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1. Introduction

The question we deal with in this note it is not whether it is possible to design a model, or a
formalism, able to match one of the newly observed exotic states in the heavy hadron spectra with
a particular set of quantum numbers but to understand where the attractionmay come from and to
explain the systematics that predicts where, if anywhere, experimentalists and theoreticians alike
should look into.

When dealing with higher order Fock space contributions to hadron spectroscopy, one has
to discriminate between possible multiquark bound states or resonances and simple pieces of the
hadron–hadron continuum. For this purpose, one has to analyze the two–hadron states that con-
stitute the threshold for each set of quantum numbers. These thresholds have to be determined
assuming quantum number conservation within exactly the same scheme (parameters and inter-
actions) used for the multiquark calculation. If other models, parametrizationsor experimental
masses are used, then multiquark states might be misidentified as members of the hadron spectra
while being simple pieces of the continuum.

2. XYZ mesons: (QQ̄nn̄) states.

Four-quark states containing a heavy quark and its corresponding heavy antiquark(QQ̄nn̄),
(in the following n stands for a light quark andQ for a heavyc or b quark), show two different
thresholds: namely(QQ̄)(nn̄) and(Qn̄)(nQ̄). It has been proved [1] that ground state solutions of
the Schrödinger (q1q̄2) two–body problem are concave in(m−1

q1
+m−1

q2
) and henceMQn̄+MQ̄n >

MQQ̄ +Mnn̄ (see Fig. 1 of Ref. [2]). The interaction between the heavy,(QQ̄), and light,(nn̄),
mesons forming the lowest threshold is almost negligible due to the absence of alight pseudoscalar
exchange mechanism between them [3]. Hence, any attractive effect inthe four–quark system must
have its origin in the interaction of the higher channel(Qn̄)(nQ̄) or due to the coupled channel effect
of the two thresholds,(QQ̄)(nn̄)↔ (Qn̄)(nQ̄) [4]. This has been found to occur forQ= c for the
quantum numbersJPC = 1++, originating the X(3872) [5].

Although the increase of the mass of the heavy quark tends to enhance the binding of a stable
multiquark, the effect of channel coupling may be minimized owing to a change inthe masses of
the coupled thresholds. This effect has been tested with the hyperspherical harmonic (HH) for-
malism within the constituent quark model in Ref. [6], analyzing the isoscalar bottom counterpart
of theX(3872), (bb̄nn̄) with quantum numbersJPC = 1++. The corresponding lowest thresholds,
BB̄∗ (10611 MeV) andϒω (10155 MeV), are 456 MeV apart. We show in Fig. 1(upper panel)
the convergence pattern of the energy of the four-quark system as a function of the hyperangular
momentaK. It can be clearly seen how the energy of the four–quark system (redline) is converg-
ing to the lowest thresholdϒω (horizontal blue line), what is a sharp signal of an unbound state.
One could however play around with the model parameters to almost degenerate both thresholds
by adding attraction in the heavy-lightbn sector by slightly increasing theαs(bn) strong coupling
constant, what would also increase the coupled channel effect strengthening theBB̄∗ ↔ ϒω tran-
sition interaction. When this is done (green line) the energy drops below threshold and a bound
state emerges. One may wonder if only the close-to-degeneracy of the thresholds is sufficient to
bind this type of four–quark systems. If this was the case, then the charged partner of this four–
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Figure 1: Convergence of(bb̄nn̄) with quantum numbersL = 0, S= 1, C = +1 P = +1, T = 0 (upper
panel) andT = 1 (lower panel). Red lines correspond to the case where the thresholds are non-degenerate
and green lines to the case where they are almost degenerate.

quark state (T = 1) should behave exactly in the same manner. However, amazingly this is not so.
In Fig. 1(lower panel) we depict the convergence of the isovector state as a function ofK for both
cases, non-degenerate thresholds (red line) and almost degenerate ones (green line). In this case the
lowest threshold would beϒρ (10248 MeV). It can be observed that in both cases the four–quark
state converges to the lowest threshold and does not form a bound state.

Thus, when the(QQ̄)(nn̄) and(Qn̄)(nQ̄) thresholds are sufficiently far away, no bound states
are found for any set of parameters. However, when the thresholds move closer, i.e., the attraction in
the higher two-meson state and the coupled channel strength are simultaneously increased, bound
states may appear for a subset of quantum numbers. Hence, threshold vicinity is a required but
not sufficient condition to bind a four–quark state. An additional conditionis required to allow the
emergence of such bound states. Such condition is the existence of an attractive interaction in the
higher(Qn̄)(nQ̄) two–meson system that would also give rise to a strong(QQ̄)(nn̄)↔ (Qn̄)(nQ̄)

coupling.
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3. Exotics: (QQn̄n̄) states.

If the four–quark system contains identical quarks, like for instance(QQn̄n̄), the two thresh-
olds are identical, i.e.,(Qn̄)(Qn̄). The importance of this particular feature lies on the fact that
a modification of the four–quark interaction would not necessarily translateinto the mass of the
two free-meson state. Therefore, the unique necessary condition required to have a four–quark
bound state would be the existence of a sufficiently attractive interaction between quarks that
do not coexist in the two free-meson states. This hypothesis was demonstrated by means of the
Lippmann–Schwinger formalism in Ref. [7], concluding the existence of a single stable isoscalar
doubly charmed meson with quantum numbersJP = 1+. This calculation confirmed earlier re-
sults by Janc and Rosina [8] predicting the stability of(ccūd̄) using a quark model fitting ordinary
hadrons and by Vijandeet al. [9] in a HH approach.

In the case of isoscalar(QQn̄n̄) states with spin-parityJP = 1+, there is the fortunate co-
operation of two effects. First, the chromoelectric interaction (CE), even ifalone, gives stability
below the(Qn̄)+ (Qn̄) threshold if the quark-to-antiquark mass ratio is large enough, as it takes
advantage of the deeper binding of theQQ pair [10, 11]. Second, the chromomagnetic interaction
(CM) between the light quarks is also favorable [12]. This configurationis also pointed out as a
good candidate for a stable exotic in other approaches such as effective lagrangians [13], lattice
QCD [14] or QCD sum rules [15].

4. Multiquark heavy baryons: (Qnnn̄n) states.

Similar arguments could be used in the case of the heavy baryon spectra. Given a general
five–quark state contributing to the heavy baryon spectrum, (Qnnn̄n), two different thresholds are
allowed,(nnn)(Qn̄) and(Qnn)(nn̄). A straightforward generalization of the concave behavior in
(m−1

q1
+m−1

q2
) of the ground state solutions of the Schrödinger (q1q̄2) two–body problem to the

five–quark system could be obtained within a quark-diquark model ifmq1 ≤ mq2 ≤ mq3. Then
Mq3q̄2 +Mq1q̄1 ≤ Mq3q̄1 +Mq1q̄2, because the intervals in 1/µ of the left and right hand sides have
the same middle, but the left interval is wider that the right one. Now, in a crude quark-diquark
model, one can translate this asMq3q1q1 +Mq1q̄1 ≤ Mq3q̄1 +Mq1q1q1, as it is observed in Fig. 5 of
Ref. [16], except for the higher spin states where the angular momentum coupling rules impose
further restrictions.

An important source of attraction might be the coupled-channel effect ofthe two thresholds,
(nnn)(Qn̄)↔ (Qnn)(nn̄). The efficiency of this mechanism was tested by a coupled channel cal-
culation considering all physical channels,(nnn)(Qn̄) and(Qnn)(nn̄). When the(nnn)(Qn̄) and
(Qnn)(nn̄) thresholds are sufficiently far away, the coupled-channel effect is small, and bound
states are not found. However, when the thresholds move closer, the coupled-channel strength is
increased, and bound states may appear for a subset of quantum numbers. Under these conditions,
there are the channels with high spinJP = 5/2− the only ones that may lodge a compact five-quark
state for all isospins [16]. The reason stems on the reverse of the ordering of the thresholds, being
the lowest threshold(nnn)(Qn̄) the one with the more attractive interaction. Of particular interest
is the(T)JP = (2)5/2− state, that survives the consideration of the break apart thresholds. It may
correspond to theΘc(3250) pentaquark found by the QCD sum rule analysis of Ref. [17] when
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studying the unexplained structure with a mass of 3250 MeV/c2 in the Σ++
c π−π− invariant mass

reported recently by the BABAR Collaboration [18]. Such state could therefore be a consequence
of the close-to-degeneracy of the lowest thresholds withT = 2 andJP = 5/2−, ∆D∗ andΣ∗

cρ and
the attractive interaction of the∆D∗ system [16].

5. Exotic pentaquarks: (Q̄nnnn) states.

We have studied the(c̄nnnn) system in Ref. [19]. The most attractive states were the(T,J) =
(2,3/2) and(T,J) = (1,5/2). The state with quantum numbers(T)JP = (1)5/2− shows a bound
state with a binding energy of 3.9 MeV. It corresponds to a unique physical system,∆D̄∗. The
(T,J) = (2,3/2) state contains a coupled-channel problem,∆D̄−∆D̄∗. While the diagonal inter-
actions are not even attractive, the coupling between them is strong because the decaȳD∗ → D̄+π
is allowed, but not enough to generate a bound state.

When the mass of the heavy meson is increased the contribution of the kinetic energy is re-
duced. Thus, the binding energy of the(b̄nnnn) system is expected to be slightly larger than in the
(c̄nnnn) case, becausēD andB mesons have similar interactions with nucleons due to having the
same quark structure. Thus, we repeated the calculation for the(b̄nnnn) system looking for deeper
bound states in a baryon-meson system with a heavier antiquark. Surprisingly, the increment in
the attraction is not regularly spread over the different(T,J) channels. The(T,J) = (2,3/2) is
strongly affected and becomes the lowest one with an important gain of binding, showing a bound
state with a binding energy of 42 MeV. The ordering of the attractive channels is therefore reversed
with respect to the(c̄nnnn) case.

Which is the responsible for this unexpected behavior of the binding energy as the mass of the
heavy meson augments? The reason lies on the internal structure of the states and the behavior of
the thresholds when increasing the heavy meson mass. As mentioned above,the(T,J) = (1,5/2)
state is made of a unique physical system,∆D̄∗ in the charm sector or∆B∗ in the bottom sector,
and thus there are no coupled-channel effects. Moving from the charm to the bottom sector gives
rise to a small gain of binding, from 3.9 MeV in theND̄ system to 5.3 MeV in theNB system,
as one would naively have expected due to a smaller kinetic energy contribution but keeping a
rather similar interaction. However, the(T,J) = (2,3/2) state contains a coupled-channel problem,
∆D̄−∆D̄∗ in the charm sector and∆B−∆B∗ in the bottom sector. Whereas the diagonal potentials
are not strong, as mentioned above, the coupling between the two channelsis important because
theD̄∗ → D̄+π or B∗ →B+π decays. When moving from the charm to the bottom sector the most
important effect is the reduction of the mass difference between the two thresholds contributing to
this state. The mass difference between vector and pseudoscalar mesonsscales as predicted by the
chromomagnetic interaction, 1/mqmQ [20]. This means a reduction around a factor 3 when going
from open-charm to open-bottom mesons. In particular, whileM(∆D̄∗)−M(∆D̄) = 141 MeV,
M(∆B∗)−M(∆B) = 45 MeV what makes the coupled-channel effect much more important in the
bottom sector and reverses the order of the two attractive channels, makingthe (T,J) = (2,3/2)
state the lowest one. Thus, when going from the charm to the bottom sector inthe baryon-meson
open-flavor region, the number of states and their ordering may be modifieddue to the presence of
nearby thresholds. Such effect seems difficult to be predicted by any systematic expansion of the
heavy quark sector.
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Figure 2: (T,J) = (2,3/2) c̄nnnnbinding energy, B in MeV, as a function of∆M = M(∆D̄∗)−M(∆D̄) mass
difference. Note that for the experimental value, 141 MeV, the system is not bound.

To illustrate our results, we have plotted in Fig. 2 the evolution of the binding energy of the
(T,J) = (2,3/2) (c̄nnnn) state if we artificially diminish the mass difference between the vector
D̄∗ and the pseudoscalar̄D mesons. We can see how a bound state arises when the thresholds
come closer, around 120 MeV, without modifying the interactions entering theproblem. Besides,
the binding energy increases when the mass difference is reduced. Thisresult poses an important
warning when trying to extrapolate results of binding energies of two-hadron systems to different
flavor sectors. If the binding is mainly due to the vicinity of coupled thresholds, it may be dimin-
ished by the increase of the mass of the two-hadron system if it separates the thresholds [6]. Thus,
if this mechanism is working for some of the recently discovered pentaquarkstates at the LHCb
or the exotic states discovered in the hidden-charm or hidden-beauty meson spectra, the pattern
expected on different flavor sectors may differ significantly as oppositeto the charmonium and
bottomonium spectra or the charm and bottom baryon spectra below open-flavor thresholds.

6. Dibaryons: (QQnnnn) states.

We finally show results about the stability of hexaquark systems containing twoheavy quarks
and four light quarks within a simple quark model containing only confinement, chromoelectric
and chromomagnetic effects, but considering the full color-spin basis contributing to the six-quark
problem. No bound or metastable state is found [21].

The scalar stateJP = 0+ with isospinT = 1/2,3/2, that would be degenerate because the po-
tential does not depend on the total isospin, would stand, for example, fora flavor content(uudscc).
In this case thirteen different color-spin vectors are allowed by antisymmetry requirements. To con-
struct the basis of color and spin states, we formally consider the system asa set of three two-quark
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subsystems,(qq)(qq)(QQ′), with color 3̄ or 6 and spin 0 or 1. We built the most general basis
compatible with an overall color singlet and spin 0 state. The requirements of antisymmetriza-
tion are strictly enforced for all states which are shown. The relevant vectors in color space are:
C1 = (666), C2 = (63̄3̄), C3 = (3̄63̄), C4 = (3̄3̄6); and in spin space:S1 = (000), S2 = (011),
S3 = (101), S4 = (110). The two thresholds allowed for the dissociation of theJP = 0+ six-quark
state would have energies:qqQ+qqQ′ = 2.630 GeV andQQ′q+qqq= 2.570 GeV. We give in
Table 1 the probabilities of the channels contributing to the coupled channel calculation. The final

Table 1: Probabilities of the different six-body channels contributing to theJP = 0+ six-quark state.

Channel C1S2 C2S1 C3S4 C4S3

Probability 0.004 0.539 0.456 0.001

result we have obtained is 2.767 GeV. This is the sign of either the absence of a bound state, or,
at most, of a very tiny binding. This is confirmed by the use of the alternative bases, what means
that neither the residual color-singlet exchange between the two clusters, nor the coupling of the
different baryon-baryon thresholds is sufficient to bind the system.

We have checked that in the infinite mass limit for the mass of the heavy quarks the system
gets binding with respect to the upper threshold,(qqQ)+(qqQ′), but it is always above the lowest
one(QQ′q)+ (qqq). For example, forM = 10 GeV andm= 0.4 GeV we get 2.326 GeV for the
energy of the six-quark state in the coupled channel calculation, while the thresholds come given
by E(QQ′q)+E(qqq) = 2.162 GeV andE(qqQ)+E(qqQ′) = 2.477 GeV. The six-quark state,
that it is now in between the two thresholds, is described by the same color-spin vectors shown in
Table 1,C2S1 andC3S4, where the two-heavy quarks are in a3̄ color state, that would split into the
lowest threshold. In other words, the two-heavy quarks control the mass of the six-body state in
the infinite mass limit.

We now try to explain why these results are plausible. For the CM part, the subject is already
well documented with the discussions around theH dibaryon [22]. The effects of SU(3)F breaking,
a different mass for the strange quark, tends to spoil the promises of binding based on the sole spin-
color algebra, and, more important, the short-range correlation factors are significantly smaller in
a multiquark than in baryons. As for the CE part, a superficial analysis would argue that, as soon
as−∑ λ̃i .λ̃ j is locked to 16 in any spin-color channel|Ca〉|Sb〉, the CE part of the binding will
remain basically untouched, independent of the combination of the|Ca〉|Sb〉 dictated by the CM
part. However, this is not the case. For equal masses, the deepest CE binding is obtained when
the distribution of CE strength factors{−λ̃i .λ̃ j} is the most asymmetric [23], which favors the
threshold against a compact multiquark. For a mass distribution such as(qqqqQQ′), CE dynamics
favors theQQ′ two-quark state being in a color̄3 state. Once this is enforced, the best CE energy
is obtained when theQq andQ′q pairs receive the largest strength, and they come with a larger
reduced mass thanqq. This can be checked explicitly in a simple solvable model with an interaction
proportional to−λ̃i .λ̃ j r2

i j . However, CM effects are optimized when the light sector receives the
largest color strengths. Hence, there is somewhat a conflict between CEand CM effects, and this
explains the lack of bound states in our model.
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