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tion/fragmentation functions (TMDs). We present TMD operators in the completely (ultraviolet
and rapidity) renormalized form suitable for straightforward evaluation of any matrix element.
We show the consequences following from operator definition, such as renormalization group
equations and small-bT operator product expansion. This methodology was successfully applied
to unpolarized TMD distributions, where all perturbative quantities were calculated at NNLO.
The obtained perturbative parts are important for any kind of phenomenology involving TMDs.
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1. Introduction

The transverse momentum dependent parton distribution and fragmentation functions (TMDs)
attract serious attention in the recent years. The TMDs grant the possibility to explore the structure
of a hadron deeper in comparison to the integrated parton distributions. With the help of TMDs one
gets access to the QCD dynamics hidden in multi-differential cross sections and to the tiniest details
of the hadron spin structure. Many processes, such a Drell-Yan, Vector Boson/Higgs Production,
Semi-Inclusive Deep Inelastic Scattering (SIDIS) and e+e−→ 2 hadrons, can be described in the
terms of TMDs. All these processes are fundamental for current high energy colliders, like the
LHC, KEK, SLAC, JLab or RHIC, and future planned facilities, like the EIC, AFTER@LHC, the
LHeC or the ILC.

The general structure of TMD factorization theorems were first presented in the pioneer-
ing works of Collins and Soper [1]. However, only recently they were formulated in a rigorous
quantum-field-theoretical form, and in the terms of individually well-defined TMDs [2, 3, 4, 5]. In
this talk we discuss the properties and definition of only unpolarized TMDs, which have simplest
structure among all TMDs. Nonetheless, the most essential points, such as divergence structure
and interplay between perturbative and non-perturbative inputs can be studied in the unpolarized
case and are universal for all TMDs.

The unpolarized TMDs have received much attention recently. The relevant factorization theo-
rems have been explicitly checked at next-to-leading order (NLO), with various quantum numbers,
by several groups (see e.g. [4, 6, 7, 8, 9, 10, 11]). However, there were no complete consider-
ation TMDs within the TMD factorization formalism at NNLO. The main reason is that NNLO
consideration requires accurate composition of all elements of the theory and calculus to obtain
a meaningful result. Some next-to-next-to-leading order (NNLO) properties of these TMDs have
been deduced from cross-section calculations made in collinear factorization framework, [12, 13]).
During the last year such study has been performed by two groups [5, 14, 15] in different calcula-
tion schemes. This talk is based on [5, 14] as well as on results of further development.

2. Definition of TMD operator

The realization of the TMD factorization theorem at higher orders of perturbative QCD is not
trivial. In fact, in the calculation one has to deal with several types of divergences (ultra-violet
(UV), rapidity and infra-red (IR)). All these divergences have to be regularized and disentangled
properly. Traditionally the discussion of the divergences structure is made on the level of the
parton matrix elements. However, it is a bit misleading form. The point is that some divergences
(namely, UV divergences, and rapidity divergences) are inherit part of TMD operator itself and not
affected by the structure of a matrix element. Supplemented with proper renormalization factor a
TMD operator is well-defined, process-independent and can be studied by any modern method of
quantum field theory (in principal, including lattice simulations) without referring to factorization
theorems.

The bare (unrenormalized and rapidity singular) quark TMD PDF operator is defined as fol-
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lowing
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where ξ = {0+,ξ−,~bT}, n and n̄ are light-cone vectors (n2 = n̄2 = 0, n · n̄ = 1). The repeated
color indices a (a = 1, . . . ,Nc for quarks and a = 1, . . . ,N2

c − 1 for gluons) are summed up. The
Wilson lines W̃ T

n (x) are rooted at the coordinate x and continue to the light-cone infinity along the
vector n, where it is connected by a transverse link to the transverse infinity (that is indicated by
the superscript T ). The gluon TMD PDF operator has the following form
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(2.2)

Here the Wilson lines are in the adjoint representation. The definition of the operators for the frag-
mentation functions follows a similar pattern, with the main difference that it should be evaluated
on the final rather than initial states. The quark TMD FF operator is

Obare
q (z,~bT ) =

1
4zNc

∑
X

∫ dξ−

2π
e−ip+ξ−/z (2.3)

×〈0|T
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a
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)
|X ,

δ
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〉γ+i j 〈X ,

δ

δJ
|T̄
[
q̄iW̃ T

n
]

a

(
−ξ

2

)
|0〉,

where δ/δJ is to be understood as the state generated by the variation of the action with respect to
the source J, which couples to external hadron fields. The anti-quark operator and gluon TMD FF
operator can be found in [5]. In such language the similarity between TMDs are like the integrated
parton densities is transparent. Basically, the only difference is the staple half-infinite path of the
gauge link and singularities associated with it.

The hadron matrix elements of the bare TMD operators are the unsubtracted TMD distribu-
tions

Φ f←N(x,~bT ) = 〈N|Obare
f (x,~bT )|N〉, (2.4)

∆ f→N(z,~bT ) = 〈N|†Obare
f (z,~bT )|N〉†, (2.5)

where N is a nucleon/hadron and the Hermitian conjugation of the states for TMDFFs indicates
that these are final states to be placed inside the operator. Here variables x/z acquire meaning of
the momentum fraction carried by a parton from/into the hadron (it also explains the TMD labeling
rule f ← N or t→ N).

To complete the definition, TMD operator should be supplemented with UV and rapidity renor-
malization factors. We have

O f (x,~bT ,µ,ζ ) = Z f (ζ ,µ)R f (ζ ,µ)Obare
f (x,~bT ), (2.6)

O f (z,~bT ,µ,ζ ) = Z f (ζ ,µ)R f (ζ ,µ)Obare
f (z,~bT ), (2.7)

where Z f (R f ) are the UV(rapidity) renormalization factor for TMD operators. The scales µ and
ζ are the scales of UV and rapidity subtractions respectively. The explicit form of the factor R is
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dictated by the TMD factorization theorem and reads

R f (ζ ,µ) =

√
S(~bT )

Zb
, (2.8)

where the S(~bT ) is the TMD soft factor, and Zb denotes the zero-bin contribution (the soft overlap
of the collinear and soft sectors which appear in the factorization theorem) [16, 2, 7, 3].

The possibility to "just" renormalizes the rapidity divergences have been discussed in the TMD
context for awhile [17]. Actually, in the TMD case this statement can be trivialized and reduced to
the statement that the logarithm of TMD soft factor is linear in rapidity divergences, see e.g.[3, 18].
However, recent studies [19] demonstrate that renormalization properties of rapidity divergences
is of a more fundamental nature. In particular, for system of parallel half infinite Wilson lines the
rapidity renormalization is proved at all orders. This statement is also valid for the multi-parton
scattering cross-section, what has been checked at two-loop order [20].

The form of the renormalization factor R in the TMD case can be deduced from the soft factor.
The soft factor is a vacuum expectation value of a certain configuration of Wilson lines, which
depends on the process under investigation. For example, for SIDIS it reads

S̃(~bT ) =
Trc

Nc
〈0|T

[
ST †

n S̃T
n̄
]
(0+,0−,~bT )T̄

[
S̃T †

n̄ ST
n

]
(0)|0〉 . (2.9)

The Wilson lines are defined as usual

Sn(x) = Pexp
[

ig
∫ 0

−∞

dsn ·A(x+ sn)
]
, (2.10)

S̃n̄(x) = Pexp
[
−ig

∫
∞

0
ds n̄ ·A(x+ n̄s)

]
. (2.11)

Note that collinear Wilson lines W T
n (x) used in TMD operators Eq. (2.2-2.3) are defined in the

same way as soft Wilson lines ST
n (x). However, one should distinguish between W and S, because

they behave differently under regularization.
The explicit definition of zero-bin subtractions significantly depends on the rapidity regular-

ization used. Thus, for a given regularization scheme it might be even impossible to define the
zero-bin as a well-formed matrix element. Nonetheless, for any regularization scheme it has a very
particular calculable expression. With a conveniently chosen rapidity regularization, the zero-bin
subtractions are related to a particular combination of the soft factors [2]. Using the modified δ -
regularization [5], the zero-bin subtractions are literally equal to the soft factor: Zb = S(~bT ). It
is not accidentally. In fact, the modified δ -regularization scheme has been adapted such that this
relation holds, which requires a different regularized form for collinear Wilson lines Wn(n̄)(x) and
for soft Wilson lines Sn(n̄)(x). Therefore, in the modified δ -regularization, the expression for the
rapidity renormalization factor is

R f (ζ ,µ)

∣∣∣∣
δ -reg.

=
1√

S(~bT ;ζ )
. (2.12)

The relation Eq. (2.12) was checked explicitly at NNLO in various kinematics in [14, 18, 5]. In the
popular JCC regularization scheme by [2], the rapidity divergences are handled by tilting Wilson
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lines off-light cone by parameters y. The overlap region contribution has more cumbersome form,
but nonetheless can be presented in the closed form as product of matrix elements of TMD soft
factor. Then the renormalization factor also has the form (2.8)

R f (ζ ,µ)

∣∣∣∣
JCC

=

√
S̃(yn,yc)

S̃(yc,yn̄)S̃(yn,yn̄)
. (2.13)

The UV renormalization factors depend on the UV regularization method and the regulariza-
tion scale µ . In the similar fashion , the rapidity renormalization factors depend on the rapidity
regularization method and the rapidity scale ζ . Moreover, given that the soft factor is process
independent (as argued with general arguments in [21, 2, 3, 4] and explicitly checked at NNLO
in [18]), the “rapidity renormalization factors” are also process independent. Another important
observation is that both UV and rapidity renormalization factors are the same for TMDPDF and
TMDFF operators. This significantly simplifies the consideration of the operators and makes the
whole approach more universal.

Now, given all previous considerations, we define the individual TMDs as

Ff←N(x,~bT ; µ,ζ ) = 〈N|O f (x,~bT ; µ,ζ )|N〉, (2.14)

D f→N(z,~bT ; µ,ζ ) = 〈N|†O f (z,~bT ; µ,ζ )|N〉†. (2.15)

Such a definition implies the following relation between bare and renormalized TMDs:

Ff←N(x,~bT ; µ,ζ ) = Z f (µ,ζ )R f (µ,ζ )Φ f←N(x,~bT ), (2.16)

D f→N(z,~bT ; µ,ζ ) = Z f (µ,ζ )R f (µ,ζ )∆ f←N(x,~bT ). (2.17)

In fact, the same definition follows from the TMD factorization theorem, but in the presented
formulation and operation strategy is clearer.

3. Perturbatively calculable parts of TMD

The TMDs, as a non-perturbative objects, are a highly involved functions. Any information
on their behavior is important for phenomenological applications. The QCD perturbation theory
can supply us the evolution equations and the small-bT matching of the TMDs on the corresponded
integrated distributions. Naturally, both these inputs can be formulated on the operator language.

The renormalization group equations (RGEs) for TMDs are the result of the renormalization
procedure. Since in the formulation (2.6,2.7) have two renormalization constants, the scaling on
the operator satisfies two equations. The UV RGE read

µ
2 d

dµ2 O f (x,~bT ) =
1
2

γ
f (µ,ζ )O f (x,~bT ), µ

2 d
dµ2O f (z,~bT ) =

1
2

γ
f (µ,ζ )O f (z,~bT ). (3.1)

and rapidity RGE (often called CSS equation) read

ζ
d

dζ
O f (x,~bT ) =−D f (µ,~bT )O f (x,~bT ), ζ

d
dζ

O f (z,~bT ) =−D f (µ,~bT )O f (z,~bT ). (3.2)
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The values of anomalous dimensions can be deduced from the renormalization constants. Using
the standard RGE technique we obtain

γ
q(µ,ζ ) = 2 ÂD(Z2−Zq) , γ

g(µ,ζ ) = 2 ÂD(Z3−Zg) , (3.3)

where ÂD represents the operator which extracts the anomalous dimension from the counterterm.
The rapidity anomalous dimension D f is [18]

D f (µ,ζ ) =−
d lnR f

d lnζ

∣∣∣
f .p

=−1
2

d lnR f

d lnδ+

∣∣∣
f .p
, (3.4)

where f .p. denotes the extraction of the finite part, i.e. neglecting the poles in ε . The singular part
of the factor R is related to the renormalization factor as follows:

d lnR f

d lnζ

∣∣∣
s.p.

=
d lnZ f

d ln µ2 , (3.5)

where s.p. denotes the extraction of the singular part, i.e. the poles in ε . The last equation leads to
the famous consistency relation for (3.1,3.2)

µ
2 d

dµ2

(
−D f (µ2,~bT )

)
= ζ

d
dζ

(
γ f (µ,ζ )

2

)
=−Γ

f
cusp

2
, (3.6)

where Γ is the cusp anomalous dimension. Due to the fact, that TMD operators in FF and PDF
kinematics are renormalized by the same factors, the corresponding anomalous dimensions are also
the same. The anomalous dimensions are independent of the regularization procedure.

Now let us turn to the regime of small-bT . In this regime the TMD operator can be replaced by
the first terms of small-bT Operator Product Expansion (OPE). The small-bT OPE is a formal oper-
ator relation, that relates operators with both light-like and space-like field separation to operators
with only light-like field separation. It reads

O(~bT ) = ∑
n

Cn(~bT ,µb)⊗On(µb), (3.7)

where Cn are C-number coefficient functions, the µb is the scale of small-bT singularities factoriza-
tion or the OPE matching scale. The operators on both sides of Eq. (3.7) are non-local along the
same light-cone direction, but the operators On are transversely local while O(~bT ) is transversely
non-local. Generally speaking, the operators On are all possible operators with proper quantum
numbers. They can be organized for instance according to twists. The scale parameter of such
expansion BT has entirely non-perturbative nature. The twist expansion would also organize the
OPE as a power series in B−1

T

Cn(~bT ,µb)∼
(

bT

BT

)n

f (ln(~b2
T µ

2
b )), (3.8)

where f is some function. For bT � BT it is reasonable to consider only the zeroth term of the
OPE in Eq. (3.7), which gives the matching of the TMDs onto the integrated functions. The con-
sideration of higher order terms is an interesting and a completely unexplored.
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Figure 1: Comparison of the unpolarized TMD (u-)quark distribution at different orders of perturbation
theory (x = 0.1 and µb = 2e−γE/b∗(bmax) with bmax = 1.5). (left) Pure perturbative expression as in (3.12).
(right) The TMD with the non-perturbative contribution from the renormalon model [22].

For the TMDPDFs the leading order small-bT operator (i.e. the operator for the integrated
PDF) is just a TMDPDF operator Eq. (2.2) at bT = 0, i.e.

Obare
f (x) = Obare

f (x,~0T ), (3.9)

while for FF kinematics one has an extra normalization factor

Obare
f (z) = z2−2εObare

f (z,~0T ). (3.10)

In this way the leading terms of the OPEs at small bT read

O f (x,~bT ; µ,ζ ) = ∑
f ′

C f← f ′(x,~bT ; µ,ζ ,µb)⊗O f ′(x,µb)+O

(
bT

BT

)
,

O f (z,~bT ; µ,ζ ) = ∑
f ′
C f→ f ′(z,~bT ; µ,ζ ,µb)⊗

O f ′(z,µb)

z2−2ε
+O

(
bT

BT

)
, (3.11)

where the symbol ⊗ is the Mellin convolution in variable x or z , and f , f ′ enumerate the various
flavors of partons. The running on the scales µ , µb and ζ is independent of the regularization
scheme and it is dictated by the renormalization group equations. Taking the hadron matrix ele-
ments of the operators we obtain the small-bT matching of the TMDs to corresponding integrated
functions,

Ff←N(x,~bT ; µ,ζ ) = ∑
f ′

C f← f ′(x,~bT ; µ,ζ ,µb)⊗ f f ′←N(x,µb)+O

(
bT

BT

)
,

D f→N(z,~bT ; µ,ζ ) = ∑
f ′
C f→ f ′(z,~bT ; µ,ζ ,µb)⊗

d f ′→N(z,µb)

z2−2ε
+O

(
bT

BT

)
. (3.12)

The integrated functions (PDFs and FFs) depend only on the Bjorken variables (x for PDFs and z
for FFs) and renormalization scale µ , while all the dependence on the transverse coordinate bT and
rapidity scale is contained in the matching coefficient and can be calculated perturbatively.

In order to calculate the leading matching coefficients of the OPE, we perform the calculation
of TMD distributions on parton targets. Consequently comparing left- and right-hand sides of

6



P
o
S
(
Q
C
D
E
V
2
0
1
6
)
0
3
0

TMDs at NNLO Alexey Vladimirov

Figure 2: The shape of the perturbative part (3.12) of the unpolarized TMD (u-)quark distribution (multi-
plied by x) at different orders of perturbation theory (µb = 2e−γE/b∗(bmax) with bmax = 1.5), at NLO (left)
and at NNLO (right).

(3.12) we obtain the perturbative expansion for matching coefficients from the partonic matrix
elements. For example at NNLO we have

C[2]
f← f ′ = F [2]

f← f ′−∑
r

C[1]
f←r⊗ f [1]r← f ′− f [2]f← f ′ ,

C[2]
f ′→ f = D[2]

f ′→ f −∑
r
C[1]

f→r⊗
d[1]

r→ f ′

z2−2ε
−

d[2]
f ′→ f

z2−2ε
. (3.13)

The matching procedure ensures the cancelation of the IR divergences in the matching coefficients.
In δ -regularization scheme these divergences are regularized by the dimensional regularization.

In the paper [5] all matching coefficients (including PDF and FF kinematic, quark, anti-quark
and gluon operators and their mixing) are calculated at the NNLO order. The results for the TMD-
PDFs agrees with the results of [13], where they have been obtained by explicit factorization
of cross-section for Drell-Yan process. The results for quark TMDFFs were partially presented
in [14], while all the rest expression (including also the gluon TMDFFs at NLO) are novel. Also
in [5] one can find the collection of all normalization factors for TMD operator up to NNLO order.
These anomalous dimensions and matching coefficients are necessary for accurate phenomenolog-
ical studies, and allow to consider exclusive and inclusive processes on the same level of theoretical
accuracy. The comparison of different orders is presented in fig.1 and fig.2.

4. Discussion

The present understanding of the perturbative methodology for TMD operator is comprehen-
sive. The structure of singularities (rapidity and UV) is well understood, and the necessary renor-
malization theorems are proven [19]. It is also clear how to construct the small-bT OPE. These
finding has been checked in the unpolarized case up to NNLO. The next step of the perturbative
applications is polarized TMD distributions. Some of polarized distributions, e.g. helicity and
transvesity TMD distributions, were studied previously in the perturbative regime [9, 10]. How-
ever these studies were not systematic, and the most part of TMDs is completely untouched. With
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the present understanding of TMD factorization a systematic study of any TMD distribution can be
done. Especially interesting is to consider the TMDs that match to the twist-three operators at the
leading order of OPE (e.g. Sivers function).

Another side of the TMD study is the non-perturbative contributions. The understanding of
the non-perturbative part should be considered as a primal goal, since it allows to look into the deep
of the hadron structure. One of the significant problem is to clearly separate the perturbative and
non-perturbative parts. This procedure is not well formulated at the moment. But definitely there
are several important ingredients. First, the perturbative part should be known very precise. With
the current NNLO results (at least for unpolarized distributions) we are much close to this limit.
Second, we should find a distinctive feature of non-perturbative part that would allow to split the
contributions. But even in this cases one cannot guaranty the clear and unique separation.

Additional problem is the several sources of the non-perturbative correction to TMD. Namely,
the rapidity anomalous dimension has a non-perturbative contribution, and the higher small-bT

OPE terms also present collective source of a non-perturbative contribution. The disentanglement
of these sources is theoretically clear, but phenomenologically not even considered. Essential that
rapidity anomalous dimension is x/z-independent, while the higher-orders of OPE are naturally
dependent. Moreover the leading order x−dependence can be calculated, e.g. in the renormalon
scheme [22].

The obtained NNLO coefficients are necessary in order to pursue phenomenological stud-
ies at N3LL accuracy. Some recent developments towards this goal can be found in [23, 19]. It
opens the door to a very precise estimate of these perturbatively calculable contributions. The
phenomenological applications of these results will be exploited in future works. We expect all
these efforts to be necessary in order to have a unified picture of Drell-Yan, semi-inclusive DIS and
e+e−→ 2 hadrons.
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