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1. Introduction

In the coming years, the scientific program of the LHC is projected to produce measurements
of unprecedented precision. On the theoretical side, in order to match the percent level uncertainty
demands of the experiments, an increasing number of theoretical predictions in QCD will need to
be calculated at NNLO accuracy.

Thanks to new advances in the understanding of how to handle real-radiation contributions,
there have been a number of new 2-to-2 NNLO computations in recent years. Nevertheless, there
are still open questions on how to move beyond the current state of the art such as allowing access
to kinematic dependence through recoiling jets or internal mass effects. At the level of the virtual
contributions this implies the computation of increasingly complex multi-scale two-loop scattering
amplitudes.

In phenomenologically-relevant two-loop calculations, the technologies employed for the eval-
uation of scattering amplitudes are often based on Feynman diagram techniques. The proce-
dure starts by generating an analytic integrand and applying a series of tensor reduction [1] and
integration-by-parts [2] (IBP) identities in order to express the amplitude as a linear combination of
master integrals. Once this reduction is achieved, it remains to integrate the master integrals them-
selves, which can be achieved using, for example, the differential equations method [3, 4, 5, 6].
This procedure is very general, but involves generating large analytic expressions for the inte-
grands, to which one applies complicated identities. Further, the generation of IBP identities,
usually achieved with the Laporta algorithm [7], is often computationally demanding and unen-
lightening. This situation is reminiscent of the landscape of phenomenologically-relevant one-loop
amplitude calculations before the so-called “NLO revolution” of the last decade.

The numerical unitarity method aims to remedy these difficulties at two loops, building on its
successes at one loop. The approach performs reduction and evaluation simultaneously, providing
direct access to (physical) master integral coefficients. Further, the numerical nature of the method
means that it is less sensitive to increasing numbers of scales in the problem. In these proceed-
ings we present the method and its recent successful application in a proof of principle numerical
computation of the leading-colour contributions to four-gluon helicity amplitudes at two loops [10].

2. The Numerical Unitarity Method

The numerical unitarity method is an approach to calculating scattering amplitudes. It achieves
a full reduction to master integrals at the integrand level, building the amplitude from physical
objects – products of trees. The principal idea is to start with a special ansatz for the integrand
of a gauge theory amplitude and to constrain it through knowledge of the on-shell limits. In full
generality the rational ansatz reads:

A (`l) = ∑
Γ

∑
i∈MΓ∪SΓ

cΓ,i mΓ,i(`l)

∏props j ρ j
. (2.1)

That is, we write the integrand of the amplitude as a linear combination of rational functions whose
denominators are given by all possible propagator structures Γ. Furthermore, in order to facilitate
an automatic reduction to master integrals, we decompose the numerator into a collection of ‘master
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integrands’ (MΓ) and ‘surface terms’ (SΓ), which integrate to zero. The ansatz coefficients are then
numerically fixed by comparison against on-shell data. When taking a set of propagators on-shell,
`l → `Γ

l , the leading contribution to the integrand in this limit factorises into a product of tree
amplitudes,

∑
states

∏
i∈TΓ

A tree
i (`Γ

l ) = ∑
ancestors Γ′,
i∈M

Γ′∪S
Γ′

cΓ′,i mΓ′,i(`
Γ
l )

∏props j ρ j
. (2.2)

With such a tool, one can numerically generate a constraining set of linear equations for the coef-
ficients of master integrals, which allows us to extract the physical information directly, avoiding
intermediate complexity. The integration of the amplitude can now be achieved by inserting any
available set of master integrals. Many of the facets of this procedure are familiar from the one-loop
incarnation, but there are new challenges to solve at two loops due to more complicated integral
relations and difficult to access ansatz coefficients.

2.1 Fixing the Integrand From On-Shell Data

The factorisation properties of the loop integrand allow one to hierarchically construct many
numerator functions. By first taking a factorisation limit involving a maximal number of propaga-
tors, equation (2.2) involves only one numerator function. When moving down the hierarchy level
by level, it is then almost always the case that higher level contributions are known beforehand.
However, the one-to-one correspondence between products of trees and integrand contributions
only holds for leading poles in the factorisation limit and beyond one-loop this procedure must
be modified. Indeed, at two loops and beyond, certain factorisation limits also have sub-leading
contributions, which are not constrained in the limit.

Figure 1: A subset of the full hierarchy of four-gluon amplitude propagator structures. The numerator
associated to the topology in red is extracted from the descendent cut as described in the text.

In order to solve this problem, we extend the standard ansatz fitting procedure. Consider the
sub-hierarchy given in figure 1. All propagator structures in blue can be accessed using the standard
subtraction procedure. However, the propagator structure in red is not associated to a product of
trees because it is a ‘sub-leading pole’ contribution, sharing the same set of propagators with the
corresponding leading pole in the top left of figure 1, but raised to different powers. In order to
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extract this contribution we enlarge the ansatz for the cut equation of the descendent topology at the
bottom of figure 1 to simultaneously extract its numerator and that of the sub-leading contribution.
Further details can be found in [11].

2.2 Master/Surface Decomposition

The remaining ingredient in extending numerical unitarity to two loops is the construction of
a complete master/surface decomposition of the integrand, see equation (2.1). To achieve this, we
need to be able to construct the full set of surface terms corresponding to a given set of propagators.
General surface terms are IBP relations. These follow from the fact that total derivatives integrate
to zero in dimensional regularisation,

0 =
∫

∏
l=1,2

dD`l
∂

∂`ν
j

[ uν
j

∏propsk ρk

]
. (2.3)

Here we call uν
j an ‘IBP vector’. Unfortunately, for an arbitrary IBP vector the resulting relations

correspond to multiple propagator structures, due to the raised propagator powers arising from the
chain rule when the derivative acts on the propagator. To avoid this, we construct a restricted set
of IBP relations, by employing the strategy of [12]. The key idea is to search for IBP-vectors uν

j
which do not raise the propagator power as they satisfy the ‘non-doubling relation’,

uν
i

∂

∂`ν
i

ρ j = f jρ j, (2.4)

where there is no summation over j. Such a vector is deceptively hard to find as it must be polyno-
mially valued in order to produce numerator structures in equation (2.3). The principal difficulty in
solving equation (2.4) is that we are not allowed to divide by polynomials in loop momenta and so
this is not a problem of linear algebra, but algebraic geometry. We solve these equations by moving
to ‘adapted coordinates’ [13]. This is an overcomplete coordinate system of inverse propagators
and irreducible scalar products,

`
µ

l → (ρi,α j,µnm). (2.5)

Notably this transformation involves increasing the number of coordinates beyond the number of
degrees of freedom. This redundancy is removed by working modulo the (polynomial) constraint
equations,

µll = (µl)
2 = ρl0−

3

∑
ν=0

`ν
l `lν . (2.6)

In these coordinates it is simple to satisfy equation (2.4) by writing IBP vectors as:

uν
i

∂

∂`ν
i
= fiρi

∂

∂ρi
+u j

∂

∂α j
+ ∑

l,l′=1,2
f l
l′~µl ·

∂

∂~µl′
. (2.7)

Due to the constrained nature of the coordinate system the vectors also satisfy compatibility con-
ditions

0 = fiρi
∂ µnm

∂ρi
+u j

∂ µnm

∂α j
− ∑

l,l′=1,2
f l
l′~µl ·

∂ µnm

∂~µl′
. (2.8)
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The set of solutions to these equations form a so-called ‘module’, for which we can find a generat-
ing set using a package such as SINGULAR [14]. We can then use these vectors to build arbitrary
surface terms, by inserting linear combinations of the generators with polynomial coefficients into
the total derivative. Related techniques can be found in [15].

2.3 Regulator Dependence of Coefficients

The coefficients of master integrals in the decomposition of equation (2.1) also depend on the
dimensional regulators. In the numerical unitarity approach, this dependence can be understood as
arising from two different sources – the on-shell data used to fix the ansatz, and the surface terms
themselves.

The first source is familiar from one loop – the integrand will generically depend on the dimen-
sion of the internal polarisation states. At two loops the integrand is at most quadratic in Ds. The
functional dependence on this parameter can be reconstructed through a simple two-loop generali-
sation of the procedure of [16], where one reconstructs the quadratic polynomial by sampling over
three different values of Ds. In practice Ds must be greater than or equal to the embedding dimen-
sion of the loop momenta, which at two loop is at least 6, and so the values we use are Ds = 6,7,8.
With analytic control over this parameter we then set Ds = D, recovering the ’t Hooft-Veltman
scheme of dimensional regularisation.

The second source of D-dependence arises because the surface terms have an explicit depen-
dence on D. This is then inherited by the coefficients, which are rational functions of D. Notably,
this set of univariate rational functions turns out to only be kinematically dependent in the numer-
ator, i.e. all coefficients take the form

c(D) =
P(D,si j)

Q(D)
=

p0(si j)+ p1(si j)D+ · · ·+ pi(si j)Di

q0 +q1D+ · · ·+q j−1D j−1 +D j . (2.9)

The problem of how to reconstruct a rational functions has recently received attention in the liter-
ature [17, 18]. The main observation is that the values of the coefficients can be inferred from the
value that the function takes at a finite number of points. Therefore, by evaluating the coefficient at
a set of (in principle arbitrary) distinct points Di one reconstructs the full function. In practice we
use the formula of Thiele [17, 19], expressing c(D) in the form of a continued fraction,

c(D) = a0 +
D−D0

a1 +
D−D1

a2 +
D−D2

· · ·+
D−DN−1

aN

. (2.10)

Simple relations then exist between the coefficients ai and a set of evaluations of the coefficient
function c(Di). Importantly, we fix the kinematically independent denominator from a single value
of the si j and henceforth only polynomial reconstruction techniques are necessary.

3. Proof of Principle - Two-Loop Four-Gluon Scattering Amplitudes

In order to show that the numerical unitarity approach is viable in phenomenologically-relevant
calculations, we have applied the method to numerically recompute the planar two-loop four-gluon
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amplitudes in the leading-colour approximation with an arbitrary helicity configuration. These
were first computed in [20, 21], and exhibit the full complexity of massless phenomenologically-
relevant amplitudes, providing an excellent example to test the approach.

3.1 Implementation

Our approach is implemented in a C++ code in order to allow for the necessary rapid numer-
ical evaluation. The products of tree amplitudes are calculated through the use of a Berends-Giele
recursion [22], which allows for good computational complexity when appropriately cached. Fur-
thermore, this allows for flexibility in the particle content as well as for simple varying of the value
of Ds in order to implement the associated polynomial reconstruction. The colour decomposition
is performed using the approach of [23], which is then expanded to the leading order in Nc.

The hierarchical procedure described in section 2.1 results in a linear function system for
coefficients of master integrals and surface terms in each topology [11]

∑
Γ∈ ∆̃

Γ≥Γ′

i∈MΓ∪SΓ

cΓ,i(D)mΓ,i(`
Γ′
l )

∏k∈PΓ\PΓ′
ρk(`

Γ′
l )

= ∑
states

∏
i∈TΓ

A tree
i (`Γ

l ) − ∑
Γ∈∆\∆̃
Γ>Γ′

N(Γ, `Γ′
l )

∏k∈PΓ\PΓ′
ρk(`

Γ′
l )

. (3.1)

For fixed values of D, Ds and the external kinematics, we sample the system over randomly gen-
erated on-shell phase-space points in order to constrain the coefficients cΓ,i(D). For n unknown
coefficients it is enough to sample n points and solve the linear system using PLU factorisation.
However, it is sometimes useful to overdetermine the system by sampling m > n points, as this can
often lead to a more stable coefficient determination when employing QR factorisation to solve the
system numerically. We employ the implementations in LAPACK [24] and MPACK [25] for dou-
ble and double-double/quad-double precision respectively. A single solution of the linear system
evaluates the coefficients for fixed values of the dimensional regulator. These are then used as input
for the techniques of section 2.3, which provide the full D-dependent physical coefficient.

3.2 Results and Stability

The described procedure determines the amplitude for a given numerical value of the kine-
matics, expressed as a linear combination of master integrals. The functional dependence of the
coefficients on the dimensional regulator is exact. At 2-to-2 the resulting form is:

A(D) = c0

( )
I0

( )
+ c1

( )
I1

( )
+ c
( )

I
( )

+ c
( )

I
( )

+ c
( )

I
( )

+ c
( )

I
( )

+ c
( )

I
( )

+(s↔ t). (3.2)

For arbitrary kinematic points we have cross checked that the coefficients numerically agree with
the values in the literature. We then substitute the known master integrals and perform the Laurent
expansion in ε = (4−D)/2. As an example, for the kinematic point s =−3

4 and t =−1
4 , setting the

strong coupling g and renormalization scale µ to g = µ = 1, we find the results in table 1. These
reproduce the prediction of the infra-red pole structure from the universal formula of [26].

We tested the stability of the method over phase space by generating 10000 phase space points
using the RAMBO algorithm [27], comparing the result to the available analytic expressions. We
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A /(A0N2
c )(4π)4 ε−4 ε−3 ε−2 ε−1 ε0

(1−g ,2
+
g ,3

−
g ,4

+
g ) 8.00000 55.6527 176.009 332.296 486.502

(1−g ,2
−
g ,3

+
g ,4

+
g ) 8.00000 55.6527 164.642 222.327 -8.39044

Table 1: Values for four-gluon two-loop amplitudes evaluated at s =− 3
4 and t =− 1

4 , setting g = µ = 1.

implemented a rescue system using higher precision arithmetics when the 1/ε pole is precise to less
than 2 digits. In figure 2 we show the stability for the least stable helicity configuration, −−++.
We see that the stability of the result decreases for higher orders in the ε series. For the finite part,
the distribution is peaked at slightly above 4 digits accuracy.
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Figure 2: Plot of the stability of the numerical calculation for the −−++ helicity configuration.

4. Analytic Reconstruction

The integral coefficients themselves are rational functions of the kinematics. In the particu-
lar case of a two-scale process and after scaling out the mass dimension, the kinematic dependent
coefficients in equation (3.2) are univariate rational functions of the ratio x= t

s . As such, these func-
tions are amenable to the univariate functional reconstruction techniques described in section 2.3.
Similar approaches have been applied to the reconstruction from numerical samples of the full in-
tegrand [17] as well as IBP relations [18]. We applied this technique to reconstruct the full set of
master integral coefficients, extracting analytic results from our numerical approach. In practice
this required only 15 evaluations of the amplitude, using quad double-precision arithmetic. As an
example we present the coefficient of the scalar double box normalised to the mass dimension,

c0

( )
=

9x+
ε

(
−x3− 32x2

11 −
97x
44 −

5
22

)
x2
33+

2x
33+

1
33

+
ε2
(
−x3− 385x2

51 −
937x
102 −

77
34

)
− 2x2

51 −
4x
51−

2
51

+ · · ·

−9+66ε−184ε2 +240ε3−144ε4 +32ε5 (4.1)

The full collection of amplitude coefficients for the presented helicity configurations are provided
in the ancillary files of [10], which we have checked reproduce the results of [21].
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5. Conclusions

In these proceedings we have described the recent extension of the numerical unitarity method
to two loops as well as a proof-of-principle application to the four-gluon scattering amplitudes. The
approach is designed to allow a numerical reduction to master integrals for phenomenologically-
relevant two-loop amplitudes. The method constructs a complete set of surface terms for each
integral topology using techniques from algebraic geometry. Furthermore, we have shown the
practical possibility of reconstructing analytic formulae for a full scattering amplitude from a nu-
merical approach. The method has since been used to calculate the two-loop five-gluon scattering
amplitudes [28] and in the future we hope to apply the method to the calculation of other, as yet
uncalculated, phenomenologically-relevant scattering amplitudes.
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