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1. Introduction

It is almost seventy years from the time Feynman Integrals (FI) were first introduced [1, 2, 3]
and forty-five years since the dimensional regularisation [4] set up the framework for an efficient
use of loop integrals in computing scattering matrix elements, and still the frontier of multi-scale
multi-loop integral calculations (maximal both in number of scales and number of loops) is de-
termined by the planar five-point two-loop on-shell massless integrals [5, 6], recently computed1.
On the other hand, in order to keep up with the increasing experimental accuracy as more data
is collected at the LHC, more precise theoretical predictions and higher loop calculations are re-
quired [8].

In the last years our understanding of the reduction of one-loop amplitudes to a set of Master
Integrals (MI), a minimal set of FI that form a basis, either based on unitarity methods [9, 10, 11]
or at the integrand level via the OPP method [12, 13], has drastically changed the way one-loop
calculations are preformed resulting in many fully automated numerical tools (some reviews on the
topic are [14, 15, 16]), making the next-to-leading order (NLO) approximation the default precision
for theoretical predictions at the LHC. In the recent years, progress has been made also towards the
extension of these reduction methods for two-loop amplitudes at the integral [17, 18, 19, 20, 21,
22, 23, 24, 25, 26] as well as the integrand [27, 28, 29, 30, 31, 32] level. Two-loop MI are defined
using the integration by parts (IBP) identities [33, 34, 35], an indispensable tool beyond one loop.
Contrary to the one-loop case, where MI have been known for a long time already [36], a complete
library of MI at two-loops is still missing. At the moment this is the main obstacle to obtain a fully
automated NNLO calculation framework similar to the one-loop one, that will satisfy the precision
requirements at the LHC [8].

Many methods have been introduced in order to compute MI [37]. The overall most successful
one, is based on expressing the FI in terms of an integral representation over Feynman parameters,
involving the two well-known Symanzik Polynomials U and F [38]. The introduction of the sector
decomposition [39, 40, 41, 42, 43] method resulted in a powerful computational framework for
the numerical evaluation of FI, see for instance SecDec [7]. An alternative is based on Mellin-
Barnes representation [44, 45], implemented in [46]2. Nevertheless, the most successful method
to calculate multi-scale multi-loop FI is, for the time being, the differential equations (DE) ap-
proach [47, 48, 49, 50, 51], which has been used in the past two decades to calculate various MI at
two-loops and beyond. Following the work of refs. [52, 53, 54], there has been a building consen-
sus that the so-called Goncharov Polylogarithms (GPs) form a functional basis for many MI. The
so-called canonical form of DE, introduced by Henn [55], manifestly results in MI expressed in
terms of GPs 3. Nevertheless the reduction of a given DE to a canonical form is by no means fully
understood. First of all, despite recent efforts [57, 58, 59], and the existence of sufficient conditions
that a given MI can be expressed in terms of GPs, no criterion, with practical applicability, that is at
the same time necessary and sufficient has been introduced so far. Moreover, it is well known that

1Complete results, including physical region kinematics, are presented in [6]. Notice that numerical codes, like for
instance SecDec [7], can reproduce analytic results only at Euclidean region kinematics; results for physical region
kinematics are not supported due to poor numerical convergence.

2See also https://mbtools.hepforge.org
3For an alternative method in the single scale case see also ref. [56]
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when for instance enough internal masses are introduced, MI are not anymore expressible in terms
of GPs, and in fact a new class of functions involving elliptic integrals is needed [60, 61, 62, 63, 64].

In this contribution we present results [65] on FI based on Baikov representation [66, 67, 68,
69, 70, 71]. In Section 2, we present a consistent definition of the integration limits which will be
important for the computation of cut integrals in d dimensions. In Section 3 we present a novel
approach to obtain DE from the Baikov representation. In Section 4 we introduce the definition of
the cut integral in Baikov representation4, that satisfies the same DE and the same IBP identities as
the uncut one [78], and we conjecture that computing the corresponding maximally cut integral [79]
we may have a necessary and sufficient condition for the expression of the uncut integral in terms
of GPs and when applied to the whole family of MI on the possibility to obtain a canonical form.

2. The Baikov representation

An L-loop Feynman Integral with E +1 external lines can be written in the form

Fα1...αN =
∫ ( L

∏
i=1

ddki

iπd/2

)
1

Dα1
1 ...DαN

N
(2.1)

with N = L(L+1)
2 +LE, αi arbitrary integers, and Da, a = 1, ...,N, inverse Feynman propagators,

Da =
L

∑
i=1

M

∑
j=i

Ai j
a

si j + fa =
L

∑
i=1

L

∑
j=i

Ai j
a

ki · k j +
L

∑
i=1

M

∑
j=L+1

Ai j
a

ki · p j−L + fa, a = 1, . . . ,N (2.2)

where qi = ki,(i = 1, ...,L) the loop momenta and qL+i = pi,(i = 1, ...,E), the independent external
momenta, M = L+E, si j = qi · q j and fa depend on external kinematics and internal masses. Ai j

a

can be understood as an N×N matrix, with a running obviously from 1 to N and with (i j) taking
also N values as i = 1, . . . ,L and j = i, . . . ,M. The elements of the matrix Ai j

a
are integer numbers

taken from the set {−2,−1,0,+1,+2}. This matrix is characteristic of the corresponding Feynman
graph and can, in a loose sense, be associated with the ‘topology’ of the graph. Then, by projecting
each of the loop momenta qi = ki,(i = 1, ...,L) with respect to the space spanned by the external
momenta involved plus a transverse component (for details see [70]), we may write

Fα1...αN =CL
N(G(p1, ..., pE))

(−d+E+1)/2
∫ dx1...dxN

xα1
1 ... xαN

N
PL

N(x1− f1, ...,xN− fN)
(d−M−1)/2 (2.3)

with

CL
N =

π−L(L−1)/4−LE/2

∏
L
i=1 Γ

(d−M+i
2

) det
(
Aa

i j
)

(2.4)

and
PL

N (x1,x2, ...,xN) = G(k1, ...,kL, p1, ..., pE)
∣∣∣
si j=

N
∑

a=1
Aa

i jxa & s ji=si j

with G representing the Gram determinant, G(q1, . . . ,qn) = det(qi ·q j) and Aa
i j is the inverse of

the topology matrix Ai j
a

. An alternative derivation of the Baikov representation for one- and two-
loop FI as well as the loop-by-loop representation, can be found in Appendix A of ref. [65]. The
derivation of the Baikov representation can easily be implemented in a computer algebra code5.

4For related work see [72, 73, 74, 75, 76, 77]
5A Mathematica script, Baikov.m, is provided as an attachment in ref. [65]
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We conclude this section by elaborating on the limits of the xa−integrations in Eq. (2.3). In
order to simplify the discussion, let us start with a generic one-loop configuration defined by

x1 = k2−m2
1 , x2 = (k+ p1)

2−m2
2 , . . . , xN = (k+ p1 + . . .+ pN−1)

2−m2
N

Then consider the generic integral (αi ≥ 0),

Fα1···αN =C1
NG(p1, . . . , pN−1)

(N−d)/2
∫ dx1...dxN

xα1
1 ... xαN

N
P1

N
(d−N−1)/2

(2.5)

C1
N =

π−(N−1)/2

Γ
(d−N+1

2

) (1
2

)N−1

(2.6)

It is easy to verify that P1
N is a polynomial that is quadratic in the variables xa [68], and that obvi-

ously when αN = 0, the external momentum pN−1 decouples, so that

Fα1...αN−10 = C1
NG(p1, . . . , pN−1)

(N−d)/2
∫ dx1...dxN−1

xα1
1 ... xαN−1

N−1

x+N∫
x−N

dxNP1
N
(d−N−1)/2

= C1
N−1G(p1, . . . , pN−2)

(N−1−d)/2
∫ dx1...dxN−1

xα1
1 ... xαN−1

N−1
P1

N−1
(d−(N−1)−1)/2

(2.7)

where P1
N
(
x+N
)
= P1

N
(
x−N
)
= 0 and

x+N∫
x−N

dxNP1
N
(d−N−1)/2

=
2π1/2Γ

(d−N+1
2

)
Γ
(d−N+2

2

) G(p1, . . . , pN−1)
(d−N)/2 G(p1, . . . , pN−2)

(N−1−d)/2

× P1
N−1

(d−(N−1)−1)/2

using P1
N = 1

4 G(p1, . . . , pN−2)
(
x+N − xN

)(
xN− x−N

)
and

(
x+N − x−N

)2
= 16 G(p1,...,pN−1)

G(p1,...,pN−2)
2 P1

N−1. This

can be repeated straightforwardly for all variables except x1 = k2−m2
1 whose integration limits

are simply derived from the k−modulus integration limits. The generalisation to the two-loop case
is straightforward, with the integration at each step performed over the x−variables involving a
given external momentum, and the last ones derived by the corresponding k1− and k2−modulus
integration limits. We have checked both analytically and numerically that the limits, as defined
above, reproduce the known results for several examples at one and two loops.

3. Deriving differential equations

Differential equations are usually written in terms of external kinematical invariants, si j =

(pi + p j)
2 and internal masses, m2

i . In the standard approach, since the integral in the momentum-
space representation is not an explicit function of the kinematical invariants, derivatives with re-
spect to external momenta, pµ

j
∂

∂ pµ

i
, are used. In Baikov representation though, the dependence

on external kinematical invariants and internal masses is explicit. Indeed in Eq. (2.3), it is easy to

3
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identify two terms that depends on the external kinematics and/or masses, namely the overall factor
G(p1, . . . , pE)

(−d+E+1)/2 and the Baikov polynomial PL
N itself. The differentiation of the first factor

causes no problem since the result is expressed in terms of the original integral. For the Baikov
polynomial this is not so, since the derivative introduces a different integrand that is not directly
expressible in terms of FI, Eq. (2.1). To be more specific, let us denote by X a generic kinematical
variable, for instance a Mandelstam invariant X = (pi + p j)

2 or an internal mass X = m2
i . Then

∂

∂X
Fα1...αN =

(
−d +E +1

2

)(
1
G

∂G
∂X

)
Fα1...αN (3.1)

+ CL
NG(−d+E+1)/2

∫ dx1...dxN

xα1
1 ... xαN

N
PL

N
(d−M−1)/2

[(
d−M−1

2

)
1

PL
N

∂PL
N

∂X

]
where G is used for G(p1, ..., pE). Based on the fact that the derivatives ∂PL

N
∂X ,

∂PL
N

∂xa
are polynomials

in xa, the idea is to turn the derivative with respect to X into derivatives with respect to xa. This can
be achieved by the equation, known as the syzygy equation [80, 81],

b
∂PL

N

∂X
+∑

a
ca

∂PL
N

∂xa
= 0 (3.2)

with b and ca being polynomials in xa.
Assuming that a solution of this equation has been found such that b is independent of xa

(eventually depending on external kinematics and internal masses and not identical to zero), we
have

∂

∂X
Fα1...αN =

(
−d +E +1

2

)
1
G

∂G
∂X

Fα1...αN

+ CL
NG(−d+E+1)/2

∫ dx1...dxN

xα1
1 ... xαN

N

(
−∑

a

ca

b
∂

∂xa
PL

N
(d−M−1)/2

)
(3.3)

Then integrating by parts the second term in the rhs of the above equation and assuming that surface
terms are vanishing (a standard assumption through Baikov representation) we get

∂

∂X
Fα1...αN =

(
−d +E +1

2

)
1
G

∂G
∂X

Fα1...αN (3.4)

+ CL
NG(−d+E+1)/2

∫
dx1...dxNPL

N
(d−M−1)/2

{
∑
a

∂

∂xa

(
ca

b
1

xα1
1 ... xαN

N

)}
The term in the curly bracket is easily seen to be a sum of terms of the form 1

xα ′1
1 ... xα ′N

N

. The powers

α ′a depend on the actual form of the solution of the syzygy equation, Eq. (3.2). The result is as
expected

∂

∂X
Fα1...αN = ∑

i
Ri F

α
(i)
1 ...α

(i)
N

(3.5)

with coefficients Ri that are rational functions of the space-time dimension d, the external kinemat-
ics and the internal masses. The rhs of the above equation contains integrals that are in general not
MI. We have verified in numerous examples, that after applying a standard IBP reduction to MI for
the rhs of the above equation, the resulting differential equations for the MI are the same as those
obtained with the standard approach. It is still interesting to note that the initial form, Eq. (3.5), is
generally not.
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4. Cutting Feynman Integrals

Cutting FI in the Baikov representation has a very natural definition. Indeed we define an
n−cut as follows

Fα1...αN |n×cut ≡CL
N(G)(−d+E+1)/2

(
N

∏
a=n+1

∫
dxa

) n

∏
c=1

∮
xc=0

dxc

 1
xα1

1 . . .xαN
N

PL
N
(d−M−1)/2

(4.1)

where the Baikov variables {xa : a = 1, ...,N} have been divided in two subsets, containing n cut
propagators and (N−n) uncut ones. The cut operation defined above is operational in any space-
time dimension d and for any FI given by Eq. (2.1). Notice that the definition of the cut, Eq. (4.1), is
not identical to the traditional unitarity cut, see for instance Section 8.4 of ref. [82], due to the lack
of the θ -function constraint on the energy, and therefore it is not directly related to the discontinuity
of the FI [83, 84].

Let us now consider a set of MI, Fi ≡ F
α
(i)
1 ...α

(i)
N

, i = 1, ..., I, satisfying a system of DE, with
respect to variables X j,

∂

∂X j
Fi =

I

∑
l=1

M( j)
il Fl (4.2)

with matrices M( j) depending on kinematical variables, internal masses, and the space-time dimen-
sion, d. Since the derivation of DE in Section 3 is insensitive to the cut operation, as defined in
Eq. (4.1), we may immediately write6

∂

∂X j
Fi|n×cut =

I

∑
l=1

M( j)
il Fl|n×cut (4.3)

with F |n×cut representing an arbitrary n−cut: in other words, the cut integrals satisfy the same
DE as the uncut ones7. Of course for a given n−cut many of the MI that are not supported on
the corresponding cut vanish identically. Nevertheless, Eq. (4.3) remains valid. Especially for
the maximally cut integrals defined so that n is equal to the number of propagators (with αi > 0)
of the integral, all integrals not supported on the cut vanish and the resulting DE is restricted
to its homogeneous part. Evaluating the maximally cut MI provides therefore a solution to the
homogeneous equation [78, 79]. Non-maximally cut integrals, on the other hand, can resolve non-
homogenous parts of the DE as well [78].

One important implication is that cut and uncut integrals, although very different in many
respects, as for instance their structure in ε−expansion (ε ≡ (4− d)/2), they are expressed in
terms of the same class of functions8. This is particularly important if we want to know a priori if a
system of DE can be solved, for instance, in terms of Goncharov Polylogarithms, or if the solution
contains a larger class of functions including, for instance Elliptic Integrals.

Several results of maximally cut MI, expressed either in terms of Polylogarithmic functions or
in terms of Elliptic Integrals, can be found in the Appendix B of ref. [65] as well as in refs. [73, 76].

6Care should be taken in defining the DE so that no symmetries of MI are used that may be violated by the corre-
sponding n−cut.

7See also ref. [85, 86, 80] for related considerations.
8See also related discussion in ref. [19], section 3.4.1.
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5. Discussion and Outloook

In this contribution we have presented properties of Feynman integrals in Baikov representa-
tion. We have shown how to determine the limits of integration and how to obtain DE with respect
to external kinematics and internal masses. Then we provided a definition of a cut integral, opera-
tional in d dimensions, and show that a cut integral satisfies the same system of DE as the uncut,
original integral.

Based on the fact that cut integrals satisfy the same system of DE as the full, uncut integrals we
have verified that their analytic expressions are given in terms of the same class of functions, such
as Goncharov Polylogarithms or Elliptic Integrals. We have therefore arrived at the conclusion that
in a family of MI satisfying a given system of DE, the study of the maximally cut integrals for all
its members can provide a necessary and sufficient criterion for the existence of a canonical form
of the DE, and in the case when such a canonical form does not exist, it provides solutions of the
homogeneous parts of the system of DE (see also ref. [78, 79]). An application of these ideas to
non-planar pentabox integrals will be discussed elsewhere.

Baikov representation is well suited for these considerations, drastically simplifying the com-
putation of cut integrals for arbitrary external momenta and internal masses. It is still an open
question if it can also be used to actually compute the MI. To this end, an algorithm, allowing the
resolution of singularities in ε , needs to be devised. It remains to be seen if this is possible and
more importantly what kind of integral representations for the individual terms in this expansion
such an algorithm produces.
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