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1. Introduction

The invention of the multiwire proportional chamber nearly half a century ago revolution-
ized experimental particle physics by introducing electronic tracking detectors that transformed the
manual reconstruction of particle trajectories into an automated data processing task [1]. Since
then, the field of electronic tracking detectors has continued to make huge strides. Today’s Sil-
icon pixel detectors offer unprecedented capabilities by providing true 3D space points and the
ability to deal with high track rates and densities around the harsh interaction regions of modern
collider detectors. However, the significantly higher channel densities associated with these detec-
tors, especially in the context of the High Luminosity LHC, pose serious challenges for the task
of track pattern recognition. Although the cutting edge solutions based on custom hardware being
developed by the HEP community to address these challenges appear promising, it would be very
valuable to explore recent developments in other sectors, such as industry, for new and innovative
ideas. Since many computing challenges facing today’s data-centric economies, such as those in
the internet search and data-mining industries, involve pattern recognition problems fundamentally
similar to those in HEP, solutions developed in those sectors may prove applicable in HEP with
the obvious advantages afforded by the economies of scale. One particularly promising example is
the Micron Automata Processor which we investigate in this talk for its suitability in HEP pattern
recognition applications. Much of what is discussed in this talk is described in greater detail in
Reference [2] and we refer the reader to that publication for more information.

2. What is the Automata Processor?

The Micron Automata Processor (AP) is the result of a clever repurposing of conventional
SDRAM technology to realize the first direct hardware implementation of a non-deterministic fi-
nite automata in a commercial device [3]. The block diagram of the AP in Figure 1 bears some
resemblance to a conventional memory array. The basic unit of the AP is a state transition element
(STE) which is represented as a column in the block diagram. There are 48K STEs in the current
version of the chip, each of which can individually be enabled or disabled. Each STE consists of
256 cells, each of which is associated with a unique 8-bit value. Referring to Figure 1, let us imag-
ine that all the STEs, except for STE-0, are initially disabled. Imagine that we present the value 254
at the AP’s 8-bit input bus. Much like conventional memory, this generates a row address which
selects the second to the topmost cell in STE-0. If this particular STE is programmed to recognize
254, a "1" will be generated which propagates down the column, out the STE, through the routing
matrix, and up to STE-3 to which STE-0 is connected. This enables STE-3 to await the next value
to be presented at the 8-bit input bus to see if it matches what it is programmed to recognize. In this
manner, one can imagine configuring a string of STEs where each STE is programmed to recognize
a particular 8-bit value, thereby representing a particular pattern. The routing matrix structure at
the bottom of the diagram is a programmable fabric that allows the user to define the interconnec-
tions between the STEs. It is responsible for generating the equivalent of the column address in
conventional memory devices. This fabric allows the creation of automata networks where each
STE’s output can branch out to several others, while its own input can be enabled by multiple other
STEs.
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Figure 1: The block diagram of the Micron Automata Processor above shows its resemblance to the
2D memory array in traditional memory devices. One of the key things that differentiates it is the pro-
grammable routing matrix that allows user-defined interconnections between the 49,152 STEs represented
by the columns.

3. From Regular Expressions to Particle Trajectories

The most obvious application of the Micron AP would be in the recognition of strings of
characters or words. Figure 2 shows a network of STEs (drawn as circles) configured as a dictionary
of words. The character in each circle represents the 8-bit value or symbol that particular STE
is programmed to recognize. If the sequence of characters "susy" is presented to this automata
network, a match would be found in exactly 4 clock or symbol cycles, irrespective of the size of
the dictionary. Since the symbols are merely 8-bit quantities, they need not be restricted to ASCII
characters, and could just as well represent other quantities, such as wire or pixel addresses in a
HEP tracking detector. One could imagine the oversimplified case of a string of four STEs with
each STE programmed to recognize a "hit" address in one layer of a 4-layer tracking detector and
where all four addresses are associated with a physically possible particle trajectory. The idea,
then, is to form a dictionary consisting of all such possible trajectories in the detector, where the
sequence of addresses associated with each trajectory is stored in an automata network consisting
of 4 STEs. There would, therefore, be as many of these automata networks as there are possible
track patterns. When a sequence of hits from a real detector presented to the AP matches a sequence
stored in the dictionary, it would immediately be found and recognized as a track. This is the same
underlying principle used in the application of associative or content-addressable memories to HEP
track pattern recognition [4].
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Figure 2: An automata network representing a dictionary of words and acronyms. Each STE, represented as
a circle, is programmed to recognize a particular "symbol" which is an ASCII character in this case. These
symbols could just as well be detector wire, strip, or pixel addresses.

4. Proof-of-Principle Application with a Toy CMS Detector

To see if we can actually use the Micron AP for HEP track pattern recognition, we developed
a proof-of-principle application where we implement a hypothetical electron track confirmation
trigger using a toy tracking detector that roughly approximates the actual 4-layer Phase-1 CMS
pixel detector [5]. EM clusters found in the calorimeter are projected back into the interaction
region to see if there are pixel detector hits consistent with those from a charged particle track
pointing towards the cluster. If so, the cluster is identified as an electron instead of a photon.

4.1 Simulated Events for the Toy CMS Detector

To test the track trigger with the toy detector, we generated simulated Z→ ee events and over-
laid them with minimum-bias events to simulate pile-ups. 5 different samples, consisting of 1000
beam-crossings each, were created using the same set of Z→ ee events overlaid with 50, 80, 110,
and 140 pile-ups, respectively. Since this is just a proof-of-concept application, we kept things sim-
ple by not including stochastic processes like multiple scattering and energy loss. We also assumed
100% efficiency for the pixel detectors. However, all unstable particles were decayed randomly
into the appropriate channel based on their branching ratios and with exponential decay length dis-
tributions based on their proper lifetimes. Photons were also converted into small-opening-angle
pairs in the material of the detector.
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4.2 Defining the Alphabet of our Dictionary: Hit Addresses

As we mentioned earlier, the basic idea behind using the AP for track recognition is to create
a dictionary of all possible tracks. Before we can build this dictionary, we must first define our
alphabet. Ideally, the tracks in our dictionary would be specified in full 3D coordinates. Although
possible in principle, this would not be practical due to the huge number of tracks that need to be
dealt with. Instead, we actually build two separate dictionaries, one for each 2D view - R-φ and
R-z, which are operated in parallel on the same input data stream (the introduction to Section 5
below describes how we use the fact that pattern matches found in each view for a given track are
correlated in time). We use alphabets with 16-bit and 14-bit symbols for the R-φ and R-z views,
respectively. For R-φ , bits 14-15 determine the layer, bits 8-13, the face on that layer, bit 7, which
of two Read-Out-Chip (ROC) rows in that face, and bits 0-6, the pixel row in the ROC. For R-z,
bits 12-13 determine the layer, bits 9-11, the chip module in that layer, bits 6-8, which of 8 ROC
columns in that module, and bits 0-5, the pixel column in the ROC. We also divide each view into
sectors, in order to organize the patterns (words) in our dictionary into separate pattern banks.

4.3 Basic Automaton for the Track Finder

Layer 1 pixel hit

Calorimeter
energy & hit Layer 2 pixel hit

Layer 3 pixel hit

Layer 4 pixel hit

Input
stream

Reporting
event

Latch Latch

Latch Latch

Figure 3: The basic automaton we use to represent one track pattern in our dictionary. Pairs of STEs are
used to represent up to 16-bit addresses in order to circumvent the limitation imposed by the AP’s native
symbol size.

Having defined the dictionary and its alphabet, the next step is to define the automaton or
automata network that acts as the place-holder for a single pattern or word in the dictionary. Each
pattern in our dictionary consists of 4 16-bit (14-bit) pixel-hit addresses in the R-φ (R-z) view, one
for each detector layer. The automaton we use for this purpose is shown in Figure 3. This design
is significantly more complicated than the string of 4 STEs we described in our oversimplified
example earlier, where we assumed 8-bit hit addresses were sufficient. The reason is that the
current version of the AP has a native symbol size of only 8 bits and we require 16 bits (14 bits)
for each of the 4 hits in one track pattern of our R-φ (R-z) dictionary. This requires using 4 STE
pairs to represent the 4 hit addresses. This further necessitates an additional 4 STE pairs that ensure
that the lower half of the STE pair representing the hit is enabled on the appropriate symbol cycle
associated with the lower 8 bits of the hit address. The additional STEs are for the φ position of the
"5th" hit associated with the calorimeter cluster and the energy range that cluster must fall within.
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Pileup EM Clusters Track Match Efficiency Rejection Purity
Interactions Total Electrons Photons Electrons Photons (%) Factor (%)

50 1242 837 405 837 9 100 45 99
80 1395 839 556 839 17 100 33 98
110 1515 844 671 844 26 100 26 97
140 1648 844 804 844 56 100 14 94

Table 1: This table summarizes the Automata Processor’s ability to identify electrons and reject photons for
the simulated samples used in our study. See text for more details.

5. Testing the Track Confirmation Trigger on the Toy Detector

Using this automata network design to represent the track patterns, we build our dictionary
consisting of 72 banks of 1,163 patterns each for the R-φ view and 244 banks of ∼4662 patterns
each for the R-z view. We use the simulated Z → ee samples described earlier to test our AP-
based trigger. For the purposes of our proof-of-concept demonstration, we assume that we have
perfect knowledge of the location of the primary interaction vertex. In an actual experiment like
CMS, however, such knowledge would have to be provided by another sub-detector like the outer
tracker. For each beam crossing, we begin by selecting all the EM clusters above pT = 5 GeV. We
then project a straight line from the each of the selected clusters back to the primary interaction
vertex. Only those hits within a narrow Region-Of-Interest (ROI) around this line are considered
to significantly reduce the total amount of data that needs to read out of the detector. All the hits
in the ROIs are then fed into the AP to see if any sequence matches a pattern stored in the banks.
A track is considered found, and hence a trigger accept signal "generated", if matches are found in
both views that occur on the same clock or symbol cycle (in reality, there is a fixed offset in the
cycle where matches are found between the two views due to the fact that the R-z view automatons
representing a pattern have fewer STEs and hence require fewer clock cycles to find matches).

5.1 Results for Electron Identification and Photon Rejection

The results of our tests are shown in Table 1 which summarizes the AP-based trigger’s ability
to identify electrons and reject photons. Results are shown for each of the 4 samples described
earlier. Columns 2-4 show the total number of EM clusters in each sample broken down into those
that originated from electrons or photons. Columns 5 and 6 show the number of these clusters in
each type for which the AP reported a track match. The remaining columns show that for this proof-
of-concept application, we are able to identify electrons with 100% efficiency and still maintain a
high purity all the way up to the sample with 140 pileups.

5.2 Processing Time Relative to Commodity CPU

For the 1K-crossing sample with 140 pileups, described in Section 4.1, the number of clock
cycles it takes the AP to find track match and generate a trigger accept is 3.62 µs. For comparison,
we created a functionally equivalent c-based algorithm and, using the same 140 pileup sample,
executed it on a 3.3 GHz, 5th generation Intel core i7 processor. For a single core, it takes 32.1 µs
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to execute the equivalent algorithm and generate the trigger accept. Using OpenMP with 6 cores,
it takes 17.5 µs to do the same. For this application, the AP clearly has an advantage over the
Intel CPU. Compared with this CPU, its execution time also scales much better as a function of the
number of pileups, exhibiting almost linear response for the R-φ view [2].

5.3 Processing Time Relative to Associative-Memory Based FPGA Implementation

Data
Organizer

AM

Local to
SSID

Conversion

Road
to

SSID
Conversion

Local to
Global

Conversion

Track Fitting

Road IDs
generated

Input hits

Load
Patterns

Figure 4: Block diagram of the FPGA-based Pattern Recognition Module used to compare with the AP. For
our studies, we limit our attention to the portion enclosed in the oval.

Having seen how the AP compares with a traditional CPU at the commodity end of the spec-
trum, let us now see how it compares to a solution at the other end of the spectrum which in-
cludes ASICs and FPGAs. Specifically, we look at the FPGA-based Pattern Recognition Module
(PRM) [6] developed at Fermilab as both a demonstrator for the custom VIPRAM ASIC [7] and
as a tool used for optimizing its design. The PRM firmware has been tested extensively and its
behavior, down to the clock cycles, is deterministic and well understood. With this knowledge, we
can calculate the number of clock cycles it takes the PRM to find track matches on our samples
without having to run our samples through the hardware.

As in the AP-based implementation, we assume two separate dictionaries or pattern banks for
the FPGAs, one for each 2D view. Referring to the block diagram of the PRM shown in Figure 4,
we ignore the track fitting stage and focus our attention only on the topmost 2 stages enclosed in
the dotted oval. We start counting clock cycles the instant the first pixel hit is fed into the first
stage of the PRM and stop counting as soon as the last road ID is generated from the Associative
Memory (AM) stage. We calculate the total number of clock cycles as the sum of the number of
hits in the detector layer having the greatest number of hits within the ROI, the execution latencies
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in each of the two PRM stages considered (4 cycles for "local to ssid conversion" and 8 cycles for
"road ID generation"), and the number of roads found. For the 140-pileup sample described earlier,
the average number of pixel hits in the layer with the greatest number of hits within the ROI is
37.7 hits. Since the average number of roads found within an ROI is higher in the R-z view than in
the R-φ view, we use the former, which is 5.66, to calculate our cycle counts. The total number of
cycles is therefore 37.7+4+8+5.66 = 55.4 cycles. For a Xilinx Kintex Ultrascale FPGA running
at 250 MHz, this translates to 0.2 µs, which is over an order of magnitude faster than the AP.

6. Conclusions and Recommendations

We have provided an overview of the Micron AP, describing what it is and what it is capable
of doing. We described a proof-of-concept application demonstrating its feasibility, in principle,
for track pattern recognition applications in HEP. Finally, we compared its processing
performance with both a commodity processor and an FPGA-based implementation. The AP
bridges the gap between these two extremes in the processing spectrum. It appears to be suitable
for offline pattern recognition applications and, perhaps, even moderately demanding real-time
applications. We showed that it was superior to the CPU for low-latency real-time applications.
On the other hand, relative to the FPGA, it was roughly an order of magnitude slower. As far as
pattern densities are concerned, 2496 instances of the automaton representing one track pattern in
our sample implementation can be programmed into the current version of the AP chip. The
FPGA implementation described above can store roughly twice as many patterns. Associative
memory based ASIC implementations currently under development can easily store over 100K
patterns. In its current form, the AP is not a replacement for ASIC/FPGA solutions in the most
demanding real-time applications requiring the best possible performance. However, it should
also be noted that we are dealing here with the very first version of an entirely new and
unconventional product category with unique and promising capabilities, and having substantial
headroom for further improvements. For instance, one of the limiting aspects of the current design
for HEP applications is the native 8-bit symbol size. Increasing this could significantly simplify
the design of the automaton used to represent a single track pattern by drastically reducing STE
resource usage. This will, in turn, cut down the number of symbol matching cycles and increase
the density of patterns that can be stored per chip. Another limiting aspect is the latency
associated with the current readout architecture which is responsible for a significant fraction of
the total processing time. Substantial gains can be achieved by optimizing the readout of the
match results. Furthermore, all these improvements do not take into account anticipated
reductions of the semiconductor process node and increases in symbol processing clock
frequencies in future generations of the AP chip. We look forward to such possible enhancements
in this new technology and we anticipate that, as awareness of it grows within the HEP
community, other novel and interesting applications will begin to sprout.
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