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1. Introduction

Renormalisation group functions, such as beta functions and anomalous dimensions, are cru-

cial objects in quantum field theories, that are necessary to define consistently Green functions and

amplitudes beyond tree level. The computation of multiloop anomalous dimensions is therefore

important both for theoretical studies and for phenomenological applications. In this respect, a

central role is played by the renormalisation of QCD, which has a long history, starting with the

one-loop calculation and the groundbreaking discovery of asymptotic freedom [1–4]. Impressive

progress in this field pushed state-of-the-art calculations to five-loop level [5–23]. One of the main

difficulties in the calculation of high order corrections is the dramatic growth of the number and

of the complexity of Feynman diagrams, that can be tackled only with the use of highly efficient

computational methods. In this talk we describe the main features of a particularly efficient tech-

nique to compute ultraviolet counterterms and renormalisation constants (RCs), based on the global

R∗ operation [12, 24–26], which highly simplifies the structure of Feynman integrals. We applied

this method to the five-loop renormalisation of the QCD Lagrangian, obtaining all the RCs with

complete dependence on the gauge fixing parameter ξ [27]. In this way, it was possible to confirm

and extend the results of [23], which include up to the linear terms in the expansion around the

Feynman gauge result, ξ = 0.

2. Infrared rearrangements

The idea of infrared rearrangement (IRR) [28] is at the basis of the method of global R∗. This

trick follows from the properties of dimensional regularisation and minimal subtraction [29, 30],

which ensure that, for every Feynman diagram Γ, its ultraviolet (UV) counterterm Z (Γ) is a poly-

nomial in all the masses [31]. This fact implies that counterterms of logarithmically divergent

diagrams are independent on masses. As a consequence, rearranging the configuration of external

momenta or (external and/or internal) masses doesn’t change the UV counterterm of a logarith-

mically divergent Feynman diagram, but it can simplify drastically the structure of the associated

integral. Notice that requiring logarithmic divergence is not restrictive, because the superficial de-

gree of divergence of any diagram can always be reduced to zero by taking the appropriate number

of derivatives with respect to external momenta and masses.

The specific type of rearrangement operation is not fixed a priori and in principle every diagram

can be modified in a different way. A convenient choice is to reduce Feynman diagrams to “one-

mass” tadpoles, which consists in two steps:

i) Selection of an external vertex attached to two propagators. These internal lines are modified

with the introduction of an internal mass.

ii) Nullification of all the external momenta of the diagram.

For example, this procedure can be used to determine the vertex counterterm

Z

( )
= Z

( )
,

(2.1)

1



P
o
S
(
R
A
D
C
O
R
2
0
1
7
)
0
0
4

The method of global R* and its applications G. Falcioni

where the two propagators attached to the leftmost vertex are modified with the introduction of a

mass, represented with a double line. While the UV counterterms of the two diagrams in eq. (2.1)

are equal to each other, the tadpole is computed much more easily using the factorisation

=

4
−

d · ,

(2.2)

where the one-loop tadpole has a massless propagator raised to non-integer power 4−d. Note that

the most complicated integral we have to compute in eq. (2.2) is a two-loop massless propagator,

while the original diagram was a three-loop one. This fact is a particular case of a general theorem

[32], which shows that in principle UV counterterms of L-loop diagrams are entirely determined in

terms of (L−1)-loop massless propagators, known also as p-integrals.

One potential problem of infrared rearrangements is the generation of spurious infrared diver-

gences that contaminate the singularities of UV origin. This issue occurs for example if we set to

zero the internal mass in eq. (2.1). Of course, this rearrangement doesn’t affect the UV pole, but the

tadpole integral becomes scaleless and it vanishes in dimensional regularisation, as a consequence

of the exact cancellation of UV and IR poles. Several strategies have been adopted to overcome

the problem of IR singularities. One possibility consists in the introduction of an internal mass,

which regulates potential IR divergences, in all the propagators [11, 33, 34]. After nullification of

the external momenta, this operation transforms every L-loop Feynman diagram in a completely

massive tadpole of the same loop order, which in general is not factorisable in the form of eq.

(2.2). This method has been applied to the five-loop renormalisation of QCD in a series of recent

works [18, 19, 21], culminating with the calculation of all the anomalous dimensions, expanded up

to the linear order in the gauge fixing parameter ξ , that was presented at this conference [23].

A different strategy is based on the R∗ operation [32,35,36], which generalises the Bogoliubov

R-operation, by subtracting both IR and UV divergences of Feynman diagrams

R∗(Γ) = R̃◦R(Γ), (2.3)

where the operations R and R̃ generate recursively UV and IR counterterms, respectively. The

power of R∗ is that it can be used to cancel IR poles of rearranged Feynman integrals, thus remov-

ing every restriction on the use of IRR. However, in practice computations become demanding at

high perturbative orders, because each Feynman diagram generates many IR counterterms, and the

combinatorial growth of the number of diagrams makes it impossible to proceed with this method

by hand. The important step of automating the R∗ operation for generic Feynman diagrams [37]

was crucial for obtaining the five-loop QCD beta function within this method [20].

The global R∗ operation [25, 26] provides a very elegant solution to the computational issues

related to the proliferation of IR counterterms, by implementing the subtraction of infrared singu-

larities at the level of the whole rearranged Green functions. In this way we avoid the diagram-by-

diagram recursive calculation of counterterms, which results in a more efficient approach.

3. Introduction to global R∗

In this section we describe the main features of the R∗ operation, by discussing the renormali-
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sation of the ghost-gluon vertex as illustrative example. We define the 1PI vertex

Γabc
µ (p,q) =−gs f abc

[
pµ Γp(p,q)+qµ Γq(p,q)

]
, (3.1)

where p is the momentum of the outgoing ghost, q the momentum of the gluon and gs is the QCD

coupling constant. At tree level the functions Γtree
p = 1 and Γtree

q = 0 are fixed by the Feynman rule

and it is convenient to introduce the notation

Γp(p,q) = 1+δΓp(p,q), Γq(p,q) = δΓq(p,q), (3.2)

to distinguish the tree level contribution from the loop corrections. The renormalisation constant

Z
ccg
1 = 1+δZ

ccg
1 satisfies the conditions

Kε

[
Z

ccg
1

(
1+δΓB

p(p,q)
)]

= 0,

Kε

[
Z

ccg
1 δΓB

q (p,q)
]
= 0,

(3.3)

where the operator Kε extracts the pole part in the Laurent expansion in the dimensional regulator

ε = 4−d
2

and the superscript “B” indicates the use of bare lagrangian parameters g0, ξ0. The first

identity of eq. (3.3) determines Z
ccg
1 order-by-order in perturbation theory

δZ
ccg
1 =−Kε

[
Z

ccg
1 δΓB

p(p,q)
]
. (3.4)

The first point that we want to discuss is the determination of a global IR counterterm for the

whole vertex function, which becomes IR singular for p,q → 0. In this limit IR poles cancel the

UV singularities exactly, because all the integrals become scaleless. The key observation is that

Z
ccg
1 is independent on the value of p and q and therefore eq. (3.4) holds also at zero momenta,

provided IR singularities are subtracted by R̃

δZ
ccg
1 =−Kε

[
Z

ccg
1 R̃

(
δΓB

p(0,0)
)]

. (3.5)

Within minimal subtraction Z
ccg
1 and R̃

(
δΓB

p(0,0)
)

contain only poles in ε . This fact implies that

we can drop the operator Kε from the equation above and we derive the IR subtracted vertex

R̃
(
δΓB

p(0,0)
)
=−δZ

ccg
1

Z
ccg
1

. (3.6)

δΓM
p (g, p,M) = + + + · · ·

Figure 1: Global infrared rearrangement of the ghost-gluon vertex.

The second ingredient of the procedure is the choice of a convenient infrared rearrangement.

As discussed in sec. 2, we want to reduce the complexity of the calculation to (L−1)-loop mass-

less propagators. This result is achieved in global R∗ by applying the rearrangement to one-mass

tadpoles, which follows steps i) and ii) of sec. 2, to all the diagrams contributing to Γabc
µ . After

3
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masses have been introduced in all the diagrams, as described in step i), we define a globally re-

arranged vertex ΓM
p (p,q,M) as the sum of rearranged diagrams, depicted in Fig. 1. The genuine

UV divergence of this object is the same as Γp(p,q), therefore it is renormalised by δZ
ccg
1 , while

subdivergences are modified. In particular eq. (3.4) becomes

δZ
ccg
1 =−Kε

[
δΓM,B

p (p,q,M)+δZ
ccg
1 ·δΓB

p(p,q)
]
, (3.7)

where, in the spirit of the R-operation, the subtraction of the divergent subgraphs including the

massive vertex is achieved by the counterterm δZ
ccg
1 and the remaining reduced graph consists of

the massless vertex δΓB
p(p,q), as shown in the two-loop example of Fig. 2.

Z
(

+
)
=−Kε

[
+ +Z

( )
∗

]

Figure 2: Pattern of divergences of the rearranged vertex ΓM
p (p,q,M).

We proceed with step ii) of the rearrangement, namely the nullification of external momenta

in eq. (3.7). We evaluate the leading behaviour of the massive vertex δΓM,B
p (p,q,M) in the limit

p,q → 0 by applying the well-known hard mass expansion (see the books [38, 39] and references

therein)

δΓM,B
p (p,q,M) −→

M≫p,q
δΓM,B

p (0,0,M)+δΓM,B
p (0,0,M) ·δΓB

p(p,q)+O

(
1

M2

)
, (3.8)

where δΓM,B
p (0,0,M) by construction is a sum of one-mass tadpole diagrams. Finally we cancel

the IR poles of the vertex function δΓB
p(p,q) at vanishing external momenta by using the globally

subtracted vertex R̃(δΓB
p(0,0)), eq. (3.6). In conclusion, by introducing eqs. (3.8) and (3.6) in eq.

(3.7) we conclude

δZ
ccg
1 =−Kε

[
δΓM,B

p (0,0,M)

Z
ccg
1

−
(
δZ

ccg
1

)2

Z
ccg
1

]
. (3.9)

We are now able to determine Z
ccg
1 by expanding eq. (3.9) order-by-order in perturbation theory.

The necessary ingredients to compute δZ
ccg
1 at L loops are Z

ccg
1 at (L−1) loops and δΓM,B

p (0,0,M)

at L loops, that is anyway factorisable in (L−1)-loop massless propagators, as in the example in eq.

(2.2). We calculated these integrals up to four loops with the program Forcer [40] and therefore

we were able to determine the RC Z
ccg
1 at five-loop level.

4. The five-loop renormalisation of QCD

We complete the renormalisation of QCD to five loops within the global R∗ method introduced

in sec. 3. Besides the ghost-gluon vertex RC, the remaining quantities that we have to determine

are the wave function renormalisations of the ghost (Zc
3), of the fermion (Z2) and of the gluon (Z3).

All the other RCs are fixed by Ward identities

Zg =
Z

ccg
1

Zc
3

√
Z3

=
Z

ψψg
1

Z2

√
Z3

=
Z

3g
1(√
Z3

)3
=

√
Z

4g
1

Z3

, (4.1)
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Π =

Π1

+

Π2

+

Π3

+

Π6

+ · · ·

Figure 3: The different contributions to the gluon self energy.

where Zi
1 is the RC of the vertex i and Zg is the coupling constant renormalisation.

The calculation of the ghost and the fermion wave function renormalisation follows the steps

leading to eq. (3.9), described in sec. 3, and we get

δZc
3 =−Kε

{
Zc

3

Z
ccg
1

[
ΠB(0,M)− δZc

3

Zc
3

(
δΓM,B

p (0,0,M)+δZ
ccg
1

)
]}

, (4.2)

δZ2 =−Kε

{
Z2

Z
ψψg
1

[
ΣB(0,M)− δZ2

Z2

(
δΛM,B(0,0,M)+δZ

ψψg
1

)
]}

. (4.3)

Here Π(0,M) is the ghost self-energy at zero momentum, where the mass M was introduced in the

vertex of the incoming ghost by the infrared rearrangement. Similarly Σ(0,M) is the rearranged

fermion self-energy, while δΓM
p and δΛM are respectively the ghost-gluon vertex and the quark-

gluon vertex with masses inserted, that arise in the hard mass expansion of the rearranged self-

energies, as in eq. (3.8). All the quantities appearing in eq. (4.2) and in eq. (4.3) are either

one-mass tadpoles, or QCD renormalisation constants, therefore we could compute Zc
3 and Z2 up

to five loops with the help of Forcer.

The calculation of the gluon wave function renormalisation within the global R∗ method is

conceptually more complicated. We won’t describe here the derivation of Z3, which will be given

in [41], but we will only comment on the main differences with respect to the procedure adopted

for Z
ccg
1 , Zc

3 and Z2. In general, infrared rearranging gluon correlators requires to modify several

types of vertices with the insertion of a mass. This problem doesn’t occur in the rearrangement

of correlators with external ghosts or fermions, where it is always possible to modify a uniquely

defined vertex in all the diagrams, because ghosts and fermions undergo a single type of interaction.

In the case of external gluons we distinguish the contributions of the different interactions and we

rearrange them separately. As shown in Fig. 3, for the gluon self-energy we have1

Πµν;ab = i

∫
ddxeiq·x〈0|T

(
Aµ,a(x)Aν ,b(0)

)
|0〉1PI

= i ∑
i=1,2,3,6

∫
ddxeiq·x〈0|T

(
O

µ,a
i (x)Aν ,b(0)

)
|0〉1PI ≡ ∑

i=1,2,3,6

Π
µν;ab
i ,

(4.4)

where O
µ,a
1 , O

µ,a
2 , O

µ,a
3 and O

µ,a
6 identify the operators2 that couple the external gluon Aµ,a(x)

respectively via the quark-gluon, ghost-gluon, tri- and four-gluon interactions of QCD, e.g. O
µ,a
1 =

gψγµT aψ . Each contribution Πi is rearranged by introducing a mass in Oi: in the case of O1, O2

and O3 this is straightforward. For O6 we can’t directly apply steps i) and ii) of sec. 2, which

require to identify two propagators attached to an external leg, because here the external gluon

1Note that the right part of eq. (4.4) does not include all diagrams with both external gluons being coupled with one

and the same vertex. Such contributions in any case are set to zero in dimensionally regulated massless QCD.
2Colour and Lorentz indices will be suppressed to simplify notations.
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is connected to three lines. The solution to this first issue is to split the four-gluon operator into

three-point vertices with the introduction of an auxiliary field, as shown in Fig. 4. This procedure

→ + +

Figure 4: Splitting the four-point vertex into two product of two three-point vertices.

generates two classes of diagrams with different structure of subdivergences, as depicted in Fig. 5.

Diagrams of the “special” type have subdivergences associated to the internal vertex of the auxiliary

field, while “non-special” diagrams have only the singularity of the external vertex. The properties

of special and non-special diagrams will be discussed in detail in [41]. Beyond tree level, vertices

O1, O2, O3 and O6 (both special and non-special contributions) are mixing among each other under

renormalisation

OR
i = ∑

j

zi j O j, (4.5)

where OR
i denote the renormalised vertices and zi j is the renormalisation matrix. Note that the

sum over j is not restricted to the QCD operators, O1, O2, O3 and O6, but it must include all the

operators that cancel the UV divergences of the vertices. We determined the set of the required

“Special” “Non-special”

Figure 5: The classes of special and non-special diagrams generated by the modified four gluon vertex.

operators by analysing the structure of the vertices at three and four loops and we identified two

new types of three-gluon interactions, named O4 and O5, and six different four-gluon interactions,

O7 . . .O12 that can appear up to three loops [41]. Indeed the number of four-gluon operators that can

be constructed in a general gauge group increases with the loop order and we limited our study to

the structures that are relevant for the renormalisation of the gluon self-energy to five loops. In this

way, renormalisation of operators Oi in eq. (4.4) generates a mixing of the different contributions

Πi dictated by the matrix zi j, as shown in Fig. 6 where Π1 mixes into Πi, with i = 6 . . .12. Note

however that it is not necessary to compute all the 144 matrix elements of zi j to renormalise eq.

(4.4), because summing over the index i = 1,2,3,6 we have

∑
i=1,2,3,6

zi j =

{
Z
( j)
1 j = 1,2,3,6

0 otherwise
(4.6)

where Z
( j)
1 are the RCs of the QCD vertices O j. These features were crucial to determine the RC

Z3 from one-mass tadpoles Πi(0,M), that were computed with Forcer to five loops.

5. Conclusions

With the global R∗ operation we were able to determine all the RCs of the QCD Lagrangian in

terms of one-mass tadpoles, that are computed at L-loop order, by evaluating (L−1)-loop massless

6
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→ Z

[ ]
∗

Figure 6: Mixing between fermion and four-gluon operator in the rearranged gluon self-energy.

propagators. Crucially, the program Forcer allowed us to calculate these integrals to four-loop

order with high efficiency and to determine [27]

• the RCs Z
ccg
1 , Z

ψψg
1 , Zc

3 and Z2 to five loops with complete dependence on ξ ,

• Z3 to five loops, at linear order in ξ .

Because of eqs. (4.1) and of the independence of Zg on the parameter ξ , we derived the com-

plete renormalisation of QCD to five loops in general covariant gauges. Results were checked by

verifying the explicit cancellation of the linear dependence on ξ in the ratio

Zg =
Z

ccg
1

Zc
3

√
Z3

, (5.1)

as well as the consistency of Z
ψψg
1 with the Ward identities, eq. (4.1). We compared also with

the five-loop results in Feynman gauge [17, 20, 23] and with those expanded up linear order in ξ

of [23], finding agreement. In Landau gauge, we verified that Z
ccg
1 = 1 [42, 43] and that Zc

3, Z3, Z2

and Zg agree with the results in the limit of large number of fermions [44–46].

While global R∗ is extremely efficient from the computational point of view, it requires an

elaborate analysis of the pattern of UV subdivergences of the rearranged diagrams. It is interesting

and worthwhile to study R∗ in different contexts, where other techniques become very demanding,

such as the determination of the anomalous dimensions of twist two operators.
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