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1. Introduction

Many physically interesting quantities can be computed from the pole parts of Feynman diagrams,
for example, anomalous dimensions (such as the beta function), splitting functions, and decay rates.
Often, it is much easier to compute the pole parts of diagrams than the finite part.

In this work we sketch the R*-operation [1-3], which is able to compute the pole parts of L-
loop diagrams by a computation of at most (L—1)-loop diagrams. Using a high-performance imple-
mentation of the R*-operation combined with the FORCER program [4-6], we are able to compute
the poles of five-loop massless propagator diagrams. Our programs rely heavily on FORM [7-10].

Performing efficient computations of five-loop diagrams is hard, since the Feynman rules cre-
ate many terms. To alleviate these issues, we describe four methods to reduce the number of terms
which are not specific to the R*-method: (1) removal of propagator insertions, (2) delaying of Feyn-
man rule substitution, (3) canonicalization of Feynman diagrams, and (4) efficient tensor reduction.

Using these optimizations, the five-loop beta function for Yang-Mills theory with fermions
[11] can be computed in six days on one 32-core machine. We have also computed the R-ratio in

+

e"e” — hadrons, and the Higgs decays to bottom quarks and gluons at five loops [12].

The outline of this paper is as follows. In section 2we very briefly describe the R*-operation.
In section 3we address the four optimizations. In section 4we briefly discuss the above physics
results. Finally, we summarize and present a brief outlook in 5.

2. The R*-operation

The R*-operation can be used to compute the poles of Feynman diagrams [1,2]. Recently, it has
been extended to Feynman diagrams with arbitrary numerator structure [3]. In this section we
briefly sketch how the R*-operation works, focusing on UV-counterterms.

The basic object of the R*-operation is the UV counterterm operation A acting on a graph
G, which is defined as the poles of G in the limit of all loop momenta going to infinity with all
contributions from subdivergences subtracted. Additionally, we define the pole operator K for a
Laurent series in €

=3 —1
KY cie'=Y) ce. 2.1)

l=—00 [——o0

Then the R* operation for some simple examples yields

=)
L =2 () +a () O @
In general, all sets of non-overlapping divergent subdiagrams have to be considered:
=)
() A+ () =
()

Here the contribution from two counterterms gets a minus sign, to prevent double counting.
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For logarithmically divergent diagrams, A does not depend on external momenta or masses.
Consequently, we can infrared rearrange (IRR) [13]:

A(@):A(@):A(@) . 2.5)

Using IRR and the definition of A, we can express the UV-counterterm of G in terms of simpler

diagrams:
AG)ZE  A(G) = K(G')—subdivergences(G') (2.6)
~——
Simpler than G Lower-loop diagrams

Using this setup, we can rewrite all L-loop diagrams to (L— 1)-loop scalar massless propagator
integrals. For five-loop applications, all those integrals can be computed using FORCER [5, 6].

3. Optimisations

Performing computations at five loops introduces at least four new bottlenecks compared to four
loops: (1) the number of diagrams and their complexity grow exponentially, (2) the substitution
of the Feynman rules is slow and creates millions of terms, (3) the number of counterterms grows
exponentially, and (4) tensors of rank 10 have to be reduced, which involves solving large systems.

In this section we address these issues by presenting five optimisations, namely improved
treatment of propagator insertions in section 3.1, delayed Feynman rule substitution in section 3.2,
a canonical form algorithm for Feynman diagrams in section 3.3, and an efficient tensor reduction
algorithm in section 3.4.

3.1 Treatment of propagator insertions

Many of the higher-loop corrections are self-energies of propagators in the diagram. Due to the
local nature of the Feynman rules, these self-energies only depend on their external momentum
(there are no contractions with other parts of the larger diagram), so they can be ‘factorised’ out,

oy £

where the L-loop self-energy is replaced by (p?) ¢ in the larger diagram (marked by L crosses).
In a sense, the subdiagram is integrated out. The resulting simpler topology is multiplied by the
one-particle-reducible L-loop self-energy. Since the L-loop subdiagram is of lower order, these
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quantities have already been computed and can easily be tabulated to prevent recomputations. For

example, a five-loop diagram may contain the expensive 4-loop gluon propagator as a subdiagram.

For the R*-operation, this representation has an issue: the non-integer power hides UV-diver-
gent subdiagrams, which should be subtracted. However, since the exact contents of the (p?)~¢F is
factorised out, we may replace it with any L-loop subdiagram. Therefore we choose the simplest
configuration: L scalar one-loop bubbles side by side. Thus, for the R*-operation we can remove

propagator insertions by using the following relation:

= X . 3.2)

3.2 Delayed Feynman rule substitution

Substituting the Feynman rules creates many terms. For example, the following fully gluonic five-
loop graph creates 12029521 scalar integrals in the Feynman gauge:

3.3)

The source of the blow-up is the Feynman rule for the triple gluon vertex, which can be written in
the following way:

. b P, . rabe
v (P17 py 7 P ) = —if P [(pr— p2)P guv + (2p2+ p1)* gvpx + (—2p1 — p2)¥gup] - (34)

Thus, for every vertex, six terms are created, of which some will evaluate to the same expression
due to symmetries. For all these terms, expensive operations such as Taylor expansions and diver-
gent subgraph recognitions have to be performed. However, these operations only depend on the
momentum powers and are invariant under the way the momenta contract. So, we rewrite the triple
gluon vertex in a way that exposes the momenta, but keeps all the contractions unsubstituted:

Vi (P} 0y 8 ) = —if pPis(o,v.p, u) +if P pSis(o.u.p,v) (3.5)

where

B3(1,V,Pp,0) = 8up&vo + 8ua&vp — 28uv&po - (3.6)
After rewriting v;, in terms of 73, there are only 210 — 1024 terms for the Feynman diagram in
eq. (3.3). We can keep our input in this compactified notation for as long as the actual contractions
are not important, which is right until the tensor reduction.

We define the operation o that applies the remaining Feynman rules to all components of the
R*-operation, for example,

t3(u,v,p,c)oA(@)a :2A(@>@ —ZA(@) @
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We stress that for this particular case contraction is necessary.

Similar rules can be devised for the other vertices and for the trace of gamma matrices. At five
loops, the substitution of #3 and similar structures is an expensive part of the calculation, since the
number of generated terms is high.

3.3 Canonical forms for Feynman diagrams

The R*-operation applied to five-loop diagrams will create many counterterms. In order to reduce
computation time, it is important to compute the counterterms of a specific graph only once. In turn,
this requires an efficient way to detect if two graphs are equal. One straightforward option is to
keep a list of all the graphs that have already been processed and test for isomorphisms on every
element of the list until one is found. If no match is found, the current graph can be added to the
list. The two downsides of this method are that (1) an isomorphism test can be rather slow at five
loops and (2) that the list of topologies grows rapidly.

A better alternative is to construct a canonical form of a graph. A canonical form is an iso-
morphism of the graph that is designated as the smallest by some yet to be defined measure. To test
for equality, one can simply compare the canonical forms. Since isomorphy is first and foremost a
property of the vertices, we give each vertex a label from 1 to n. For simplicity, let us consider a
graph that has no dot products and only has edges with power 1.

We convert our graph to an edge representation:
9 2 =¢(0,1)e(1,2)e(2,3)e(2,3)e(1,3)e(3,4) . (3.8)

Here, e(n;,n,) is the edge function, in which we place the smallest vertex index as the first argu-
ment. The edge list is a lexicographically sorted list of edge functions, as is shown in eq. (3.8).
Now we define the smallest isomorphism of a graph as the vertex labeling for which the edge list
is lexicographically smallest. !

We can easily extend the graph notation to a graph where propagators can have different pow-
ers, by introducing a third argument to the edge function e:

9 3 =¢(0,1,1)e(1,2,2)e(2,3,1)e(2,3,2)e(1,3, 1)e(3,4,1) , (3.9)

where we again make sure that the first two arguments of e(ny,ny,...) are sorted. To add support
for dot products and tensors, we extend the edge function even further:

2 =¢(0,1,1,1)e(1,2,2)e(2,3,1)e(2,3,2,1)e(1,3,1)e(3,4,1) . (3.10)

n our program, we use the internal (deterministic) sorting order of FORM [7-9] to determine the smallest isomor-
phism instead. The latest version of FORM [10] is required for our R* program.
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We define the canonical signs of the momenta such that they always flow from the smallest
vertex label to the highest. If a transformation changes the order, we flip the sign if the number of
vectors in the momentum is odd:

e(2,1,n, 1y, ... ) = (—D*e(1,2,n, 11, 1) . (3.11)

Finally, the momentum label p; of each edge is uniquely defined by the position i of the edge in the
edge list.

Now that most properties of the Feynman integral are captured in the extended edge list and
we have defined which edge list is smallest, we use McKay’s canonicalisation algorithm [14] to
efficiently rewrite the complete Feynman integral to canonical form. A simplified version of this
algorithm is implemented in FORM code.

3.4 Efficient tensor reduction

It can be shown that the tensor reduction of ultraviolet and infrared subtraction terms, required for
the R*-operation, is equivalent to the tensor reduction of tensor vacuum bubble integrals. In general
tensor vacuum integrals can be reduced to linear combinations of products of metric tensors g""
whose coefficients are scalar vacuum integrals. Specifically a rank r tensor, T#1-*r is written as
a linear combination of n = r!/2/?) /(r/2)! combinations of r/2 metric tensors with coefficients
Co, 1€,

TH- e — Z Co Téil---ﬂr7 T#l'"#’ = ghoHow)  ghot-1Hol) | (3.12)
cELS,
Here we define ,S, as the group of permutations which do not leave the tensor T4 *" invariant.

The coefficients ¢ can be obtained by acting onto the tensor T#1-# with certain projectors P4,
such that

co=Ps" Ty (3.13)

From this it follows that the orthogonality relation,
Pé-l’l.“lJ'rTT“ul‘”p’r — 66T7 (3.14)

must hold, where § is the Kronecker-delta. Since the projector P5'*" of each tensor can also be
written in terms of a linear combination of products of metric tensors, inverting an n X n matrix
determines all the projectors. However, there are two issues. The first is that the size of the matrix
grows rather rapidly as r increases. Instead of solving an n X n linear system, the symmetry group
of the metric tensors can be utilised to reduce the size of the system. From eq. (3.14) it follows that
the projector Py is in the same symmetry group (the group of permutations which leave it invariant)
as Ti. For example, given a permutation o7 = (123...(r — 1)r),

Téﬁ""“’ = gt ghsila  oltriHr (3.15)

The corresponding projector P(‘;; * must be symmetric under interchanges of indices such as pi; <>
U2, (U1, 12) <> (U3, 1) and so on. Grouping the metric tensors by the symmetry leads to the fact
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that Ps is actually written in a linear combination of a small number of m tensors instead of n
(m < n),

m
Pt =Y b Y T (3.16)
k=1 T€Ag

The set of groups {A7 |k = 1..m} must therefore each be closed under the permutations which
leaves T invariant and at the same time their union must cover once the group ,S,. Contracting
P; with a representative in each group gives an m x m matrix which can be inverted to yield the
coefficients b;. The number of unknowns m is m = 5 for r = 8 and m = 22 for r = 16, whereas we
have n = 105 for r = 8 and n = 2027025 for r = 16. The comparison of these numbers illustrates
that the exploitation of the symmetry of the projectors makes it possible to find the tensor reduction
even for very large values of r, which could never have been obtained by solving the n X n matrix.
The second issue with tensors of high rank is the large number of intermediate terms that are
created. Even though the system for the projector can be solved efficiently, &'(n?) terms will be

created, of which some will merge due to symmetry. Let us consider rank 6, with 15 terms:

clgﬂlﬂzguwztgﬂsﬂs + CZgulﬂsguzll4gﬂ5#6 4. (3.17)

In most practical situations there is symmetry, both on the inside of the object that will be projected
as on the outside. For example,

APy Py Py 1Py Pao)py Py Py Py P Pl (3.18)
is symmetric in exchanges of uj,...,us and us, s inside A, and is symmetric in y, U, and
us,...,Us outside A. The symmetry inside the object A will enforce that coefficient ¢; and c»

(and others) will actually be the same. The symmetry on the outside will cause terms to merge. In
the end, we could have used the symmetrised variant of eq. (3.17) instead:

cy- (glilﬂzgﬂz,uztglls#e + zgulﬂsgﬂ2#4g#5u6) +c3 (Zgulllzgm#sg#ws + logulﬂsgﬂzusgﬂsm ) (3. 19)

We see that only two coefficients have to be computed instead of 15 and that there are only 4 terms
in the output instead of 15. The challenge is to prevent these terms from being created in the first
place by exploiting symmetry, instead of starting from eq. (3.17). We make use of the optimised
FORM command dd_, which creates the tensor structure 7% without generating duplicates. If
we evaluate dd_ (pl,pl,pl,pl,p2,p2) and strip the coefficient we get pl . pl"2+p2.p2+
pl.pl*pl.p272. These two terms represent the structure outside of ¢; and c3 in (3.19). For
each of these two terms, we solve for the coefficient. Next, we recreate the metric structures that
would give this specific contraction.

A term generated by dd__ consists of two different factors: (p- p)* and (p, - p,)“. For (p- p)?,
we collect all possible indices involved with p. For eq. (3.18), this would be u,...,us. Then we
select all possible ways to get 2a elements from that list with distrib_. Next, we use dd_ on
those indices. Thus, for p, - p, in the example we would get gt1#2 + ghiHs  gf2l53  For cases such
as (p; - p,)*, we select a from the list of indices associated to p, and a from the list of p,. Then we
permute over the list of p,. Using this algorithm, one can generate all possible contractions from
the result without generating duplicates. To apply the outside symmetry, one can easily fill in the
outside momenta associated to the indices instead of the indices themselves. distrib_and dd_
will take the symmetry into account automatically.
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4. Five-loop results

In this section we briefly discuss the five-loop results for the beta function and the Higgs-boson
decay to gluons. With the same setup, we have also computed the Higgs decay to bottom quarks
and the electromagnetic R-ratio at five loops [12]. Since these were re-computations, see ref. [15]
and ref. [16] and references therein, respectively, we will not address these results here.

4.1 The beta function

Using the method described above, we have computed the five-loop beta function of QCD (obtained
before in ref. [17]) and its generalizations to a general compact gauge group in the standard MS
scheme, using the background field method in the Feynman gauge [11]. See refs. [18,19] for more
recent calculations with gauge dependence. The analytic result in terms of rational numbers and
the values §,, n = 3,4,5 of the Riemann {-function can be found in eq. (3.5) of ref. [11].

The MS result can be transformed to the MiniMOM (MM) scheme [20, 21], which may be
more convenient for extending analyses of the strong coupling constant into the non-perturbative
regime, using the FORCER calculations of four-loop vertex functions in ref. [22]. For the gauge-
dependent general result see eq. (B.4) of ref. [22]. It is interesting to note, e.g., in the context of
refs. [23,24]2, that the MiniMOM beta function in the Landau gauge, unlike the MS result, does not
include {,. The same was observed for the beta function of QED in the MOM scheme in ref. [28].
For further discussions of the issue of the {-function values, see ref. [29] and references therein.

The numerical expansion of the MS beta function of QCD is very benign to five loops with

B(ot,ny=3) = 1+0.565884 o +0.453014 o +0.676967 o +0.580928 a + ...

Blo,ny=4) = 1+0.490197 o +0.308790 o +0.485901 &} +0.280601 ot + .. ,

E((xs,nf:5) = 140.401347 o, +0.149427 o2 +0.317223 o> +0.080921 ot + ... (4.1)
for B = —B(as)/(aBo) with By = 11 —2/3 n; and as = 0/ (47). The five-loop (N*LO) contribu-
tion changes the beta function by less than 1% at o, = 0.47 for n, = 4 and at o = 0.39 for n, =3
quark flavours. The N"=2LO coefficients are larger in the Landau-gauge MiniMOM scheme,

Byt (0,1, =3) = 1+0.565884 0t +0.941986 02 +2.30450 & +6.64749 ot + ...,

Byt (05,1, =4) = 1+0.490197 ot +0.645215 o2 + 1.63846 & +3.46687 ot + ... ,

EMM(aS,anS) = 140.401347 o, +0.328852 o2 + 1.02689 a2 +0.84177 ot +...  (4.2)

where o = oMM, and exhibit a definite growth with the order that is absent in the MS case.

The different behaviour of the o-expansion of the beta function of QCD in these two schemes
is illustrated in the upper part of fig. 1. At aMM = 0.25, which corresponds to an MS value of
as = 0.2 for ne = 4 at N*LO - for the conversion see eq. (B.2) of ref. [22] — the individual N2LO,
N3LO and N*LO contributions add 3.6%, 2.3% and 1.2%, respectively, to the total NLO result.

21t appears that Euclidean physical quantities do not receive even-n {,, i.e., 72, contributions in renormalization
schemes, such as MiniMOM or the scheme suggested in ref. [25], in which the beta function is free of such terms.
Beyond the cases covered in refs. [23, 24], this has also been established to N4LO [26] for the scheme-independent
versions, see refs. [19,27] of all 11 propagator and vertex functions computed in ref. [22].



R* and five-loop calculations Ben Ruijl

1.08 T T T T I T T T T I T T T T I T T T T 1.25 K T T T T I T T T T I T T T T I T T T T
- BN“LO/ BNLO MS 12 L BN“LO / BNLO MM ]
1.06 |- B ]
I ——-n=2 ] I ——-n=2 /]
1.15 |~ /
I ---n=3 ) i ---n=3 ‘]
1.04 A i ]
- ]’1:4 /-/ - - ]’1:4 / -
N R 1.1 / -
R4 r / 1
1.02 s [ o]
L 4 1.05 B : 7]
o nf=4 4 : _ nf=4 :
1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1 L .I 1 1 1 I 1 1 1 1 I 1 1 1 1
0 0.1 0.2 a, 0.3 0.4 0 0.1 0.2 a, 0.3 0.4
1.06 T |||||||| T |||||||| T |||||||| T T TTTTIT 1.2 L T |||||||| T |||||||| T |||||||| T T TTTTIT
O N"Lo / OsNLo 115 - O N"Lo / O NLO
\ L
1.04 — . i
MS . MM
L1 F
1.02 i
1.05 N
1 1
| no=4,0=02at40 GeV: . - n,=4, o =0.25at40 GeV>
1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 11111l 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 11111l
0.95
1 10 10>, 2 100 10t 1 10 10° 2 100 10"
u [0

Figure 1: Upper panels: the N>LO, N*LO and N*LO approximation to the beta function of QCD with four
flavours in the MS and MiniMOM (MM) schemes, normalized to their common NLO values. Lower panels:

the resulting scale dependence of the respective coupling constants for order-independent reference values
of 0.2 for MS and 0.25 for MM at u? = 40 GeV?>.

Unlike the MS case, where the expansion appears to converge up to rather large values of o, the
N3LO contribution exceeds the N2LO one for o > 0.4, and the N*LO effect that at N°LO for
o > 0.47.

Hence, as illustrated in the lower part of fig. 1, also the running of ¢ in the MiniMOM scheme
becomes unstable at a scale of about u ~ 2 GeV. For a comparison of the scale stability of the
R-ratio in these two schemes at a moderate (ot (Q?) ~ 0.2 with n,=4in MS) and a small (0 (Q?) ~
0.3 and ng = 3) scale, see figs. 5 and 6 of ref. [12].
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Figure 2: The renormalization scale dependence of I'y7_, ¢¢, normalized as described in the text, in the MS
and MiniMOM schemes, for o (Mz) = 0.118 in MS, My = 125 GeV and an on-shell top-mass in 173 GeV.

4.2 Higgs decay to gluons

In the heavy-top limit, there is an effective coupling of the Higgs boson to gluons. If the light-quark
masses are neglected the Higgs decay to hadrons can be expressed, using the optical theorem, as

V2Gr
My

Thoge = |C1 [P ImT16C (- M7 —i6) . (4.3)
The Wilson coefficient C;, which includes the top-mass (scheme) dependence, is known to N4LO,
see ref. [30] and reference therein. Due to the analytical continuation from the spacelike case, only

HGG

the pole part of Higgs-boson self-energy induced by the effective Hgg coupling is required:

ImI19C(—¢? —i8) = sin(Lne)[19¢(4%) = M9 (¢*)Lre+... , (4.4)

where D = 4 —2¢ and L is the number of loops. Consequently, InI19C(—¢g? — i§) and hence the
N*LO decay rate can be computed using the setup described above. The computation is much more
costly than that of the beta function and took almost two months on the machines available to us.

For an on-shell top mass of 173 GeV, the perturbative expansion of the decay width reads

TS . = Do (1+5.703052 o + 15.51204 02 + 12.6660 &’ — 69.3287 ot + ..) (4.5)

H— gg

atn, = 5 for the renormalization scale u = My with (G is the Fermi constant)
Lo = GeMj/(36m°V2) - (as(M7))? . (4.6)

Note that the large ratio of the N*LO and N3LO coefficients is accidental, and not indicating a
break-down of the perturbative expansion, see ref. [12]. The dependence of the numerical result on
the scheme and value of m,, is very weak. The corresponding MiniMOM result is given by

M, = To(14+4.345814 05 +4.379443 a2 —21.5506 ) —71.9231 ! +...) (4.7)
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where, of course, o = aM™ with aMM(M7) = 1.096 o (M) for the standard MS value of 0.118.
This higher value is compensated by lower-order coefficients in eqs. (4.7) and that are smaller than
their MS counterparts; The N*LO and N*LO terms for ny =5 are not smaller in MiniMOM, though.

Taking into account also the renormalization scale dependence as shown in fig. 2, we arrive at
oo (H — gg) = To(1.844 £ 0.011 geries & 0.045 5, (41,190 4.8)

with a(Mp) = 0.11264, the MS value corresponding to a(Mz) = 0.118, in eq. (4.6). For 1/mop
corrections and light-quark mass effects, see ref. [31] and references therein.

5. Summary and outlook

We have sketched how the R*-operation can be used to compute the poles of Feynman diagrams.
Additionally, we have identified computational difficulties when performing five-loop calculations.
We provide four solutions that reduce the number of terms that are generated.

Using these methods, we have computed the five-loop beta function for Yang-Mills theory
with fermions [11], and the R-ratio and Higgs-boson decay widths I'y to quarks and gluons [12].
We have briefly discussed the results for the beta function and for I'y_, ¢, in the heavy-top limit.
In the usual MS scheme, the perturbative running of the strong coupling constant ¢ is now fully
under control for all practical purposes. The uncertainty of I'y_, ¢, due to the truncation of the
perturbation series is now much smaller than that due to present uncertainty of the value of o (Mz);
measurements of a comparable accuracy are not possible at the LHC, but may be in reach of a future

+

e"e” collider.

It is possible to use our setup to extend recent calculations of splitting-function moments [32,
33] to five loops for very low moments N. The non-singlet splitting functions have already been
computed in this manner at N =2 and N = 3; the results will be presented and discussed elsewhere.
The extension of these computations to N > 4 present a computational challenge well beyond that
posed by I'yy, ¢, the by far hardest case presented here.
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