

Interpretation of angular distributions of *Z*-boson production

Jen-Chieh Peng*

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA E-mail: jcpeng@illinois.edu

Wen-Chen Chang

Institute of Physics, Academia Sinica, Taipei 11529, Taiwan E-mail: changwc@phys.sinica.edu.tw

Randall Evan McClellan

Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA E-mail: randallm@jlab.org

Oleg Teryaev

Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia E-mail: teryaev@theor.jinr.ru

We present an intuitive approach for describing the angular distributions of leptons produced in the Drell-Yan process and Z-boson production in hadron-hadron collisions. We show that this approach can describe the pronounced transverse-momentum dependence of the λ and ν parameters, observed at the γ^*/Z production at Tevatron and LHC, very well. The violation of the Lam-Tung relation is attributed to the mis-alignment of the hadronic plane and the quark plane in this approach, and can be well described in this approach.

QCD Evolution 2016 May 30-June 03, 2016 National Institute for Subatomic Physics (Nikhef), Amsterdam

*Speaker.

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

The lepton angular distributions in the Drell-Yan process potentially carry important information on the dynamics of the reaction and on the partonic structures of the colliding hadrons. In the naive Drell-Yan model [1], it was predicted that quark and antiquark annihilat into a transversely polarized photon, leading to a $1 + \cos^2 \theta$ lepton angular distribution. While this prediction was soon confirmed by the earliest Drell-Yan experiments [2], a more general angular distribution expression is expected when the intrinsic transverse momentum of the partons and/or the QCD effects are included, namely [3],

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi, \qquad (1.1)$$

where θ and ϕ refer to the polar and azimuthal angle, of the l^- in the dilepton rest frame. The azimuthal symmetry in the collinear naive Drell-Yan model is lost due to the finite transverse momentum (q_T) of the dilepton. While $\lambda = 1, \mu = \nu = 0$ for the naive Drell-Yan model, the finite value of q_T leads to $\lambda \neq 1$ and $\mu, \nu \neq 0$. Nevertheless, it was pointed out by Lam and Tung that the deviation of λ from 1 is related to the deviation of ν from zero through the relation, $1 - \lambda = 2\nu$ [3]. This "Lam-Tung" relation was also predicted to be insensitive to QCD correction [4].

First measurements of the lepton polar and azimuthal angular distributions were carried out by the CERN NA10 [5] and the Fermilab E615 [6] Collaborations. Surprisingly large violations of the Lam-Tung relation were observed, prompting many novel interpretations. In particular, Boer showed that the presence of the Boer-Mulders function, can explain the violation of the Lam-Tung relation [7]. Results from a Drell-Yan experiment [8] using proton beam were also shown to be consistent with this interpretation. Interesting recent developments include the measurements of the lepton angular distribution of Z-boson production in $p - \bar{p}$ collision by the CDF Collaboration at the Tevatron [9] and in p - p collisions by the CMS Collaboration at the Large Hadron Collider [10]. Both the CDF and CMS data show striking q_T dependencies for λ and ν . Moreover, the highstatistics CMS measurement clearly shows that the Lam-Tung relation is violated even at the large transverse momentum region (p_T up to ~ 300 GeV) where effect from the Boer-Mulders function should be negligible.

We present an interpretation for the CMS and CDF results on the q_T dependencies of the angular distribution coefficients λ and ν , as well as the origin for the violation of the Lam-Tung relation. A more detailed discussion can be found in a recent publication [11].

2. Drell-Yan angular distribution

The angular distribution of the leptons is usually expressed in the rest frame of γ^*/Z . In the Collins-Soper (C-S) frame [12], the \hat{x} and \hat{z} axes lie in the hadron plane formed by the colliding hadrons and the \hat{z} axis bisects the momentum vectors of the two hadrons (see Figure 1). Another plane, called the quark plane, is formed by the axis of the collinear q and \bar{q} which combines into the γ^*/Z and the \hat{z} axis. The momentum unit vector of q is defined as \hat{z}' , which has polar and azimuthal angles θ_1 and ϕ_1 , as shown in Fig. 1. Finally, the back-to-back l^- and l^+ , together with the \hat{z} axis, form the lepton plane. The lepton l^- (e^- or μ^-) from the γ^*/Z decay have polar and azimuthal

angle in the C-S frame θ and ϕ in the C-S frame, as shown in Fig. 1. For any given values of θ and ϕ , θ_1 and ϕ_1 can vary over a range of values.

Figure 1: Definition of the Collins-Soper coordinates, the hadron plane, the lepton plane, and the quark plane.

Taking into account the contribution of parity-violating coupling involving the Z boson, the general angular distribution for γ^*/Z production is given as [10]

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{A_0}{2} (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi + \frac{A_2}{2} \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi.$$
(2.1)

We show now how this expression can be derived. First, helicity conservation in the $q\bar{q} \rightarrow l^- l^+$ reaction implies that the angular distribution of l^- must be azimuthally symmetric with respect to the \hat{z}' axis with the following polar angular dependence:

$$\frac{d\sigma}{d\Omega} \propto 1 + a\cos\theta_0 + \cos^2\theta_0. \tag{2.2}$$

The forward-backward asymmetry coefficient *a* comes from the parity-violating coupling to the *Z* boson, and θ_0 is the angle between the l^- momentum vector and \hat{z}' , as shown in Fig. 1. To go from Eq. 2.2 to Eq. 2.1, we note that $\cos \theta_0$ satisfies the relation:

$$\cos\theta_0 = \cos\theta\cos\theta_1 + \sin\theta\sin\theta_1\cos(\phi - \phi_1). \tag{2.3}$$

Substituting Eq. 2.3 into Eq. 2.2, we obtain

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{\sin^2 \theta_1}{2} (1 - 3\cos^2 \theta) + (\frac{1}{2}\sin 2\theta_1 \cos \phi_1) \sin^2 \theta \cos 2\phi + (a\sin \theta_1 \cos \phi_1) \sin \theta \cos \phi + (a\cos \theta_1) \cos \theta + (\frac{1}{2}\sin^2 \theta_1 \sin 2\phi_1) \sin^2 \theta \sin 2\phi + (\frac{1}{2}\sin 2\theta_1 \sin \phi_1) \sin 2\theta \sin \phi + (a\sin \theta_1 \sin \phi_1) \sin \theta \sin \phi.$$
(2.4)

From Eq. 2.1 and Eq. 2.4 one can express A_0 to A_7 in terms of θ_1 , ϕ_1 and a as follows:

$$A_{0} = \langle \sin^{2} \theta_{1} \rangle \qquad A_{1} = \frac{1}{2} \langle \sin 2\theta_{1} \cos \phi_{1} \rangle$$

$$A_{2} = \langle \sin^{2} \theta_{1} \cos 2\phi_{1} \rangle \qquad A_{3} = \langle a \sin \theta_{1} \cos \phi_{1} \rangle$$

$$A_{4} = \langle a \cos \theta_{1} \rangle \qquad A_{5} = \frac{1}{2} \langle \sin^{2} \theta_{1} \sin 2\phi_{1} \rangle$$

$$A_{6} = \frac{1}{2} \langle \sin 2\theta_{1} \sin \phi_{1} \rangle \qquad A_{7} = \langle a \sin \theta_{1} \rangle \langle \sin \phi_{1} \rangle. \qquad (2.5)$$

Equation 2.5 is a generalization of an earlier work [13] which considered the special case of $\phi_1 = 0$ and a = 0. The $\langle \cdots \rangle$ in Eq. 2.5 is a reminder that the measured values of A_n are averaged over the event sample. A comparison of Eq. 1.1 and Eq. 2.1 gives

$$\lambda = \frac{2 - 3A_0}{2 + A_0}; \quad \mu = \frac{2A_1}{2 + A_0}; \quad \nu = \frac{2A_2}{2 + A_0}.$$
 (2.6)

Equation 2.6 shows that the Lam-Tung relation, $1 - \lambda = 2\nu$, becomes $A_0 = A_2$.

In the "naive" Drell-Yan the $q - \bar{q}$ axis coincides with the \hat{z} axis of the Collins-Soper frame, hence $\theta_1 = 0$ and $\lambda = 1$. The deviation of λ from the "naive" Drell-Yan prediction of unity is due to non-zero θ_1 , which reflects the mis-alignment between the $q - \bar{q}$ axis and the \hat{z} axis of the Collins-Soper frame [13, 14]. It is important to note that λ (or A_0) does not depend on ϕ_1 , which is a measure of the non-coplanarity between the $q - \bar{q}$ axis and the hadron plane. In contrast, μ and ν (or A_1 and A_2) depend on both θ_1 and ϕ_1 .

Equation 2.6 also shows that the Lam-Tung relation, $A_0 = A_2$, is valid when $\phi_1 = 0$, i.e., for the co-planar case. Violation of the Lam-Tung relation is caused by the presence of the $\langle \cos 2\phi_1 \rangle$ term in A_2 (or ν), and not due to the A_0 (or λ) term. Moreover, the non-coplanarity factor, $\langle \cos 2\phi_1 \rangle$, can be extracted from the data via the ratio A_2/A_0 .

In perturbative QCD at the order of α_s , ignoring the intrinsic transverse momenta of the colliding partons, the $q\bar{q} \rightarrow \gamma^*/ZG$ annihilation process gives [15, 16, 17]

$$\langle \sin^2 \theta_1 \rangle = \sin^2 \theta_1 = q_T^2 / (Q^2 + q_T^2)$$
 (2.7)

in the Collins-Soper frame, where q_T and Q are the transverse momentum and mass, respectively, of the dilepton. One notes that θ_1 given in Eq. 2.7 is identical to the angle between \vec{P}_B (or \vec{P}_T) and the \hat{z} axis in the Collins-Soper frame.

For the $qG \rightarrow \gamma^*/Zq$ Compton process, it was shown [5, 18, 19] that $\langle \sin^2 \theta_1 \rangle$ is approximately described by

$$\langle \sin^2 \theta_1 \rangle = 5q_T^2/(Q^2 + 5q_T^2),$$
 (2.8)

Using Eq. 2.6, the above two equations imply

$$\lambda = \frac{2Q^2 - q_T^2}{2Q^2 + 3q_T^2} \qquad \qquad \nu = \frac{2q_T^2}{2Q^2 + 3q_T^2} \qquad (q\bar{q})$$
$$\lambda = \frac{2Q^2 - 5q_T^2}{2Q^2 + 15q_T^2} \qquad \qquad \nu = \frac{10q_T^2}{2Q^2 + 15q_T^2} \qquad (qG). \qquad (2.9)$$

We note that for both processes, $\lambda = 1$ and $\theta_1 = 0$ at $q_T = 0$, while $\lambda \to -1/3$ and $\theta_1 \to 90^\circ$ as $q_T \to \infty$. Moreover, Eq. 2.9 shows that the Lam-Tung relation, $1 - \lambda = 2\nu$, is satisfied for both the $q\bar{q}$ and qG processes at order α_s .

Figure 2: Comparison between the CMS data [10] on γ^*/Z production at two rapidity regions with calculations for (a) λ vs. q_T , (b) ν vs. q_T (c) $1 - \lambda - 2\nu$ vs. q_T . Curves correspond to calculations described in the text.

3. Comparison with data

The dashed and dash-dotted curves in Fig. 2(a) correspond to the calculation using Eq. 2.9 for the $q\bar{q}$ annihilation and the qG Compton processes, respectively. Both the $q\bar{q}$ and qG processes are expected to contribute to the $pp \rightarrow \gamma^*/ZX$ reaction, and the observed q_T dependence of λ must reflect the combined effect of these two contributions. A best-fit to the CMS data is obtained with a mixture of $58.5\pm1.6\%$ qG and $41.5\pm1.6\%$ $q\bar{q}$ processes. The solid curve in Fig. 2(a) shows that the data at both rapidity regions can be well described by this mixture of the qG and $q\bar{q}$ processes. In pp collision the qG process is expected to be more important than the $q\bar{q}$ process, in agreement with the best-fit result. While the amount of qG and $q\bar{q}$ mixture can in principle depend on the rapidity, y, the CMS data indicate a very weak, if any, y dependence. The good description of λ shown in Fig. 2(a) also suggests that higher-order QCD processes are relatively unimportant.

We next consider the CMS data on the v parameter. As shown in Eqs. 2.5 and 2.6, v depends not only on θ_1 , but also on ϕ_1 . In leading order α_s where only a single undetected parton is present in the final state, the $q - \bar{q}$ axis must be in the hadron plane, implying $\phi_1 = 0$ and the Lam-Tung relation is satisfied. We first compare the CMS data, shown in Fig. 2(b), with the calculation for vusing Eq. 2.9, which is obtained at the leading order α_s . The dashed curve uses the same mixture of 58.5% qG and 41.5% $q\bar{q}$ components as deduced from the λ data. The data are at a variance with this calculation, suggesting the presence of higher-order QCD processes leading to a non-zero value of ϕ_1 . We performed a fit to the ν data allowing a non-zero value of ϕ_1 . The best-fit value is $A_2/A_0 = 0.77 \pm 0.02$. The solid curve in Fig. 2(b), corresponding to the best-fit, is in better agreement with the data. The non-zero value of ϕ_1 also implies that the Lam-Tung relation is violated. This violation is indeed observed at CMS and shown explicitly in Fig. 2(c). The solid curve obtained with $A_2/A_0 = 0.77$ describes the observed violation of the Lam-Tung relation well.

The violation of the Lam-Tung relation reflects the non-coplanarity between the $q - \bar{q}$ axis and the hadron plane. This can be caused by higher-order QCD processes, where multiple partons are present in the final state in addition to the detected γ^*/Z . To illustrate this, one considers a specific quark-antiquark annihilation diagram at order α_s^2 in which both the quark and antiquark emit a gluon before they annihilate. The hadron plane in this case is related to the vector sum of the two emitted gluons, and the $q - \bar{q}$ axis is in general not in the hadron plane. This would lead to a nonzero ϕ_1 and a violation of the Lam-Tung relation. Similar consideration would also explain why the intrinsic transverse momenta of the colliding quark and antiquark in the "naive" Drell-Yan could also lead to the violation of the Lam-Tung relation, since the vector sum of the two uncorrelated transverse momenta would lead in general to a non-zero value of ϕ_1 .

Figure 3: Comparison between the CDF data [9] on γ^*/Z production with calculations for (a) λ vs. q_T , (b) ν vs. q_T (c) $1 - \lambda - 2\nu$ vs. q_T . Curves correspond to calculations described in the text.

There remains the question why the CDF $\bar{p}p$ Z-production data are consistent with the Lam-

Tung relation [9]. Fig. 3(a) shows λ versus q_T in $\bar{p}p$ collision at 1.96 TeV from CDF. The q_T range covered by the CDF measurment is not as broad as the CMS, and the statistical accuracy is somewhat limited. Nevertheless, a striking q_T dependence of λ is observed. The dashed and dash-dotted curves are calculations using Eq. 2.9 for the $q\bar{q}$ annihilation and the qG Compton processes, respectively. The solid curve in Fig. 3(a) shows that the CDF data can be well described with a mixture of 72.5% $q\bar{q}$ and 27.5% qG processes. This is consistent with the expectation that the $q\bar{q}$ annihilation has the dominant contribution to the $\bar{p}p \rightarrow \gamma^*/ZX$ reaction. The CDF data on the ν parameter, shown in Fig. 3(b), are first compared with the calculation (dotted curve) using Eq. 2.9 with a mixture of 72.5% $q\bar{q}$ and 27.5% qG deduced from the λ data. The solid curve in Fig. 3(b) results from a fit allowing A_2/A_0 to deviate from unity. The best-fit value is $A_2/A_0 = 0.85 \pm 0.17$. The relatively large undertainties The quantity $1 - \lambda - 2\nu$, which is a measure of the violation of Lam-Tung relation, is shown in Fig. 3(c). The solid curve, and the presence of some violation of the Lam-Tung relation can not be excluded by the CDF data.

4. Conclusion

We have presented an intuitive explanation for the observed q_T dependencies of λ and v for the CMS and CDF γ^*/Z data. The violation of the Lam-Tung relation can be attributed to the non-coplanarity of the $q - \bar{q}$ axis and the hadron plane, which occur for QCD processes involving at least two gluons. The present analysis could be further extended to the other coefficients, A_1, A_3 and A_4 [20]. It could also be extended [21] to the case of fixed-target Drell-Yan experiments, where the non-coplanarity at low q_T can be caused by the intrinsic transverse momenta of the colliding partons in the initial states [20]. The effects of non-coplanarity on other inequality relations, as discussed in Ref. [22], are also being studied.

References

- [1] S.D. Drell and T.M. Yan, Phys. Rev. Lett. 25, 316 (1970); Ann. Phys. (NY) 66, 578 (1971).
- [2] I. R. Kenyon, Rep. Prog. Phys. 45, 1261 (1982).
- [3] C.S. Lam and W.K. Tung, Phys. Rev. D18, 2447 (1978).
- [4] C.S. Lam and W.K. Tung, Phys. Rev. D21, 2712 (1980).
- [5] NA10 Collaboration, S. Falciano *et al.*, Z. Phys. C31, 513 (1986); M. Guanziroli *et al.*, Z. Phys. C37, 545 (1988).
- [6] E615 Collaboration, J.S. Conway *et al.*, Phys. Rev. D39, 92 (1989); J.G. Heinrich *et al.*, Phys. Rev. D44, 1909 (1991).
- [7] D. Boer, Phys. Rev. D60, 014012 (1999).
- [8] Fermilab E866 Collaboration, L.Y. Zhu *et al.*, Phys. Rev. Lett. **99**, 082301 (2007); Phys. Rev. Lett. **102**, 182001 (2009).
- [9] CDF Collaboration, T. Aaltonen et al., Phys. Rev. Lett. 106, 241801 (2011).
- [10] CMS Collaboration, V. Khachatryan et al., Phys. Lett. B750, 154 (2015).

- [11] J.C. Peng, W.C. Chang, R.E. McClellan, and O.V. Teryaev, Phys. Lett. B758, 384 (2016).
- [12] J.C. Collins and D.E. Soper, Phys. Rev. D16, 2219 (1977).
- [13] O.V. Teryaev, Proceedings of XI Advanced Research Workshop on High Energy Spin Physics, Dubna, 2005, pp. 171-175.
- [14] P. Faccioli, C. Lourenco, J. Seixas, and H. Wohri, Phys. Rev. D83, 056008 (2011).
- [15] J.C. Collins, Phys. Rev. Lett. 42, 291 (1979).
- [16] D. Boer and W. Vogelsang, Phys. Rev. D 74, 014004 (2006).
- [17] E.L. Berger, J.W. Qiu, and R.A. Rodriguez-Pedraza, Phys. Lett. B 656, 74 (2007).
- [18] R.L. Thews, Phys. Rev. Lett. 43, 987 (1979).
- [19] J. Lindfors, Phys. Scr. 20, 19 (1979).
- [20] W.C. Chang, R.E. McClellan, J.C. Peng, and O.V. Teryaev, unpublished.
- [21] M. Lambertsen and W. Vogelsang, Phys. Rev. D93, 114013 (2016).
- [22] J.C. Peng, J. Roloff, and O.V. Teryaev, Proceedings of DSPIN 2012.