2.76 TeV using the fragmentation functions of [33] and
compare to data from ATLAS [19] and CMS [17]. The numbers in the square brackets corre-
spond to different jet transverse momentum bins in the range of 45 — 300 GeV. We find very good
agreement between theory and data.

4. Conclusions

In this work, we introduced two new kinds of jet functions within SCET, relevant for the eval-
uation of inclusive jet observables. First, we considered the semi-inclusive jet function, which
appears in the factorized formalism for single inclusive jet production. We calculated the new
jet function to NLO and derived the corresponding RG equations which take the form of time-
like DGLAP evolution equations, satisfied also by collinear fragmentation functions. By solving
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these DGLAP-type equations, we were able to resum single logarithms in the jet radius parame-
ter (asInR)" to NLLg accuracy. We found numerically significant effects, e.g. InR resummation
can lead to a reduction of 10 —20% of the cross section compared with the NLO results for in-
termediate R = 0.3 —0.5. Secondly, we considered the semi-inclusive fragmenting jet function
which is needed to describe the jet fragmentation function where a hadron is identified inside a
reconstructed jet. In direct analogy to inclusive jet production, we obtained DGLAP type evolution
equations which allow for the resummation of single logarithms in the jet radius parameter R. We
compared our numerical results to existing data from the LHC and found very good agreement.
Our results are also applicable to e™ e~ annihilation and ep scattering, the latter being particularly
important for a future Electron-Ion Collider (EIC). We plan to extend our new formalism in the
future to other jet substructure observables, which can now be calculated as inclusive quantities.
In addition, we expect that this framework will facilitate the combination of InR resummation
with other types of resummation, such as threshold resummation. Finally, we expect significant
improvements from our new framework in the ability to describe jet substructure observables in
heavy-ion collisions [34, 35] in a suitably modified effective theory [36].
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