
P
o
S
(
R
A
D
C
O
R
2
0
1
7
)
0
1
5

Differential equations for Feynman integrals beyond
multiple polylogarithms

Luise Adams
Johannes Gutenberg-Universität Mainz
E-mail: ladams01@uni-mainz.de

Christian Bogner
Humboldt-Universität zu Berlin
E-mail: bogner@math.hu-berlin.de

Ekta Chaubey
Johannes Gutenberg-Universität Mainz
E-mail: ladams01@uni-mainz.de

Armin Schweitzer
ETH Zürich
E-mail: armin.schweitzer@phys.ethz.ch

Stefan Weinzierl∗
Johannes Gutenberg-Universität Mainz
E-mail: weinzierl@uni-mainz.de

Differential equations are a powerful tool to tackle Feynman integrals. In this talk we discuss
recent progress, where the method of differential equations has been applied to Feynman integrals
which are not expressible in terms of multiple polylogarithms.

13th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to
Phenomenology)
25-29 September, 2017
St. Gilgen, Austria

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:ladams01@uni-mainz.de
mailto:bogner@math.hu-berlin.de
mailto:ladams01@uni-mainz.de
mailto:armin.schweitzer@phys.ethz.ch
mailto:weinzierl@uni-mainz.de


P
o
S
(
R
A
D
C
O
R
2
0
1
7
)
0
1
5

Differential equations for Feynman integrals beyond multiple polylogarithms Stefan Weinzierl

1. Review of differential equations and multiple polylogarithms

The method of differential equations [1–10] is a powerful tool to tackle Feynman integrals. Let
t be an external invariant (e.g. t = (pi+ p j)

2) or an internal mass and let Ii ∈ {I1, ..., IN} be a master
integral. Carrying out the derivative ∂ Ii/∂ t under the integral sign and using integration-by-parts
identities allows us to express the derivative as a linear combination of the master integrals:

∂

∂ t
Ii =

N

∑
j=1

ai jI j (1.1)

More generally, let us denote by ~I = (I1, ..., IN) the vector of the master integrals, and by ~x =

(x1, ...,xn) the vector of kinematic variables the master integrals depend on. Repeating the above
procedure for every master integral and every kinematic variable we obtain a system of differential
equations of Fuchsian type

d~I = A~I, (1.2)

where A is a matrix-valued one-form

A =
n

∑
i=1

Aidxi. (1.3)

The matrix-valued one-form A satisfies the integrability condition dA−A∧A = 0.
There is a class of Feynman integrals, which may be expressed in terms of multiple polyloga-

rithms. Multiple polylogarithms are defined by the nested sum [11–14]

Lim1,m2,...,mk(x1,x2, ...,xk) =
∞

∑
n1>n2>...>nk>0

xn1
1

nm1
1
·

xn2
2

nm2
2
· ... ·

xnk
k

nmk
k
. (1.4)

There is an alternative definition based on iterated integrals

G(z1, ...,zk;y) =

y∫
0

dt1
t1− z1

t1∫
0

dt2
t2− z2

...

tk−1∫
0

dtk
tk− zk

. (1.5)

The two notations are related by

Lim1,...,mk(x1, ...,xk) = (−1)kGm1,...,mk

(
1
x1
,

1
x1x2

, ...,
1

x1...xk
;1
)
, (1.6)

where

Gm1,...,mk(z1, ...,zk;y) = G(0, ...,0︸ ︷︷ ︸
m1−1

,z1, ...,zk−1,0...,0︸ ︷︷ ︸
mk−1

,zk;y). (1.7)

Let us return to the differential equation (1.2). If we change the basis of the master integrals ~J =U~I,
the differential equation becomes

d~J = A′~J, A′ =UAU−1−UdU−1. (1.8)
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Suppose further one finds a transformation matrix U , such that

A′ = ε ∑
j

C j d ln p j(~x), (1.9)

where the dimensional regularisation parameter ε appears only as prefactor, the C j are matrices with
constant entries, and where the p j(~x) are polynomials in the external variables, then the system of
differential equations is easily solved in terms of multiple polylogarithms [7, 8]. In order to obtain
the ε-form we may perform a rational or algebraic transformation of the kinematic variables

(x1, ...,xn) → (x′1, ...,x
′
n). (1.10)

This corresponds to a change of variables in the base manifold. A change of kinematic variables
is often done to absorb square roots for massive integrals. In addition, we may change the basis of
the master integrals

~I → U~I, (1.11)

where U is rational in the kinematic variables. This corresponds to a change of basis in the fibre.
Methods to find the right transformation have been discussed in [15–24].

At the end of the day we would like to evaluate the multiple polylogarithms numerically,
taking into account that the multiple polylogarithms Lim1,m2,...,,mk(x1,x2, ...,xk) have branch cuts
as a function of the k complex variables x1, x2, ..., xk. The numerical evaluation can be done as
follows: One uses a truncation of the sum representation within the region of convergence. The
integral representation is used to map the arguments into the region of convergence. On top of that,
acceleration techniques are used to speed up the computation [25].

2. Beyond multiple polylogarithms: Single scale integrals

Starting from two-loops, there are integrals which cannot be expressed in terms of multiple
polylogarithms. The simplest example is given by the two-loop sunrise integral [26–44] with equal
masses. A slightly more complicated integral is the two-loop kite integral [45–49], which contains
the sunrise integral as a sub-topology. Both integrals depend on a single dimensionless variable
t/m2. In the following we will change the variable from t/m2 to the nome q of an elliptic curve or
the parameter τ , related to the nome by q = eiπτ . Before giving a definition of these new variables,
let us first see how an elliptic curve emerges. For the sunrise integral there are two possibilities.
The first option reads off an elliptic curve from the Feynman graph polynomial

Egraph : −x1x2x3t +m2 (x1 + x2 + x3)(x1x2 + x2x3 + x3x1) = 0, (2.1)

the second option obtains an elliptic curve from the maximal cut [50–56] of the sunrise integral

Ecut : y2−
(

x− t
m2

)(
x+4− t

m2

)(
x2 +2x+1−4

t
m2

)
= 0. (2.2)

In the following we will consider the elliptic curve of eq. (2.1). The periods ψ1, ψ2 of the elliptic
curve are solutions of the homogeneous differential equation [38]. In general, the maximal cut
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of a Feynman integral is a solution of the homogeneous differential equation for this Feynman
integral [57]. We define the new variables τ and q by

τ =
ψ2

ψ1
, q = eiπτ . (2.3)

Let us now turn to the transcendental functions, in which we may express the sunrise and the kite
integral. We remind the reader of the definition of the classical polylogarithms

Lin (x) =
∞

∑
j=1

x j

jn . (2.4)

Starting from this expression, we consider a generalisation with two sums, which are coupled
through the variable q:

ELin;m (x;y;q) =
∞

∑
j=1

∞

∑
k=1

x j

jn
yk

km q jk. (2.5)

The elliptic dilogarithm is a linear combination of these functions and the classical dilogarithm:

E2;0 (x;y;q) =
1
i

[
1
2

Li2 (x)−
1
2

Li2
(
x−1)+ELi2;0 (x;y;q)−ELi2;0

(
x−1;y−1;q

)]
. (2.6)

In the mathematical literature there exist various slightly different definitions of elliptic polylog-
arithms [39, 58–65]. In order to express the sunrise and the kite integral to all orders in ε we
introduce the functions

ELin1,...,nl ;m1,...,ml ;2o1,...,2ol−1 (x1, ...,xl;y1, ...,yl;q) =

=
∞

∑
j1=1

...
∞

∑
jl=1

∞

∑
k1=1

...
∞

∑
kl=1

x j1
1

jn1
1
...

x jl
l

jnl
l

yk1
1

km1
1

...
ykl

l
kml

l

q j1k1+...+ jlkl

l−1
∏
i=1

( jiki + ...+ jlkl)
oi

. (2.7)

Let us write the Taylor expansion of the sunrise integral around D = 2−2ε as

S =
ψ1

π

∞

∑
j=0

ε
jE( j). (2.8)

Each term in this ε-series is of the form

E( j) ∼ linear combination of ELin1,...,nl ;m1,...,ml ;2o1,...,2ol−1 and Lin1,...,nl . (2.9)

Using dimensional-shift relations this translates to the expansion around D = 4−2ε . Thus we find
that the functions of eq. (2.7) together with the multiple polylogarithms are the class of functions
to express the equal mass sunrise graph and the kite integral to all orders in ε [42, 47].

The functions in eq. (2.7) are defined as multiple sums. We may ask if every term in the ε-
expansion can be expressed in terms of iterated integrals. For the equal-mass sunrise integral and
the kite integral this is indeed the case and relates these Feynman integrals to modular forms [48].
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A function f (τ) on the complex upper half plane is a modular form of weight k for SL2(Z) if f
transforms under Möbius transformations as

f
(

aτ +b
cτ +d

)
= (cτ +d)k · f (τ) for

(
a b
c d

)
∈ SL2(Z). (2.10)

In addition, f is required to be holomorphic on the complex upper half plane and at τ = i∞. Fur-
thermore, there are modular forms for congruence subgroups of SL2(Z). We introduce iterated
integrals of modular forms

I ( f1, f2, ..., fn; q̄) = (2πi)n
τ∫

τ0

dτ1 f1 (τ1)

τ1∫
τ0

dτ2 f2 (τ2) ...

τn−1∫
τ0

dτn fn (τn) , q̄ = e2πiτ . (2.11)

As base point it is convenient to take τ0 = i∞. Repeated sequences of letters are abbreviated as in
{ f1, f2}3 = f1, f2, f1, f2, f1, f2. With the help of the iterated integrals of modular forms one finds a
compact all-order expression for the equal-mass sunrise integral around D = 2−2ε dimensions:

S =
ψ1

π
e
−εI( f2;q)+2

∞

∑
n=2

(−1)n
n ζnεn

 ∞

∑
j=0

ε
j
b j

2 c

∑
k=0

I
(
{1, f4}k ,1, f3,{ f2} j−2k ;q

)

+

[
∞

∑
j=0

(
ε

2 jI
(
{1, f4} j ;q

)
− 1

2
ε

2 j+1I
(
{1, f4} j ,1;q

))] ∞

∑
k=0

ε
kB(k)

}
, (2.12)

where the B(k)’s are boundary constants. This expression has uniform depth, i.e. at order ε j one
has exactly ( j+2) iterated integrations. The alphabet is given by four modular forms 1, f2, f3, f4.
To give an example, the modular form f3 is given by

f3 = − 1
24

(
ψ1

π

)3 t
(
t−m2

)(
t−9m2

)
m6 . (2.13)

f3 may be expressed as a linear combination of generalised Eisenstein series, which makes the
property of being a modular form manifest.

Let us now return to question if there is an ε-form for the differential equations for the sunrise
and kite integrals. It is not possible to obtain an ε-form by an algebraic change of variables and/or
an algebraic transformation of the basis of master integrals. However by the (non-algebraic) change
of variables from t to τ and by factoring off the (non-algebraic) expression ψ1/π from the master
integrals in the sunrise sector one obtains an ε-form for the kite/sunrise family:

d
dτ

~I = ε A(τ)~I, (2.14)

where A(τ) is an ε-independent 8×8-matrix whose entries are modular forms.
Let us turn to the numerical evaluation: The complete elliptic integrals entering ψ1 can be

computed efficiently from the arithmetic-geometric mean. The numerical evaluation of the ELi-
functions is straightforward in the region where the sum converges: One simply truncates the q-
series at a certain order such that the desired numerical precision is reached. Methods to map the ar-
guments outside the region of convergence into this region have been discussed in [66]. It turns out
that for the sunrise integral and the kite integral the q-series converges for all t ∈R\{m2,9m2,∞}, in
particular there is no need to distinguish the cases t < 0, 0 < t < m2, m2 < t < 9m2 or 9m2 < t [49].
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3. Towards multi-scale integrals beyond multiple polylogarithms

Let us now turn from single-scale integrals to multi-scale integrals. We are interested in the
ones, which are not expressible in in terms of multiple polylogarithms [40, 41, 67–71], but are ex-
pressible in terms of elliptic generalisations of these functions. Therefore we expect in the differ-
ential equation for a given master integral irreducible second-order factors. A system of first-oder
differential equations is easily converted to a higher-order differential equation for a single master
integral. We may work modulo sub-topologies, therefore the order of the differential equation is
given by the number of master integrals in this sector. The number of master integrals in a given
sector may be larger than 2 and we face the question on how to transform to a suitable basis of
master integrals, which decouples the original system of differential equations at order ε0 to a sys-
tem of maximal block size of 2. This can be done by exploiting the factorisation properties of the
Picard-Fuchs operator [21]. To this aim one first projects the problem to a single-scale problem
by setting xi (λ ) = αiλ with α = [α1 : ... : αn] ∈ CPn−1 and by viewing the master integrals as
functions of λ . For the derivative with respect to λ we have

d
dλ

~I = B~I, B =
n

∑
i=1

αiAi, B = B(0)+ ∑
j>0

ε
jB( j). (3.1)

In order to find the required transformation we may work modulo ε-corrections, i.e. we focus on
B(0). Let I be one of the master integrals {I1, ..., IN}. We determine the largest number r, such that
the matrix which expresses I, (d/dλ )I, ..., (d/dλ )r−1I in terms of the original set {I1, ..., IN} has
full rank. It follows that (d/dλ )rI can be written as a linear combination of I, ...,(d/dλ )r−1I. This
defines the Picard-Fuchs operator Lr for the master integral I with respect to λ :

LrI = 0, Lr =
r

∑
k=0

Rk
dk

dλ k . (3.2)

Lr is easily found by transforming to a basis which contains I, ...,(d/dλ )r−1I. We may factor the
differential operator into irreducible factors [72].

Lr = L1,r1L2,r2 ...Ls,rs , (3.3)

where Li,ri denotes a differential operator of order ri. We may then convert the system of differential
equations at order ε0 into a block triangular form with blocks of size r1, r2, ..., rs. A basis for block
i is given by

Ji, j =
d j−1

dλ j−1 Li+1,ri+1 ...Ls,rsI, 1≤ j ≤ ri. (3.4)

This decouples the original system into sub-systems of size r1, r2, ..., rs. Let us write the transfor-
mation to the new basis as ~J =V (α1, ...,αn−1,λ )~I. Setting

U = V
(

x1

xn
, ...,

xn−1

xn
,xn

)
(3.5)

gives a transformation in terms of the original variables x1, ..., xn. Terms in the original matrix A of
the form d lnZ(x1, ...,xn), where Z(x1, ...,xn) is a rational function in (x1, ...,xn) and homogeneous

5
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of degree zero in (x1, ...,xn), map to zero in the matrix B. These terms are in many cases easily
removed by a subsequent transformation. Let us look at an example. For the planar double-box
integral for tt̄-production with a closed top loop one finds in the top sector five master integrals.
These may be decoupled as

5 = 1+2+1+1. (3.6)

Thus we need to solve only two coupled equations, not five.

4. Conclusions

Differential equations are a powerful tool to compute Feynman integrals. If a system can be
transformed to an ε-form with rational or algebraic transformations, a solution in terms of multiple
polylogarithms is easily obtained. There are however systems, where within rational transforma-
tions at order ε0 two coupled equations remain. The simplest examples of these are the Feynman
integrals belonging to the families of the equal-mass sunrise integral and the kite integral. They
evaluate to elliptic generalisations of multiple polylogarithms. The iterated integral representation
is given in terms of iterated integrals of modular forms. With a non-algebraic change of variables
and a non-algebraic basis transformation it is possible to obtain an ε-form. For Feynman integrals
depending on several variables the factorisation properties of the Picard-Fuchs operator allows us
to find the irreducible blocks.
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