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1. Introduction

A popular gauge used in Quantum Chromodynamics (QCD) is the light-cone gauge due to

the absence in this gauge of ghost fields. If the light-cone gauge is naively imposed to the QCD

lagrangian, the resulting gluon propagator presents an unregulated singularity, the light-cone sin-

gularity. It is then a common procedure to choose an ad hoc prescription to regulate it. However,

one should wonder whether such prescription is consistent with the quantization of the theory. In

ref. [1] we have shown within the functional integration formalism that a proper way to quantize

the theory in the light-cone gauge is to impose also appropriate sub-gauge conditions. Different

sub-gauge conditions generate different prescriptions of the light cone singularity.

Let us introduce two light-cone vectors η µ and η̃ µ such that x ·η = x+ = x0+x3√
2

and x · η̃ =

x− = x0−x+√
2

. In the A+ = 0 gauge the propagator is

Dµν(x,y) ≡ 〈0|TAµ(x)Aν(y)|0〉 =
∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iε

[

gµν − kµην + kνη µ

k+

]

(1.1)

Propagator (1.1) has light-cone singularity 1
k+

with no prescription and is not consistent with path

integral formalism and the Fadeev-Popov method. Indeed, in order to perform functional integra-

tion of correlation functions, one has to make sure that the gauge is properly fixed to avoid integra-

tion over gauge orbits. Once the light-cone gauge is fixed, the lagrangian is still invariant under x−

independent gauge transformation and until the Lagrangian is not fully fixed the functional integra-

tion cannot be performed. In the next section we will show how to identify appropriate sub-gauge

conditions.

The most commonly used regularization prescriptions for the k+ = 0 pole of the gluon light-

cone gauge propagator are:

• θ -function sub-gauges [2, 3, 4]:

D
µν
1 (x,y) ≡

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iε

[

gµν − kµην

k+− iε
− kνη µ

k++ iε

]

, (1.2)

D
µν
2 (x,y) ≡

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iε

[

gµν − kµην

k++ iε
− kνη µ

k+− iε

]

. (1.3)

The name stems from the fact that the classical field of a point (color) charge moving along

the x− = 0 light cone is proportional to A
µ
⊥ ∼ θ(−x−) in the first case and A

µ
⊥ ∼ θ(x−) in the

second case.

• Principal value (PV) sub-gauge [5]

D
µν
PV (x,y) ≡

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iε

[

gµν −
(

kµην + kνη µ
)

PV
{ 1

k+

}

]

. (1.4)

• Mandelstam–Leibbrandt (ML) prescription [6, 7]

D
µν
ML(x,y) =

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iε

[

gµν − kµην + kνη µ

k++ iεk−

]

. (1.5)

Each prescription corresponds to a specific choice of sub-gauge condition. This is true for all

the above mentioned prescription except for the ML prescription for which no sub-gauge condition

could be identified using functional integration formalism.
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2. θ -Function Sub-Gauges

In the case of temporal A0 = 0 gauge the gluon propagator and the prescription for regulating

the singularity at k0 = 0 in it are obtained by imposing a sub-gauge condition at a specific point in

time: ~∂ ·~A(t0,~x) = 0. Motivated by the A0 = 0 gauge example, we impose the following sub-gauge

condition:

∂⊥µA
µ
⊥(x

+,x− = σ ,~x⊥) = 0 . (2.1)

In other words, we require that the transverse divergence of the gauge field vanishes at x− = σ with

the value of σ not specified yet. (In the A0 = 0 gauge the corresponding time t0 at which the sub-

gauge condition is specified remains arbitrary.) Clearly, Eq. (2.1) is not the only sub-gauge choice

that can be made. For example, an alternative gauge choice is to require that the four-divergence

is zero at a generic point in x−, ∂µAµ(x+,x− = σ ,~x⊥) = 0. However, this sub-gauge choice is not

supported by the functional integral calculation [1].

In the functional integral formalism the propagator is obtained by applying functional deriva-

tives of the generating functional with respect to the sources,

〈0|TAµ(x)Aν(y)|0〉 =−
[

δ

δJµ(x)

δ

δJν(y)
e−

1
2

∫

d4x′d4y′ Jα (x′)Dαβ (x
′,y′)Jβ (y′)

]

∣

∣

∣

∣

∣

J=0

=−
[

δ

δJµ(x)

δ

δJν(y)

(

Z[J]

Z[0]

)]

∣

∣

∣

∣

∣

J=0

, (2.2)

where Dµν(x,y) is the gluon propagator and Z[J] is the generating functional. To arrive at the

expression for the gluon propagator Dµν(x,y) (with regularizations for all the poles in momentum

space) using the functional integration for constructing the generating functional used in (2.2), one

has to take special care of the surface terms arising from integration by parts and of the gauge

conditions. In what follows we will consider the x+ variable as time, and will define the initial and

final conditions at the light-cone times x+i and x+f respectively. It will be implied that x+i is large and

negative while x+f is large and positive. In addition we assume that the system is localized in space

but not in time: since now x+ is our time variable, instead of the “standard” assumption that all

fields go to zero as |~x| → ∞, we will assume that the fields go to zero as |~x⊥| → ∞. As will become

apparent below, careful treatment will be needed of the functional integral at the boundaries in x+

and x− directions.

The generating functional for an Abelian gauge theory in the light-cone gauge with the sub-

gauge condition (2.1) is

Z[J] = lim
ξ1,ξ2→0

∫

DAi DA f Ψ0(Ai)Ψ
∗
0(A f )

×
A(x+f ,x

−,~x⊥)=A f
∫

A(x+i ,x
−,~x⊥)=Ai

DAµ exp

{

i

∫ x+f

x+i

dx+
∫

dx− d2x⊥
[

L0(A)+L f ix(A)+ JµAµ
]

}

(2.3)

with

L0(A) =−1

4
Fµν Fµν =−1

2
(∂µAν)(∂

µAν)+
1

2
(∂µAν)(∂

ν Aµ) (2.4)
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and the gauge and sub-gauge fixing terms

L f ix(A) =− 1

2ξ1

Aµ η µ ην Aν −
1

2ξ2

(

~∂⊥ ·~A⊥
)2

δ (x−−σ). (2.5)

The generating functional in Eq. (2.3) can also be thought of as describing the Abelian part of a non-

Abelian theory such as gluodynamics. Notice that, as discussed above, in the generating functional

(2.3) we have used the light-cone coordinates with x+ as the time direction. As is usually done, we

have exponentiated the gauge conditions and the parameters ξ1 and ξ2 will be sent to zero at the

end of the calculation.

In Eq. (2.3) Ψ0(A) represents the vacuum wave function in the Aµ-representation. In the light-

cone gauge it is

Ψ0(A) = exp

{

1

2

∫

dx−d2x⊥ Aµ
√

−(∂+)2Aµ

}

. (2.6)

The expression Eq. (2.6) can be obtained by starting with the vacuum wave function in the A0 = 0

gauge

Ψ0(A) = exp

{

−1

2

∫

d3xAi

√

−~∇2

[

δ i j − ∂ i ∂ j

~∇2

]

A j

}

, (2.7)

(with ~∇ = (∂x,∂y,∂z) and i, j = 1,2,3 only in this formula) and performing an ultra-boost along

the +z direction to change the gauge into the A+ = 0 gauge and the wave function Eq. (2.7) into

Eq. (2.6).

It is known that one of the advantages of using axial-type gauge conditions is the absence of

ghost fields. However, now, in addition to the light-cone gauge, we have a sub-gauge condition

Eq. (2.1) which introduces a non trivial determinant, leading to a ghost field c(x) localized at

x− = σ :

det
[

∂⊥
µ D

µ
⊥(x

− = σ)
]

=
∫

D c̄Dcexp

{

−i

∫

dx+ d2x⊥ c̄∂⊥
µ D

µ
⊥ c(x− = σ)

}

, (2.8)

where Dab
µ ≡ ∂µ δ ab +g f acb Ac

µ is the covariant derivative and c̄(x) is the complex conjugate ghost

field. Just like in Feynman gauge, the ghost field is needed only in the non-Abelian case. The ghost

field does not affect the gluon propagator in question. The propagator of this ghost field, along

with the ghost-gluon vertices, depend only on transverse momenta, and are independent of k−.

Because of that it appears that ghost loops are zero in calculations using dimensional regularization.

Therefore, in Eq. (2.3) and in the subsequent analysis we omit ghost contributions arising from sub-

gauge conditions.

In order to put Eq. (2.3) in the same form as the first line of Eq. (2.2), we will adopt the

following standard procedure of “completing the square”. First we perform a shift of the gauge

field Aµ → Aµ +aµ and obtain

Z[J] = lim
ξ1,ξ2→0

∫

DAi DA f Ψ0(Ai)Ψ
∗
0(A f )Ψ0(ai)Ψ

∗
0(a f )

×exp

{

∫

dx−d2x⊥
(

A
µ
i

√

−(∂+)2 ai µ +A
µ
f

√

−(∂+)2 a f µ

)

}

A(x+f ,x
−,~x⊥)=A f
∫

A(x+i ,x
−,~x⊥)=Ai

DAµ exp

{

i

∫ x+f

x+i

dx+

3
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×
∫

dx− d2x⊥

[

L0(A)+L f ix(A)+L0(a)+L f ix(a)+ JµAµ + Jµaµ − (∂µAν)(∂
µ aν)

+(∂µAν)(∂
ν aµ)− 1

ξ1

Aµ η µ ην aν −
1

ξ2

(

~∂⊥ ·~A⊥
) (

~∂⊥ ·~a⊥
)

δ (x−−σ)

]}

. (2.9)

In arriving at Eq. (2.9) we have done an integration by parts in (parts of) the vacuum wave functions,

discarding the two-dimensional boundary integral which is outside the precision of the approxima-

tion that was used in deriving Eq. (2.6). We now perform integration by parts in the terms linear in

aµ in the rest of the expression to arrive at

Z[J] = lim
ξ1,ξ2→0

∫

DAi DA f Ψ0(Ai)Ψ
∗
0(A f )Ψ0(ai)Ψ∗

0(a f )

×exp

{

∫

dx−d2x⊥
(

A
µ
i

√

−(∂+)2 ai µ +A
µ
f

√

−(∂+)2 a f µ

)

}

A(x+f ,x
−,~x⊥)=A f
∫

A(x+i ,x
−,~x⊥)=Ai

DAµ

×exp

{

i

∫ x+f

x+i

dx+
∫

dx− d2x⊥

[

L0(A)+L f ix(A)+L0(a)+L f ix(a)+ JµAµ + Jµaµ +

+Aν

[

∂ 2 gµν −∂ µ ∂ ν
]

aµ − 1

ξ1

Aµ η µ ην aν +
1

ξ2

A⊥µ(∂
µ
⊥∂ ν

⊥a⊥ν)δ (x−−σ)

]

×− i

∫

dσµ

[

Aν(∂
µaν)−Aν(∂

ν aµ)
]

}

. (2.10)

where dσ µ =±(d2x⊥ dx+ η̃ µ +d2x⊥ dx− η µ +dσ
µ
⊥) is the integration measure over the 3-dimensional

surface of our four-dimensional space-time. Here dσ
µ
⊥ is the integration measure over the surface

at x⊥ → ∞. The choice of a plus or minus in each of the terms depends on which boundary one is

integrating over.

In order to “complete the square” we need to eliminate all the terms linear in Aµ in Eq. (2.10).

Starting from the 4-dimensional volume integration terms we have to choose aµ such that

Aν

[

∂ 2 gµν −∂ µ ∂ ν
]

aµ −
1

ξ1

Aµ η µ ην aν +
1

ξ2

A⊥µ(∂
µ
⊥∂ ν

⊥a⊥ν)δ (x−−σ)+ JµAµ = 0 (2.11)

for any Aµ . Solving for aµ we get

aµ(x) = i

∫

d4yDµν(x,y)Jν (y) (2.12)

where Dµν(x,y) is the Green function found from
[

∂ 2gµν −∂ µ∂ ν − 1

ξ1

η µην +
1

ξ2

∂
µ
⊥∂ ν

⊥ δ (x−−σ)

]

Dνρ(x,y) = iδ
µ
ρ δ (4)(x− y). (2.13)

The boundary conditions for Eq. (2.13) are obtained by requiring that the 3-dimensional sur-

face integration terms linear in Aµ should also vanish in the exponent of Eq. (2.10),
∫

dx− d2x⊥
(

A
µ
i

√

−(∂+)2 ai µ +A
µ
f

√

−(∂+)2 a f µ

)

−i

∫

dσµ

[

Aν(∂
µaν)−Aν(∂

ν aµ)
]

= 0. (2.14)

4
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Note that the condition Eq. (2.14) eliminates all the boundary term dependent on aµ from the

exponent of Eq. (2.10) (and not just the terms linear in Aµ). More precisely, for aµ satisfying

Eq. (2.14) one gets

Ψ0(ai)Ψ∗
0(a f )exp

{

∫

dx−d2x
(

A
µ
i

√

−(∂+)2ai µ +A
µ
f

√

−(∂+)2a f µ

)}

(2.15)

×exp

{

− i

2

∫

dσµ

(

aν(∂
µaν)−aν(∂

νaµ)
)

− i

∫

dσµ

(

Aν(∂
µaν)−Aν(∂

νaµ)
)

}

= 1.

With this in mind one can readily show that after using aµ satisfying Eqs. (2.12), Eq. (2.13)

and Eq. (2.14) in Eq. (2.10) the generating functional becomes

Z[J] = Z[0]exp

{

−1

2

∫

d4xd4yJµ(x)Dµν(x,y)Jν (y)

}

. (2.16)

From (2.16) we see that Dµν(x,y) is indeed the gluon propagator, as defined in (2.2), obtained in

the light-cone gauge with the sub-gauge condition (2.1).

We conclude that to find the gluon propagator we need to solve Eq. (2.13) and verify that the

solution leads to aµ satisfying Eq. (2.14).

For any x− 6= σ the general solution of Eq. (2.13) is

Dµν(x,y)|x− 6=σ =

∫

d4k

(2π)4
e−ik·(x−y) −i

k2

[

gµν − kµην + kνη µ

k+

]

, (2.17)

where the regularization of the k2 = 0 and k+ = 0 poles is not specified on purpose, since the

remaining uncertainty in this solution is solely due to the freedom to regulate these poles in various

ways. Integrating Eq. (2.13) over x− in an infinitesimal interval centered at σ and assuming that

Dµν is continuous we see that for x− = σ (and y− 6= σ ) the solution of (2.13) has to satisfy the

following condition

∂⊥
µ ∂⊥

ρ Dρν(x,y)|x−=σ = 0 . (2.18)

(One also obtains continuity of ∂−D+ρ at x− = σ .) The continuity of Dµν implies that its value at

x− = σ is fixed by Eq. (2.17), such that we can write

Dµν(x,y) =
∫

d4k

(2π)4
e−ik·(x−y) −i

k2

[

gµν − kµην + kνη µ

k+

]

(2.19)

for all x− with the only remaining freedom in this result being due to unspecified regularization

of the k2 = 0 and k+ = 0 poles. In fact one may still have different regularizations (or linear

combinations thereof) of the k2 = 0 and k+ = 0 poles for x− > σ and x− < σ in Eq. (2.19). With

the help of a direct calculation one can see that no regularization of the k2 = 0 and k+ = 0 poles in

Eq. (2.17) would lead to Eq. (2.18) for an arbitrary finite value of σ and for all x+,~x⊥. This leaves

σ =±∞ as the only possibilities.

Let us first establish the Feynman prescription for the k2 = 0 pole in Eq. (2.19). Picking up the

x+ = x+i and x+ = x+f surfaces in Eq. (2.14) and using aµ from Eq. (2.12) with the Green function

5
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from Eq. (2.19) (with k2 → k2 + iε) while keeping in mind that a+ = 0 in Eq. (2.12) and A+ = 0

due to ξ1 → 0 limit in Eq. (2.10) yields

∫

dx− d2x⊥ A
µ
⊥(x

+
i )

(

√

−(∂+)2 + i∂+
)

a⊥µ (x
+
i )

∫

d4ydx− d2x⊥ A
µ
⊥(x

+
i ) (2.20)

=×
∫

d4k

(2π)4

2k+θ(k+)

k2 + iε

(

g
µν
⊥ − k

µ
⊥ην

k+

)

e−ik+(x−−y−)−ik−(x+i −y+)+i~k⊥·(~x⊥−~y⊥) = 0

and
∫

dx− d2x⊥ A⊥(x
+
f )

µ
(

√

−(∂+)2 − i∂+
)

a⊥µ (x
+
f ) =−

∫

d4ydx− d2x⊥A
µ
⊥(x

+
f ) (2.21)

×
∫

d4k

(2π)4

2k+θ(−k+)

k2 + iε

(

g
µν
⊥ − k

µ
⊥ην

k+

)

e
−ik+(x−−y−)−ik−(x+f −y+)+i~k⊥·(~x⊥−~y⊥) = 0.

To prove the validity of Eqs. (2.20) and (2.21), it is enough to observe that the direction of the

k− -contour closure is determined by the fact that x+i − y+ < 0 and x+f − y+ > 0 for all y+, since

x+i is the initial and therefore the smallest x+ value, while x+f the final and therefore the largest x+

value in the 4-volume considered. Eqs. (2.20) and (2.21) are zero independent of the regularization

prescription for the k+ = 0 pole, and hence do not allow us to fix this prescription. Note also that

other regularizations of the k2 = 0 pole would not satisfy both Eqs. (2.20) and (2.21).

We now write

Dµν(x,y) =
∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iε

[

gµν − kµην + kνη µ

k+

]

(2.22)

and directly face the need to regulate the k+ = 0 pole as the only remaining ambiguity in the

expression. Substituting Eq. (2.22) into Eq. (2.18) yields

∂
µ
⊥

∫

d4k

(2π)4

e−ik+(σ−y−)−ik−(x+−y+)+i~k⊥·(~x⊥−~y⊥)

k2 + iε

(

kν
⊥+

k2
⊥ην

[k+]

)

= 0 (2.23)

where we have indicated with [k+] the prescription to be determined. Once again we see that for

finite σ it is impossible to satisfy Eq. (2.23) and hence Eq. (2.18).

Since σ can not be finite, we consider σ = +∞ first. In such case we need to close the k+-

integration contour in the lower half-plane. Before doing the calculation, it is already clear that our

best chance of getting zero on the left-hand-side of Eq. (2.23) is to put [k+] = k+− iε , such that the

light-cone pole would not contribute to the integral.

Using the following Fourier transform

∫

d4k
(2π)4 e−ik·(x−y) 1

k2+iε

(

kν
⊥+

k2
⊥ην

k+−iε

)

=
(x−y)ν

⊥
2π2[(x−y)2−iε ]2

+ην
[

(x−−y−)
π2[(x−y)2−iε ]2

− iδ (2)(~x⊥−~y⊥)δ (x+− y+)θ(y−− x−)
]

(2.24)

we see that using [k+] = k+− iε satisfies Eq. (2.23) for σ = +∞ since Eq. (2.24) is zero for x− =

+∞. With this result we rewrite Eq. (2.22) as

Dµν(x,y) =
∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iε

[

gµν − kµην

k+− iε
− kνη µ

k+

]

. (2.25)

6
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It may seem that there is still an unregulated pole at k+ = 0 in the last term of the square brackets in

Eq. (2.25). However, regularization of this last term can be fixed using the symmetry of the gluon

propagator, Dµν(x,y) = Dν µ(y,x). This yields

Dµν(x,y) =
∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iε

[

gµν − kµην

k+− iε
− kνη µ

k++ iε

]

. (2.26)

The derivation is similar for the case of σ =−∞. We employ

∫

d4k
(2π)4

1
k2+iε

(

kν
⊥+

k2
⊥ην

k++iε

)

e−ik·(x−y)

=
(x−y)ν

⊥
2π2[(x−y)2−iε ]2

+ην
[

(x−−y−)
π2[(x−y)2−iε ]2

+ iδ (2)(~x⊥−~y⊥)δ (x+− y+)θ(x−− y−)
]

(2.27)

and observe that Eq. (2.27) is zero for x− =−∞. Thus Eq. (2.23) is satisfied for [k+] = k++ iε and

σ =−∞.

To summarize, we obtain the following two sub-gauge conditions and the corresponding gluon

propagators for σ =±∞ [2, 3, 4]:

• Light-cone gauge gluon propagator for the sub-gauge condition ~∂⊥ ·~A⊥(x− =+∞) = 0

D
µν
1 (x,y) ≡

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iε

[

gµν − kµην

k+− iε
− kνη µ

k++ iε

]

; (2.28)

• Light-cone gauge gluon propagator for the sub-gauge condition ~∂⊥ ·~A⊥(x− =−∞) = 0

D
µν
2 (x,y) ≡

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iε

[

gµν − kµην

k++ iε
− kνη µ

k+− iε

]

. (2.29)

As a consistency check, we now need to show that when using the propagators (2.28) or (2.29),

Eq. (2.14) is satisfied along the x− = ±∞ surfaces, along with the x⊥ = ∞ boundary. (We have

checked the x+ = x+i and x+ = x+f surfaces when deriving Feynman regularization in Eqs. Eq. (2.20)

and Eq. (2.21).) Eq. (2.14) is trivially satisfied at the x⊥ = ∞ boundary, since we assumed initially

that the system is localized in x⊥ and all fields vanish when x⊥ → ∞. We are left only with the

x− =±∞ surfaces to consider, for which Eq. (2.14) reduces to

−i

∫

dx+ d2x⊥
[

Aν(∂
−aν)−Aν(∂

ν a−)
]∣

∣

∣

x−=+∞

x−=−∞
= 0. (2.30)

Let us demonstrate that Eq. (2.30) is indeed valid for the case of~∂⊥ ·~A⊥(x− =+∞) = 0 sub-gauge.

(The argument for the ~∂⊥ ·~A⊥(x− = −∞) = 0 sub-gauge is constructed by analogy.) The aµ -shift

is (cf. Eq. (2.12))

a
µ
1 (x) = i

∫

d4yD
µν
1 (x,y)Jν (y) . (2.31)

We now plug Eq. (2.31) into Eq. (2.30) and use Eq. (2.28) to integrate over k+. Note that, just

like in Eqs. Eq. (2.24) and Eq. (2.27), picking up the k2 = 0 pole of the k+-integral would give us

a contribution which goes to zero as x− → ±∞. (Those contributions are given by the first term

7
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on the right-hand side of Eq. (2.24) and Eq. (2.27) and by the first term in the square brackets of

the right-hand side of Eq. (2.24) and Eq. (2.27).) Only picking the k+ = 0 pole may give a term

(akin to the last terms in the square brackets on the right-hand side of Eq. (2.24) and Eq. (2.27))

which may potentially violate Eq. (2.30). Therefore, we substitute Eq. (2.31) into Eq. (2.30) and

use Eq. (2.28) to integrate over k+ picking up the k+ = 0 poles only. Keeping in mind the A+ = 0

gauge condition we write (see Ref. [1] for the details of the calculation)

−i

∫

dx+d2x⊥
[

Aν(∂
−aν

1 )−Aν(∂
ν a−1 )

]∣

∣

∣

x−=+∞

x−=−∞

=

∫

d4ydx+ d2x⊥Jµ(y)

∫

d2k⊥ dk−

(2π)3
e−ik−(x+−y+)+i~k⊥·(~x⊥−~y⊥)−1

k2
⊥
~∂⊥ ·~A⊥(x

− =+∞)
(

k− η µ + k
µ
⊥
)

= 0, (2.32)

Note that the contribution of the k2 = 0 pole is independent of the regularization prescription for

the k+ = 0 pole: hence the conclusion of Appendix A of Ref. [1] is valid for all k+ = 0 pole

prescriptions.

Note that a 4-divergence sub-gauge condition, ∂µAµ(x− = +∞) = 0, would not have led to

zero in Eq. (2.32), and therefore does not correspond to propagator Eq. (2.28). For further reasons

detailing why this is not a valid sub-gauge condition of the light-cone gauge see Appendix B of

Ref. [1].

We have thus verified that aµ from Eq. (2.12) with either one of the propagators Eq. (2.28) and

Eq. (2.29) satisfies Eq. (2.14), while the propagators D
µν
1 (x,y) and D

µν
2 (x,y) solve Eq. (2.13) with

σ = ±∞ respectively. Therefore, Eq. (2.16) is also verified, with D
µν
1 (x,y) and D

µν
2 (x,y) being

valid light-cone gauge propagators satisfying corresponding sub-gauge conditions.

It is also easy to explicitly check that propagators D
µν
1 and D

µν
2 themselves respect the sub-

gauge conditions

∂⊥
µ D

µν
1 (x,y)

∣

∣

∣

x−=+∞
= 0 ,

∂⊥
µ D

µν
2 (x,y)

∣

∣

∣

x−=−∞
= 0 . (2.33)

Propagators (2.28) and (2.29) were already obtained by different procedures in [2, 3, 4]. We

observe that in Ref. [4] the propagators (2.28) and (2.29) were obtained by imposing an addi-

tional sub-gauge condition, A−(x− = ±∞) = 0, while in the above procedure we showed that it is

sufficient to assume that lim
x−→∞

[A−(x−)/x−] = 0 (see Appendix ??).

3. PV Sub-Gauge

In this section we will determine the sub-gauge condition that reproduces Principal Value

(PV) prescription Eq. (1.4) for the k+ pole in light-cone propagator. To this end, we will adopt

the same procedure we used to arrive at propagators (2.28) and (2.29) with sub-gauge conditions
~∂⊥ ·~A⊥(x− =+∞) = 0 and~∂⊥ ·~A⊥(x− =−∞) = 0 respectively, but in reverse order.

In the previous section we have assumed a sub-gauge condition Eq. (2.1), performed a shift of

the field Aµ → Aµ +aµ in the generating functional, and made sure that the aµ -dependent surface

8
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terms vanish (that is, Eq. (2.14) is satisfied) for the generating functional to reduce to the form

given in (2.16).

As we do not know a priori the sub-gauge condition that reproduces the light-cone propagator

with k+ = 0 pole regulated by PV prescription, we consider from the start the propagator with

the PV prescription and deduce the needed sub-gauge condition in order to put the generating

functional in the form (2.16). In practical terms, we have to show that Eq. (15) is satisfied if we

regulate the k+ = 0 pole of the light-cone propagator with the PV prescription.

The gauge field propagator in the A+ = 0 light-cone gauge with the PV-prescription is

D
µν
PV (x,y) ≡

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iε

[

gµν −
(

kµην + kνη µ
)

PV

{

1

k+

}]

(3.1)

where

PV

{

1

k+

}

≡ 1

2

(

1

k+− iε
+

1

k++ iε

)

. (3.2)

Knowing the propagator means we know the shift field aµ (cf. Eq. (2.12)),

a
µ
PV = i

∫

d4yD
µν
PV (x,y)Jν (y). (3.3)

Let us plug the shift field Eq. (3.3) into Eq. (2.14) obtaining

∫

dx− d2x⊥
(

A
µ
i

√

−(∂+)2 aPV
i µ +A

µ
f

√

−(∂+)2 aPV
f µ

)

−i

∫

dσµ

[

Aν(∂
µaν

PV )−Aν(∂
ν a

µ
PV )

]

= 0 (3.4)

and require that the latter is satisfied everywhere along the boundary of the four-dimensional space-

time volume. Eq. (3.4) is satisfied at the x+ = x+i and x+ = x+f boundaries irrespective of the

regularization of the k+ = 0 pole, as follows from Eqs. Eq. (2.20) and Eq. (2.21). The boundary

at x⊥ → ∞ is also automatically satisfied, since we assumed from the start that all fields vanish as

x⊥ → ∞. We are only left with the boundary at x− =±∞. By analogy to Eq. (2.32) we evaluate the

contributions of the x− =±∞ boundaries by neglecting the residues of k2 = 0 pole in the propagator

which vanish at those boundaries (see Ref. [1] for the details of the calculation):

0 =−i

∫

dx+ d2x⊥
[

Aν(∂
−aν

PV )−Aν(∂
ν a−PV )

]
∣

∣

∣

x−=+∞

x−=−∞

=

∫

d4ydx+ d2x⊥ Jµ(y)

∫

d2k⊥ dk−

2(2π)3
e−ik−(x+−y+)+i~k⊥·(~x⊥−~y⊥) −1

k2
⊥

(

k−η µ + k
µ
⊥
)

×
[

~∂⊥ ·~A⊥(x
− =+∞)+~∂⊥ ·~A⊥(x

− =−∞)
]

. (3.5)

We see that for the boundary condition in Eq. (3.5) to be satisfied, i.e. for the boundary term

to vanish, one has to have the following sub-gauge condition:

~∂⊥ ·~A⊥(x
− =+∞)+~∂⊥ ·~A⊥(x

− =−∞) = 0. (3.6)

9
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We have thus arrived at the sub-gauge condition which leads to the k+ pole in the gluon propagator

regulated with the PV prescription. We can check the validity of the PV-sub-gauge condition (3.6)

explicitly by using the PV-propagator:

∂⊥
µ D

µν
PV (x,y)

∣

∣

∣

x−=+∞
+∂⊥

µ D
µν
PV (x,y)

∣

∣

∣

x−=−∞
= 0. (3.7)

In Ref. [1] we showed that the PV sub-gauge condition (3.6) is consistent with reproducing

the classical gluon field generated by two ultrarelativistic quarks propagating along two parallel

light-cones, whereas a stronger condition

~A⊥(x
− =+∞)+~A⊥(x

− =−∞) = 0, (3.8)

while still satisfying Eq. (3.5) does not allow one to construct the classical field of the color charges

at the non-Abelian level. Therefore, it is Eq. (3.6) which appears to be the correct sub-gauge

condition in the PV case.

4. conclusion

We have shown that the ambiguity associated with the regularization of the poles of the light-

cone gauge gluon propagator can be eliminated by fixing the residual gauge freedom using a sub-

gauge condition. We saw that this is indeed the case for the θ -function sub-gauges and for the

PV sub-gauge. As it is explicitly shown in Ref. [1], within the functional integration formalism

it is not clear whether it is possible to find suitable sub-gauge conditions that justify Mandelstam-

Leibbrandt prescription.
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