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1. Introduction

In this paper, we study two twist-3 spin asymmetries in proton-proton collisions. The first
one is the large hyperon polarization (~ a few ten %) in unpolarized pp collisions which has been
known since 1970s [1]",

p(P)+p(P") = H'(P,,S,) +X, (1.1)

where the momentum and the spin vector for each baryon is shown. Perturbative QCD at twist-2
level can not give rise to such large polarization [2], and therefore clarification of its origin has
been a big challenge for QCD theorists. In the collinear factorization the polarization can occur as
a twist-3 effect and the cross section receives two types of contributions: (i) Twist-3 distribution
function (quark-gluon correlation function) in one of the unpolarized protons combined with the
twist-2 transversity fragmentation function for H' and the twist-2 parton density in another proton,
and (ii) Twist-3 fragmentation function for the polarized H combined with the unpolarized parton
densities for the initial protons. In our recent paper [3], we completed the twist-3 cross section for
(1) in the leading-order (LO) with respect to the QCD coupling constant. Reflecting the naively
“T-odd" nature of the polarization, the twist-3 cross section for (i) occurs as pole contributions
in the hard part. It turned out that the soft-fermion-pole (SFP) contribution vanishes and only the
derivative term of the soft-gluon-pole (SGP) contribution survives for (i). In Sec. 2, we discuss
these features following [3].

The second one is the longitudinal and transverse spin asymmetry A7 in the hadron (typically
pion) production in pp collisions:

p'(P,S.1)+PB(P',A) = h(Py) + X, (1.2)

where S| is the spin vector of the transversely polarized nucleon A, and A is the helicity of the
longitudinally polarized nucleon B. The twist-3 cross section for (1.2) consists of three parts:

do(Py,S1,A) = H® fa/a3)® fo/8(2) @ Dpyje2)
+ H'® fa/a2) @ fo/83) © Dije(2)
+ H"® faja2) ® fo/82) @ Dije(3) (1.3)

where f;/4(3) represents twist-3 distribution function of parton species a in the nucleon A, and
Dy (2 1s the twist-2 fragmentation function for ¢ — h, and likewise for other functions. The LO
cross section for the first term was derived in [4]. In our recent papers, we derived the LO cross
section for the second [5] and the third [6] terms, which completed the cross section for (1.2).
Unlike transverse single spin asymmetries, A;r is naively “T-even", which leads to inherently
different form of the twist-3 cross section. Therefore study on Ay can shed light on different
aspect of hadron structure and can provide further test of the formalism. There are some reasons
that the second and the third terms in (1.3) are as important as the first term: For A in the Drell-
Yan process, there are two twist-3 terms corresponding to the first and the second terms in (1.3)
with Dy, /.(2) omitted. An analysis of A7 of Drell-Yan shows the second term is as important as

IWe collectively use the notation H for hyperons.
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the first term when one integrates over the transverse momentum of the lepton pair [7]. For Ay of
p'p — mX, it’s been shown that the twist-3 fragmentation contribution may be the main cause of
the asymmetry [8], from which we expect the third term in (1.3) may be as important as the others.
Accordingly, study of all three terms in (1.3) is needed. In Sec. 3, we will present the cross sections
for the second and third terms following [5, 6].

2. Hyperon polarization from unpolarized pp collision

Here we are interested in the contribution to (1.1) from the twist-3 distribution in the unpo-
larized nucleon Ef(x;,x2) and the twist-2 transversity fragmentation function H;(z) for HT'. The
former is defined as [9, 10]

du _ " My o8n
/ A gitt(xa—x1) (P|l//j(0)gF“ (un)y;(An)|P)y = N gap p(}gmﬁ)ijEp(xhxz)—l----,
(2.1)

where y; is a quark field with spinor index i, and we introduced two lightlike vectors p and n
which satisfy P¥ = p* 4+ (M%/2)n* and p-n = 1 with the only nonzero components p* = P+
and n~ for the nucleon moving in the +z-direction. The nucleon mass My is introduced to define
the function Ep(x,x;) as dimensionless, and goPrr = eo‘ﬁﬂvnu pyv. From hermiticity and PT-
invariance, Ep (xl,xz) is real and symmetric: Ep(x1,x,) = Ep(x2,x1). H1(2) is defined as [10]

S e O (251) X) (7S 1) XIS 010) = (581 pdyth 2) 4+, 2D

where N = 3 is the number of colors for a quark, the hyperon momentum P, is decomposed as
Pl = p) + (M} /2)w* (Mj, is the hyperon mass) with two lightlike vectors p, and w satisfying
pn-w =1, and p. = pj/z is the momentum of the quark fragmenting into H T. The combination of
the two chiral-odd functions E(x1,x2) and H;(z) can generate the polarization of the hyperon.

The twist-3 cross section from Eg(x1,x;) and H;(z) occurs as a pole contribution in the par-
tonic hard part. They are classified as the soft-gluon-pole (SGP) and the soft-fermion-pole (SFP)
which fix the momentum fraction of Er(x1,x2) at x; = xp and x; = 0 (i = | or 2), respectively.
The SGP contribution was calculated in [10, 11], while the SFP contribution was not studied yet.
In general, SGP gives rise to the contribution from Ep(x,x) and its derivative dEp(x,x)/dx. For
this process, however, it was found that the hard factor for the nonderivative term vanishes [11]
and only the derivative term survives in the cross section. This is in contrast to the case of the
twist-3 distribution contribution to the single spin asymmetry for p'p — hX, where the derivative
and the nonderivative terms of the SGP function G (x,x) appears with a common hard factor, i.e.,
they appear in the combination of x% Gr(x,x) — Gr(x,x) [12]. The origin of this simple form was
clarified based on the “master formula" which connects the SGP partonic hard cross section to a
22 scattering cross section [13]. Here we develop a “master formula" for pp — H'X and clarify
the origin of different type of simplification for the SGP cross section. We also compute the SFP
contribution and complete the LO cross section for the twist-3 cross section.

We first discuss the SGP contribution. Applying the formalism developed in [14, 15], one can
obtain the SGP contribution to pp — H'X from the following formula:

dAcSCP iMy [ dx dz
P —AW) | ZH
" Bp, T eamds) X A [z
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(2:3)

dx ., 0
X /x—ll/dszF(xl,xz)Eaﬁ"p— (Sfm (klakz)PlJrSEﬁ(kl,kz)pl)
ki=x;p

kG

where s = (p -+ p')? is the center of mass energy squared, f;(x') is the unpolarized parton den-
sity, and the partonic hard parts S;g (ki,k2) p* are obtained from diagrams shown in Fig. 1 by
taking the spinor- and color- traces with the appropriate projections for the distribution and frag-
mentation functions. Sﬁ B and Si B correspond to the initial-state-interaction (ISI) and the final-
state-interaction (FSI), respectively. In SELI[:{ (k1,kz), the Lorentz index A corresponds to that for the
coherent gluon line with the momentum k, — k; in Fig. 1, and B is for the projection of Ep(x1,x7)
in (2.1).
Following the procedure described in [13, 16, 17], one obtains the hard part as

98k 5 (ki ko) p* | —1 pole d
80‘3"17 AB — saﬁnpSY S'I It 24
aklzx A Xo —X] + ie J_d(x/p/a) B'}/(xlp’xp ?p(?)? ( )
F 2 |SGP 1
caBnp 9855k, k2)p _ 1 poesaﬁnp
8k‘27‘ x| —Xo +1i€
ki=xip
Y d 1 Y Y1 | ¢F /

XS o AP Su)ga = S1ap”} | Spylnip P pe),2.5)

c c

where £%p Sz%y(xl p,X' P, p.) represents the partonic cross section for the 2—2 scattering pro-
cess, g(x1p) +b(X'p') = q(pc) + b(xip+x'p' — pc) (b= q or g), as shown in Fig. 2. It is obtained
by the spinor projection £*A"P ¥5ygx1p for the initial parton with momentum x; p, the unpolarized
projection for the parton b with momentum x'p’, and the projection ys8 p,. for the final parton
fragmenting into AT, but has the same color factor as the ISI diagrams in Fig. 1.2 Except for the
color factor, the twist-2 partonic cross section for the spin-transfer reaction p'(p,Sy. )+ p(p') —
H'(P,,S,)+X [18] can be written as SgLSig‘Iﬁy(xlp,x’p’,pc). S‘ng(xlp,x’p’,pc) in (3.8) is defined
similarly but with the color factors for the FSI diagrams in Fig. 1, and thus S‘%Y and S:Fﬁy differ only
in the color factors. We note the appearance of the extra terms in (2.5) for FSI compared with (2.4)
for IS, which is different from the case of the G (x,x) contribution to p'p — wX.

Figure 1: Diagrammatic representation of the hard part for the SGP contribution. Left (Right) diagram
corresponds to IST (FSI) and gives Si ﬁ(kl,kz) (SE ﬁ(kl,kz)). The SGP is given as a pole part of the bared
propagator. The circled cross indicates the fragmentation insertion for H'. Each blob represents the 2 — 2
scattering amplitude.

ZWe have factored out the spin vector SI to define S‘}; Y(Xl X' P pe).
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rp

xr1p

Figure 2: Diagrammatic representation for Szil;(xl p,X'p'pe).

From (2.4) and (2.5), one can show that the hard factor for the nonderivative terms vanishes
and can easily obtain the total SGP contribution as [10, 11]

dAcSC? My o? . dx’ dz JES (x,)
0 - N ,piS b 4 4 (x, o
hipp = & )3 /7f1 () ZTHf(Z)/de Capse O (§+7+10),

a,b,c

(2.6)
where we have supplied the indices a, b, ¢ for each functions: a, ¢ refer to quark and anti-quark
flavors and b refers to quark and anti-quark flavors and gluon. The partonic cross section in each
channel 6,_,. is a function of the Mandelstam variables § = (xp +x'p')?, f = (xp — p.)? and
i = (¥p' — p.)?, and they are given by

128 1 & I 1\§ 1 §
Ow—1= 22 N2 qu%qchq’%q_<ﬁ+ﬁ>f7+ﬁ%’

NZ—-2\§ 1 £ 11 13
Oq—~q = (T)ﬁ_ﬁﬁ "qéﬁqZ%Hqé’ﬁLm?Jrﬁ?’

11 1 1\ S§
%ﬁq:_ﬁfr(ﬁJrzW)f_”
1 § 1 28

o, = N ﬁ—i— . (2.7)
®7ET N2 1¢2 T N2 —14  N2(N2—-1)ia  (N>2—1) 3~ ‘

We note the master formula (2.4) and (2.5) can be easily extended to the higher order correction to
the SGP contribution and will become a useful tool in actual calculation.

We now discuss the SFP contribution. It receives only the nonderivative contribution and is
given by [15]

dAcSTP iMy [ dx dz
PO = — A | SH
ha3p, 64nzs ) x fi(x) 7 1@
1
X/dX1/dX2EF(X1,X2)8aﬁnp (7> Si%P(xlp,xzp), (2.8)
X1 — X2

where SE%P (x1p,x2p) represents the corresponding hard part. By the direct calculation of the dia-

grams, it turned out that the SFP contribution completely vanishes in all channels after summing
over all the diagrams.3 As a result, the derivative term of SGP contribution (2.6) becomes the final
cross section formula.

Finally, we note that the contribution from the twist-3 fragmentation for H' to (1.1) needs to
be analyzed, which will be reported elsewhere.

3The SFP contribution from Ep to p'p — ¥X was also shown to vanish in [17].
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3. A;r in hadron production in pp collision

3.1 Contribution from twist-3 distribution in the longitudinally polarized proton

In this section we present the cross section for the second term of (1.3) following [5]. To this
end we first define twist-3 distribution functions in the longitudinally polarized nucleon relevant
to this contribution. The lightcone quark correlation function defines the transversity distribution
hi(x) (in the nucleon A) and the twist-3 longitudinally polarized distribution /4, (x) (in the nucleon
B) as [19]

dA 1 My, ..
Mislx) = [ 5™ (PS5 (0) Wi () PS) = 5 (58Pt (3) + S A(1950™ ) (x) + -+ (3.)
where S is the nucleon spin vector normalized as §* = —1 and A = My(S-n) is its helicity. Twist-

3 quark-gluon correlation function in the longitudinally polarized nucleon Hpy(x1,x2) is defined
as [20]

d _
ME ) = [T [ e gt (g 0) g™ (um i () PS)
= iTgLﬁA(%Yﬁﬁ)inFL(xlﬂcz) 4, (3.2)
where giﬁ = g% — p%nP — pPn® 1t follows from hermiticity and PT-invariance that Hyy (x|, x) =

—Hpy (x2,x1). We also need another twist-3 distribution A (x) defined by

. dA 0 _
M3 (%) :lelgo Eemﬁ(PSWj(O) [0, c0n][eon, con +z |[eon +z , An+z, |Wi(An+ 2z, )|PS)

M ~
= i gAY () + . (3.3)

Although three types of twist-3 distribution functions (3.1), (3.2) and (3.3) appear in the derivation
of the cross section, they are not independent, but obey constraint relations by QCD equation of
motion (e.0.m.) and the Lorentz invariance property. From QCD e.o.m. one has

2 1 1 2.
hu (x) = —;[1dx1 2 ()q _x> Hpy(9,) = i (3). (3.4)

The operator product expansion gives another relation among %y, (x), 1 (x), and Hpp(x1,x2) as [20]

d d
_xzdx (x L(x )) — 2y (x +2/ dxlyx - <3x ax1>HFL(x x). (3.5)
The combination of (3.4) and (3.5) leads to
dhy (x) ! 1
G W () =2 [ dn P (e), (36)

which is known as a Lorentz invariance relation in the literature [21].

With these twist-3 correlation functions, one can calculate the cross section. Unlike “naively
T-odd" single spin asymmetry, Ay is “T-even", and thus the cross section is caused as a non-
pole contribution from the hard part. Following the Feynman gauge formalism for the nonpole
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Figure 3: Generic diagrams for the twist-3 distribution contribution from the longitudinally polarized nu-
cleon (upper blob) and the transversity distribution (lower blob) to the process (1.3). Diagram (a) gives rise
to the first and second terms in (3.7), and (b) and (c) are for the third term in (3.7). Mirror diagrams of (b)
and (c) also contribute, which are included in (3.7).

contribution [22], the twist-3 cross section for the second term of (1.3) is obtained from

Lon
odog
h d3p’h
1 dx dz . g, 9S(k)
- m/;M()C) Z_ZD(Z) {/dx'Tr [M(x")S(x'p')] —i—la)%/dx'Tr [Ma () e
1
+2iw%/dx’/dx’1 t@xll _xITr {Mg(x'l,x')SLa(x'lp',x'p')] }, (3.7)

where M (x'), Mg (x') and My (x},x’) are, respectively, defined in (3.1), (3.3) and (3.2) with p and n
replaced by p' and n' similarly defined for the momentum P’ by the relation P’ = p' 4 (M3 /2)n’ and
p-n'=1,and a)% = gg —p "‘nb. The partonic hard parts S(k) and Sy« (x| p',x'p') are shown by the
middle blobs of Fig. 3(a) and Fig. 3(b),(c), respectively. Here S (x| p',x’p’) represents the hard
part for the diagram in which the coherent gluon line from Mﬁ (x},x) is located in the left of the
cut, and the effect of the mirror diagrams are taken into account by the principal value prescription
and the factor 2 for the third term in (3.7). Calculating the lowest order Feynman diagrams for the
hard part in (3.7), one can obtain the cross section in terms of /i, hy and Hp;. We further found
that the simple structure of the partonic hard cross section for Hy;, allows us to eliminate it by using

(3.6). This way we eventually obtain the cross section for the second term of (1.3) as [51*
do'  202MyA Udx Ldz !
P = TV s /—hax/ —Dcz/dx'6§+f+ﬁ
on T s oL L [T [0 [ e s ii)
) ) d]flb / )
X [h’;(x')a{+hlg(x')ag+ g(f )6§], (3.8)
X

where 6‘{ » 3 represent the partonic hard cross section in the channel i, and a, b, c refer to parton
species (a, b = ¢q, 4, and ¢ = g, G, g). The Mandelstam variables in the partonic level are defined as

4In this section, py refers to the final hadron momentum defined similarly to the hyperon case in the previous
section.
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§=(xp +x’p’)2, f=(xp—p)tandi=(xp — pc)z. The partonic cross section in each channel is
given as follows:
(i) gg — qq channel:

5 Li-d oo (L, 1 f—i G L1 11 3.9)
VTN i >\~ N3 2 TUNT NG ‘
(il) g — ¢'d’ channel:
. P12 . i 120-38 .1 1 a-28
=gtwmy T gtwm e % itwm e 10
(iii) g¢g — ¢'q' channel:
. i 12 A L1 28+a
o1 = _f_z_mga 0y = ) N2 0 03 = N2 ) (311)
(iv) gq — qg channel:
. Foo12 11 11 . i 120—-§ 1 f 1 fi+4a
Ol = 5 T 2T o7 T3~ O == T A A A
§$2 N2§ N§ N3a §$2 N2 ¢ N2§i N3 280
1 1 4-28 1a-3§
63 = -+ — —— . 3.12
R R Y (312)
(V) §q — gq channel:
G B 12 11 11 6_f+1§—2f+112+14f+ﬁ
T T8 NZs N5 N3P TN @ N2t N3 25
. 12540 11 11
6= —— . 3.13
SN2 NT TN (3-13)
(vi) gq — gg channel:
. 28 -0 1i-a . 20f—a)($?+ia) C:2(f—a) 1i—a
6, =C S - = , 6, =—Cp oY IN ~r PN 0
VTR N @ : F 210 TN N &
22 —ta—i*) C:4 1i—a
G=C— — L~ 3.14
PR st Ni'N & (3.14)

For the charge conjugated channels (where an antiquark comes from the longitudinally polarized
proton) we find 65_, ;7 = Gup—sca, Where Gyp,¢q are given in Egs. (3.9)—(3.14). Since there are two
independent relations, (3.4) and (3.6), /. (x') and & (x') can be expressed in terms of Hypp(x),x)
and the transversity distribution 7;(x’), and thus are “auxiliary" twist-3 distributions.’
the simple structure of the partonic cross section for Hpy(x},x") led to Eq. (3.8) for the LO cross
section, which contains only one-variable functions.

However,

3.2 Contribution from twist-3 fragmentation

In this section we present the LO cross section for the third term of (1.3) following our recent
paper [6]. We first define twist-3 fragmentation functions necessary in the derivation. The quark-
quark matrix element gives two real twist-3 fragmentation functions for ¢ — A, which read

8@ = L [ Fe O OB RaX| v () 0)

M, M
= T08;2!() + 2 (rai e P () 4 (3.15)

5We refer the reader to Ref. [21] for an extensive work on relations between twist-3 functions (including fragmen-
tation ones) and their importance in showing the Lorentz invariance of twist-3 cross sections.
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where we introduced the nucleon mass My to make the functions dimensionless. The lightlike
vectors pﬁ and w* are defined after Eq. (2.2). Next, we introduce the so-called F-type quark-
gluon-quark twist-3 fragmentation functions. We can define two independent functions as

du —ir _jy(l_1 _ "
80,0 = 5L [ 5 [ G e M Oy (Bex|wg A er e ) o
My Aawp, =h/q
:2—Z(7’5l’hn)i18 E;(z1,2) +--, (3.16)
du 2 i1 _ w
A (z1,2) = Z / Beiie ) 019 ) 0)1PisX) (PrsX g™ () 0
M —h
= Z—Z(%Ph%l)ijsmwphE;/q(m,Z) 4 (3.17)

We note that both EZ/ (z1,2) and EZ/ ?(z1,7) in general are complex functions. The correlator
Elli/q(zl,z) has support on 1 >z > 0 and z; > z, while Eﬁ/q(zl,z) has support on l > 1,4 - <0,

and l > 0[22, 23]. To derive the cross section, we also need the kinematical twist-3 fragmentatlon
function é”/9(z) as

Az Z / 7% (0] [oow, 0]y (0) | Py X ) (P X W (2w [Aw, 0ow]]0) 9

— 2 (’}/SPh’yl)l] )Lawpheh/CI( )+ (318)

Owing to the QCD e.o.m., there is a constraint relation among the twist-3 fragmentation functions:

*dzy 1 h/q ~] ~h/q N
of G B et =0 e o) (319
The real and imaginary parts of this relation respectively give

= dz 1 ShgR ~h/q
Z —P(7>E z1,2) =¢,""(2), 3.20
| G () B =al e (3.20)

*dz; 1 ~h/q,3 143 () — g4
z —P(7>E ®(z1,7) +zeMe -%(z2), 3.21
[ G () B e @ =& (.21

where R () indicates the real (imaginary) part of the function. Tt was shown that Eq. (3.21) ensures
the gauge invariance of the polarized cross section formula in the case of the transverse single spin
asymmetry in semi-inclusive deep inelastic scattering [22]. Likewise Eq. (3.20) plays the same role
in the case of Ay in proton-proton collisions.

Applying the Feynman gauge formalism of [22], the twist-3 cross section for the third line of
(1.3) can be obtained from the following formula:

dol e 1 dx dx’
PO LT A ha / b
h d’;Pz 1671'2S %Zb X () /gl( )
x /%Tr A%(g)s 2 +/d ImTr | 2,A%8 (2) 25K)
z2 z B ok |, /2
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dZ1/d22 Qo A%B <ph Ph)]
ImT A S Dn Ph
/ <1/Zl—1/z2> r[ B (21,22)SLa il
dz; /de ap ~ <ph Ph)]}
ImT A’ S —,— 3.22
/ <1/Zl — 1/z2> r[ 5AY (21,22)S1a ' 5 .(3.22)

where g?(x') is the twist-2 helicity distribution, Q% = g% — p%wyg, is the partonic hard part
1 y B B wWgs S p p

for AY(z), and Sy (ki k) and S;q(ki,ks) are, respectively, the hard parts for A%%(z1,z,) and
A%’a(zl,zg). Calculation of the lowest-order Feynman diagrams for the hard part eventually gives

the cross section as [6]

dolre 202M dz dx’ Udx
Ao 2N s )R Y [ G [ ) [ L aiaiva),
Iy i ab,.c
(3.23)

where 6; refers to the partonic hard factor in channel i. In deriving (3.23), we have again eliminated

Eﬁ/ ?(z1,7) in favor of "/4(z) by using (3.20). This was possible because the partonic hard cross
section for the former has a simple structure. The hard factors 6; are given by

R 3[8+a* 11 R 2Cr §

G =3 TEa  NRa W TN R

. 2Cr [§  18(5—21) . 2Cp [§  1a—2f

Cucw =N BTN 2 |0 Cd TN BTN 2R |

A A R 2Cr 3

O4q'—47 = Oqq'—ad > 02443 = 3 557 (3.24)

where C- = (N? — 1) /2N. For the antiquark fragmentation channels we find (c.f. [24]) & Gsped =
Gub_scd, Where G,p_,cq are given in (3.24). We also calculated the polarized cross section in light-
cone gauge using the procedure of Ref. [24] and found agreement with Egs. (3.23), (3.24).

4. Summary

In this paper, we have studied the hyperon polarization in unpolarized pp collisions and the
longitudinal-transverse double spin asymmetry Ayr for hadron production in pp collisions. Hy-
peron polarization is a naively 7-odd observable, while Ay 7 is a naively T-even one. Owing to this
fact, the structure of the corresponding twist-3 cross sections is inherently different, and they can
play complementary roles to study hadron structure and test validity of the formalism. We hope that
these important spin asymmetries will be measured by the ongoing experiment of the Relativistic
Heavy Ion Collider at BNL.
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