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for these distributions have interesting properties under conformal transformations and are com-
pletely integrable for several important cases which allows one to obtain explicit solutions. The
limit of large light quark energies in higher-twist distributions appears to be nontrivial. In this
region the hierarchy of contributions with rising anomalous dimensions is lost and their resum-
mation is mandatory.
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Heavy-light distribution amplitudes

1. Introduction

B-meson light-cone distribution amplitudes (DAs) are the main nonperturbative input to the
QCD description of weak decays involving light hadrons in the final state [1, 2, 3]. In particular
the leading-twist DA φ+(ω) gives a dominant contribution in the heavy quark expansion and it
received considerable attention already [4, 5, 6, 7]. In particular an explicit solution for the cor-
responding renormalization group (evolution) equation has been found [8, 9, 10]. It turns out that
such equations have nontrivial mathematical properties under collinear conformal transformation
of the light-cone coordinates [9]. This symmetry explains the structure of the solution and, in fact,
allows one to find it without knowing the explicit expression for the evolution kernel. More sym-
metries are uncovered going over to three-particle DAs (with either a light quark and a gluon, or
two light quarks) which turn out to be completely integrable, i.e. they have a nontrivial integral
of motion. This property allows one to find explicit solutions of the evolution equations for three-
particle DAs [11, 12] and also find the scale dependence of the subleading twist two-particle DA
φ−(ω) in the limit of large number of colors [11, 12], which proves to be remarkably simple: it is
the same as for the leading-twist DA φ+(ω) up to a constant shift in the anomalous dimension [12].

These recent results offer a consistent framework for the construction of B-meson and Λb-
baryon DAs as an expansion in contributions that have autonomous scale dependence and a mini-
mum amount of nonperturbative parameters. This is important since utility of the QCD factoriza-
tion techniques depends on the possibility to control, or at least estimate, the corrections suppressed
by powers of the b-quark mass that involve higher-twist DAs. This task is attracting increasing
attention and in the last years there have been several efforts to combine light-cone sum rules (LC-
SRs) with the expansion in terms of B-meson DAs [13, 14, 15, 16]. The LCSR technique allows
one to tame infrared divergences which appear power-suppressed contributions in the purely per-
turbative framework and to calculate the so-called soft or end-point nonfactorizable contributions
in terms of the DAs of increasing twist. One of the problems on this way is that higher-twist B-
meson DAs involve contributions of multiparton states that are very poorly known. Our results are
a step in this direction.

2. Conformal symmetry of the Lange-Neubert evolution equation

Following an established convention we define the B-meson DA as the renormalized matrix
element of the bilocal operator built of an effective heavy quark field hv(0) and a light antiquark
q̄(zn) at a light-like separation:

〈0|q̄(zn) 6n[zn,0]Γhv(0)|B̄(v)〉 = −
i
2

F(µ)Tr [γ5 6nΓP+] Φ+(z,µ) . (2.1)

Here [zn,0] is the light-like Wilson line operator, vµ is the heavy quark velocity, nµ is the light-
like vector, n2 = 0, such that n · v = 1, P+ = 1

2(1+ 6v) is the projector on upper components of the
heavy quark spinor, Γ stands for an arbitrary Dirac structure, |B̄(v)〉 is the B̄-meson state in the
heavy quark effective theory (HQET) and F(µ) is the decay constant in HQET, which is used for
normalization.
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Heavy-light distribution amplitudes

The invariant function Φ+(z,µ) where z is a real number defines what is usually called the
leading twist B-meson DA in position space. Its Fourier transform is

φ+(ω,µ) =
1

2π

∫
∞

−∞

dzeiωz
Φ+(z− i0,µ) , Φ+(z,µ) =

∫
∞

0
dω e−iωz

φ+(ω,µ) , (2.2)

where in the first equation the integration contour goes below the singularities of Φ+(z,µ) that are
located in the upper-half plane. The parameter µ is the renormalization (factorization) scale. We
tacitly imply using dimensional regularization with modified minimum subtraction.

The scale dependence of the DA is driven by the renormalization of the corresponding nonlocal
operator

O+(z) = q̄(zn) 6n [zn,0]Γhv(0).

The corresponding one-loop Z-factor was computed by Lange and Neubert (LN) [5], giving rise to
an evolution equation which is convenient to write, for our purposes, as a renormalization group
equation for the operator O+(z) [6, 17]:(

µ
∂

∂ µ
+β (g)

∂

∂g
+

αs

2π
HLN

)
O+(z,µ) = 0 , (2.3)

where

[HLN f ](z) = 2CF

[∫ 1

0

dα

α

(
f (z)− ᾱ f (ᾱz)

)
+ ln(iµz) f (z)− 5

4
f (z)

]
, ᾱ ≡ 1−α . (2.4)

The main result of Ref. [11] is that the LN kernel can be written in terms of the generator of special
conformal transformations

HLN = 2CF

[
ln(iµ S+)−ψ(1)− 5

4

]
, (2.5)

where

S+ = z2
∂z +2 jz , S0 = z∂z + j , S− =−∂z , (2.6)

satisfy standard SL(2) commutation relations

[S+,S−] = 2S0 , [S0,S±] =±S± . (2.7)

Going over to momentum space corresponds to using a different (adjoint) representation for the
generators:

S̃+ = i
[
ω∂

2
ω +2 j∂ω

]
, j = 1 . (2.8)

Note that the scale µ under the logarithm in (2.5) is necessary simply because S+ has dimension
[mass]−1.

This result can be derived in several ways, e.g., starting from the commutation relations for
the LN kernel obtained in Ref. [17]:

[S+,HLN ] = 0 , [S0,HLN ] = 2CF . (2.9)
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Since the problem has one degree of freedom — the light-cone coordinate of the light quark —
it follows from [S+,H ] = 0 that the operator H must be a function of S+, H = h(S+). This
function can be found using the second commutation relation. Let S = S0 + 1. Then S+ = zS and
the relation [S0,h(S+)] = 2CF can be written equivalently as [S,h(zS)] = 2CF . Taking into account
that [S,zS] = zS one obtains an equation on the function h(s)

sh′(s) = 2CF =⇒ h(s) = 2CF

[
lns+ constant

]
, (2.10)

reproducing the expression in Eq. (2.5) up to a (scheme-dependent) integration constant.
The main advantage of Eq. (2.5) is that diagonalization of the LN kernel HLN can be traded for

a much simpler task of finding the eigenfunctions of the first-order differential operator S+ (2.6):

iS+Qs(z) = sQs(z) ⇒ Qs(z) =−
1
z2 exp

{
is
z

}
. (2.11)

The anomalous dimensions are found easily by evaluating

HLNQs(z) = 2CF

[
ln(iµ S+)−ψ(1)− 5

4

]
Qs(z) = 2CF

[
ln(µs)−ψ(1)− 5

4

]
Qs(z) . (2.12)

Going over to the momentum space Qs(z) are replaced by Bessel functions [11] and the final result
for the evolution of the leading-twist B-meson DA reads

φ+(ω,µ) =
∫

∞

0
ds
√

ωsJ1(2
√

ωs)η+(s,µ) (2.13)

η+(s,µ) = R(s; µ,µ0)η+(s,µ0) (2.14)

where

R(s; µ,µ0) = exp
[
−
∫

µ

µ0

dτ

τ
Γcusp(αs(τ)) ln

(
τs
s0

)]
=

(
µ

µ0

)− 2CF
β0
(

µ0s
s0

) 2CF
β0

lnL

L
− 4CF π

β2
0 αs(µ0) (2.15)

with s0 = e5/4−γE and L = αs(µ)/αs(µ0).
The same result was obtained independently in Ref. [8]. In their notation sη(s,µ) 7→ ρ+(1/s,µ).

3. Twist-three distribution amplitudes

To the twist-three accuracy two more DAs enter the game,

〈0|q̄(nz)/̄nγ5hv(0)|B̄(v)〉= iF(µ)Φ−(z,µ) ,

〈0|q̄(nz1)gGµν(nz2)nν
σ

µρnργ5hv(0)|B̄(v)〉=−2iF(µ)Φ3(z1,z2,µ) , (3.1)

where Φ3 = ΨA−ΨV in the commonly accepted notation [18]. These DAs are related to each other
by the QCD equation of motion (EOM) [3, 18]

(1+ z∂z)Φ−(z,µ) = Φ+(z,µ)+2
∫ z

0
wdwΦ3(z,w,µ) (3.2)
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that can be solved to obtain Φ−(z,µ) as a sum of the so-called Wandzura-Wilczek (WW) term
expressed in terms of Φ−(z,µ) [3], and a certain integral of the quark-gluon DA Φ3(z1,z2,µ). The
latter contribution is nontrivial as it involves a function of two variables. We find, however [12],
that this complication is to a large extent illusory as the particular integral appearing in the EOM,∫ z

0 wdwΦ3(z,w,µ), evolves autonomously in the large Nc limit.
Evolution equation for Φ3(z1,z2,µ) takes the form(

µ
∂

∂ µ
+β (g)

∂

∂g
+

αs

2π
H
)

F(µ)Φ3(z1,z2,µ) = 0 , (3.3)

where the “Hamiltonian” H to the one-loop accuracy is given by a sum of two-particle kernels

H = Hqg +Hgh +Hqh . (3.4)

For our present purposes it is convenient to write the kernels in terms of the generators of SL(2)
transformations [19, 9]

Hqg = Nc

[
ψ (Jqg+3/2)+ψ (Jqg−3/2)−2ψ(1)−3/4

]
+

2
Nc

(−1)Jqg−3/2 Γ(Jqg−3/2)
Γ(Jqg +3/2)

,

Hgh = Nc
[
ln
(
iµS+g

)
−ψ(1)−1/2

]
, Hqh =−

1
Nc

[
ln
(
iµS+q

)
−ψ(1)−5/4

]
, (3.5)

where Hqh is the heavy-light quark LN kernel (with a different color factor), Hgh is the gluon-heavy
quark kernel that involves the generator S+g with conformal spin j = 3/2, and Jqg is defined in terms
of the corresponding quadratic Casimir operator Jqg(Jqg−1) = (~Sq +~Sg)

2.
It turns out that the leading contribution to H for a large number of colors

H = NcH+N−1
c δH , (3.6)

possesses a nontrivial “hidden” symmetry. Namely, it is possible to construct two “conserved
charges”, Q1 and Q2, that commute between themselves and with the large-Nc evolution kernel H:

[Q1,Q2] = [Q1,H] = [Q2,H] = 0 . (3.7)

where

Q1 = i
(
S+q +S+g

)
, Q2 =

9
4

iS+g − iS+g
(
S+g S−q +S0

gS0
q
)
− iS0

g
(
S0

qS+g −S0
gS+q ) . (3.8)

The “conserved charges” Q1, Q2 and the “Hamiltonian” H are self-adjoint operators with respect
to the SL(2) scalar product [12]. It follows that they have real eigenvalues and can be diagonalized
simultaneously. Their common eigenfunctions Ys,x(z1,z2) can be found using the method developed
in Ref. [20]:

Ys,x(z1,z2) =
is2

z2
1z3

2

∫ 1

0
duuūeis(u/z1+ū/z2)

2F1

(
−1

2 − ix,−1
2 + ix

2

∣∣∣− u
ū

)
, (3.9)

where s > 0 and −∞ < x < ∞, and a special solution

Y (0)
s (z1,z2) =

is2

z2
1z3

2

∫ 1

0
duuūeis(u/z1+ū/z2) (3.10)
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that corresponds to the imaginary value of the second parameter, Y (0)
s (z1,z2) =Ys,x=i/2(z1,z2). The

corresponding eigenvalues of NcH are

γs,x = Nc

[
ln(µs)+ψ

(
3/2+ ix

)
+ψ

(
3/2− ix

)
−3ψ(1)−5/4

]
,

γ0 ≡ γs,x=i/2 = Nc

[
ln(µs)−ψ(1)−1/4

]
, (3.11)

so that one obtains a continuum spectrum of anomalous dimensions and a discrete level separated
from the continuum by a finite gap ∆γ = γs,0− γ0 = Nc[2ψ(3/2)−ψ(2)−ψ(1)] = 0.227411Nc.

A generic three-particle DA Φ3(z1,z2,µ) can be expanded in the eigenfunctions of the large-Nc

evolution kernel

Φ3(z1,z2,µ) =
∫

∞

0
ds
[
η0(s,µ)Y (0)

s (z1,z2)+
1
2

∫
∞

−∞

dxη(s,x,µ)Ys,x(z1,z2)
]
, (3.12)

where the coefficient functions η0(s,µ) and η(s,x,µ) have autonomous scale dependence up to
1/N2

c corrections:

η0(s,µ) = LNc/β0R(s; µ,µ0)η0(s,µ0) ,

η(s,x,µ) = Lγx/β0R(s; µ,µ0)η(s,x,µ0) , (3.13)

where R(s; µ,µ0) is defined in (2.15) and

γx = Nc
[
ψ
(
3/2+ ix

)
+ψ

(
3/2− ix

)
+2γE ] . (3.14)

The scale dependence of the two-particle twist-three DA can now be recovered from the EOM
identity (3.2). Remarkably, all terms involving the hypergeometric function vanish thanks to the
identity ∫ 1

0
udu 2F1

(
−1

2−ix,−1
2+ix

2

∣∣∣− u
ū

)
= 0 , (3.15)

so that only the ground state (with the lowest anomalous dimension) contributes:∫ z

0
wdwΦ3(z,w,µ) =−

1
2z2

∫
∞

0
sdseis/z

η0(s,µ) . (3.16)

Going over to the momentum space one obtains

φ−(ω,µ) =
∫

∞

0
ds
[
η+(s,µ)+η0(s,µ)

]
J0(2
√

ωs) . (3.17)

The scale-dependence of the coefficient η0(s,µ) differs from the leading-twist result for η+(s,µ),
Eq. (2.14), by a simple overall factor

η0(s,µ) = L∆/β0R(s; µ,µ0)η0(s,µ0) , ∆ = Nc +O(1/Nc) . (3.18)

In other words, the subleading twist contribution to φ−(ω,µ) is suppressed at large scales as com-
pared to the WW contribution by the universal factor L∆/β0 that does not depend on the light quark
momentum. To the O(1/N2

c ) accuracy there is no mixing with “genuine” quark-gluon degrees of
freedom.

5
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It is tempting to define the “asymptotic” quark-gluon DA Φas
3 (z1,z2,µ) as the contribution

with the lowest anomalous dimension (for a given s):

Φ
as
3 (z1,z2,µ) =

∫
∞

0
dsη0(s,µ)Y (0)

s (z1,z2). (3.19)

The corresponding explicit expression in momentum space can be found in [12]. It has the expected

behavior at small quark and gluon momenta, φ as
3 (ω1,ω2,µ)

ω1,ω2→0∼ O(ω1ω2
2 ), but, surprisingly,

does not decrease for large gluon (and finite quark) momenta ω2 → ∞ which is seen as a power
1/z2 singularity in coordinate space (gluon falling onto the Coulomb center). Contributions with
higher anomalous dimensions from the continuum spectrum are even more singular,∼ (1/z2)

3/2±ix,
so that the corresponding momentum space contributions are increasing (and oscillating) functions
of the gluon momentum.

We are able to show that all such singularities are, however, spurious and cancel in the sum
of contributions of the asymptotic DA and the corrections. Most importantly, this cancellation is
not spoiled by the evolution: The ∼ 1/z2 singularity is not generated at higher scales provided it
is not present already in the nonperturbative ansatz at a reference low scale. This result implies
that for small z2, alias large ω2 & µ , the hierarchy of contributions with increasing anomalous
dimensions is lost; the leading large-ω2 asymptotics of the “asymptotic” DA is exactly cancelled
by the contributions with larger anomalous dimensions.

The way to see this is the following. The representation for Φ3(z1,z2,µ) (or equally its mo-
mentum space counterpart φ3(ω1,ω2,µ)) contains an integral over real x-values and an additional
contribution that can be thought of as coming from the point x = i/2 in the complex plane. One
can show [12] that the integration contour in x can be moved into the complex plane x tox+ iC with
1/2 <C < 3/2 such that the special contribution is included, see figure, after which the behavior of

x

3

2

1

2

x

3

2

1

2

Figure 1: Contour deformation in the representation of the quark-gluon twist-three DA in multiplicatively
renormalizable contributions.

the DA at small distances (large momenta) is determined by the position of the closest singularity
of the integrand on the imaginary above the integration contour.

Taking into account the scale dependence amounts to the insertion of the RG factors (3.13)
under the integral. In this way additional singularities appear corresponding to the poles of the
anomalous dimension γx (3.14). The singularity closest to the origin is at x = (3i)/2 so that if the
initial condition for the evolution Φ3(z1,z2,µ0) corresponds to a constant behavior at z2→ 0, it will
be modified to Φ3(z1,z2→ 0)∼ ln(µz2), corresponding to a “tail” 1/ω2 in momentum space. The
same behavior was found previously for the leading twist DA [5, 6, 7]. It is easy to see that in
the other limit Φ3(z1→ 0,z2)∼ ln(µz1) as well, so that our final conclusion is that gluon emission
generates a radiative tail ∼ 1/ω1 and/or ∼ 1/ω2 of the three-particle DA φ3(ω1,ω2,µ) for both,
large light quark and large gluon momenta. This is natural as the corresponding terms are present

6
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in the evolution kernels. The reason and consequences of such a behavior have been discussed at
length in the literature, e.g. [6].

4. Distribution amplitudes of heavy-light baryons

The attention in flavor physics has so far mostly been focused on the meson sector. B-baryons
are also produced copiously at LHC, and have the advantage over the B-mesons of providing access
to spin correlations in various baryon-to-baryon transitions. Especially semileptonic Λb and Ωb

decays and their description in the QCD factorization framework are attracting increasing attention.
Although the DAs of the existing heavy baryons are all different, their scale dependence is

similar. In particular the overall spin of the light quark pair (“diquark”’) is irrelevant and only the
relative helicity of the two valence light quarks matters, so that the evolution is the same for the
jP = 0+ SU(3)F triplet and all longitudinal DAs of heavy baryons in the jP = 1+ sextets, see [21].
The Λb baryon is a prime example with light quarks having opposite helicity. Its DA is defined
as [22, 21]

〈0|[uT (z1n)Cγ5/nd(z2n)]hv(0)|Λ(v)〉 = ΨΛ(z1,z2; µ)uΛ(v) . (4.1)

For the baryons involving a spin-one diquark there are two possibilities, with aligned and anti-
aligned helicities, and another DA

〈0|[qT
1 (z1n)C/nγ

µ

⊥q2(z2n)]hv(0)|B j=1(v)〉 = 1√
3

ε
µ

⊥u(v)Ψ⊥(z1,z2; µ) . (4.2)

where εµ is the diquark polarization vector, vµεµ = 0. The evolution equation has the standard
form (

µ
∂

∂ µ
+β (αs)

∂

∂αs
+

2αs

3π
H
)

f (µ)Ψ(z1,z2; µ) = 0 (4.3)

The evolution kernel is an integral operators which, similar to the B-meson case, is a sum of two-
particle terms and can be written in terms of the generators of conformal transformations

H↑↑ = ln
(
iµS(1)+

)
+ ln

(
iµS(2)+

)
+2ψ(J12)−4ψ(2) , (4.4)

H↑↓ = ln
(
iµS(1)+

)
+ ln

(
iµS(2)+

)
+2ψ(J12)−4ψ(2)− 1

J12(J12−1)
(4.5)

for aligned and anti-aligned quark helicities, respectively. For the first case, which corresponds to
transverse DAs of jP = 1+ sextets (Σb,Ξb,Ωb and Σ∗b,Ξ

∗
b,Ω

∗
b), the evolution equation turns out to

be completely integrable. We find [11] that the following two operators,

Q1 = i
(
S(1)+ +S(2)+

)
, Q2 = S(1)0 S(2)+ −S(2)0 S(1)+ . (4.6)

commute with each other and with the evolution kernel H↑↑ so that they can be diagonalized simul-
taneously. The eigenfunctions are known in explicit form [23]:

Qs,x(z1,z2) =
s

z2
1z2

2

∫ 1

0
dα

(
α

ᾱ

)ix
exp
[
is(ᾱ/z1 +α/z2)

]
(4.7)

7
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ω/ε0 u

ε
2 0

ψ
as Λ
(ω

,u
)

Figure 2: Asymptotic Λb distribution amplitude for the simplest choice of the profile function ξ0(s,µ0).

where s > 0, −∞ < x,∞ and ρ(x) = πx/sinh(πx), and the corresponding anomalous dimensions
form a continuum spectrum,

γ(s,x; µ) = 2ln(µs/s0)+E (x) , E (x) = ψ(1+ ix)+ψ(1− ix)+2γE (4.8)

where s0 = e2−γE . Going over to the momentum space and introducing new variables {ω1,ω2} →
{ω,u} such that ω1 = uω , ω2 = ūω , the final result for the scale dependence of the baryon DA
with aligned light quark helicities reads [11]

ψ⊥(ω,u; µ) = ω
2uū

∫
∞

−∞

dx
2π

∫
∞

0
sdsQ̃s,x(ω,u)L

4
3β0

E (x)R(s; µ,µ0)η⊥(s,x; µ0) , (4.9)

with

Q̃s,x(ω,u) =
1
ω

∞

∑
n=0

4in(2n+3)
(n+1)(n+2)

C3/2
n (1−2u)Hn(x)

1√
sω

J2n+3(2
√

sω) , (4.10)

where η⊥(s,x; µ0) are nonperturbative functions defined at a low reference scale and Hn(x) are
Hahn polynomials in a suitable normalization, see [11].

The case with light quarks of opposite helicity, which is the only one relevant for the Λb-
baryon, is more complicated. In this case integrability of the evolution equation is broken by
the last term −1/(J12(J12− 1) in (4.5), which acts as a weak attractive interaction and creates a
bound state – a discrete level in the spectrum of anomalous dimensions which is separated by the
continuum by a finite gap [11]

E0 '−0.3214 . (4.11)

The value of the gap and the eigenfunction of the discrete level can be found, e.g., by the usual
quantum-mechanical variational method. The corresponding solution can be viewed as an asymp-

8
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totic DA at large scales. We obtain

ψ
as
Λ (ω,u; µ) = ω

2uūL
4

3β0
E0
∫

∞

−∞

dx
2π

∫
∞

0
sdsQ̃s,x(ω,u)R(s; µ,µ0)η0(x)ξ0(s,µ0) (4.12)

where

η0(x)'
√

2E0√
2+ x2

ρ(x)
[E0−E (x)]

, ρ(x) = πx/sinh(πx) (4.13)

is a good approximation. Note that this expression still contains an arbitrary nonperturbative func-
tion ξ0(s,µ0) which determines the distribution in overall momentum ω carried by the light quark
pair. For the simplest ansatz

ξ0(s,µ0) = se−sε0 , (4.14)

we obtain (at the scale µ0) the DA shown in Fig. 2.
We expect that the model of the Λb DA in Eq. (4.12) will be sufficient for phenomenological

applications. A very similar model was suggested in Ref. [8] using different methods. Note that
its shape is rather nontrivial: the deviation from the "naive" ∼ uū behavior is increasing with
the energy of the light quark pair, which might create a problem for factorization. This question
requires a separate study.
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