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1. Introduction

The standard model of particle physics operates with several parameters. Among these we
can find the strong coupling which is usually given at a scale corresponding to the mass of the Z
boson. The value of αS appears as a world average [1] composed of several measurements car-
ried out at various experiments. Among these measurements a large number was performed in
electron-positron annihilation using observables like the three-jet rate or the six standard event
shape variables (thrust, C-parameter, jet broadenings, heavy jet mass and the two-to-three jet tran-
sition variable) [2, 3, 4, 5, 6].

The extraction of αS using data from high-energy experiments relies upon fitting theoretical
predictions to measurement data. Since fixed-order predictions are made at the parton level and
detectors observe hadrons parton-level predictions have to be supplemented with a hadronization
model or the hadron-level data has to be unfolded to the parton level to have a meaningful compar-
ison. The theoretical prediction is treated as a function of αS and the strong coupling is considered
as a fitting parameter looking for the best fit to data.

In order to contribute to the world average the fixed-order prediction has to have at least Next-
to-Next-to Leading Order (NNLO) accuracy in QCD. For a large class of observables there are
regions in phase space where perturbation theory breaks down due to large logarithmic contri-
butions necessitating the explicit summation of contributions coming from all orders. With the
matching of resummed and fixed-order predictions the region of validity of the prediction can be
extended.

The CoLoRFulNNLO subtraction scheme [7, 8, 10] made it possible to compute the NNLO
QCD correction to three further event shape observables in electron-positron annihilation: oblate-
ness, energy-energy correlation (EEC) [9] and jet cone energy fraction [10]. For EEC Next-to-
Next-to Leading Logarithmic (NNLL) resummation is available [11] in the back-to-back region
thus matching the NNLO with the NNLL resummed predictions makes a perfect candidate for
an observable which can be used to extract the strong coupling since this observable was widely
measured in several experiments. In this talk we discuss how in a recent publication [12] the
CoLoRFulNNLO subtraction method and NNLL resummation were enrolled to obtain the value
of αS(mZ) using OPAL [13] and SLD [14] data. A further motivation behind choosing EEC as
an observable is that in electron-positron annihilation only global event shape observables and jet
rates were used so far for this purpose while EEC is based on two-particle correlations.

We would like to conclude this section mentioning that there is a growing interest in EEC
nowadays. There is an attempt to obtain the NLO QCD correction to EEC in a fully analytic way
using very recent, state-of-the-art techniques derived in multiloop calculations [15].

2. Definition and fixed order

Energy-energy correlation was defined almost 40 years ago [16] in order to quantify two-
particle correlations in electron-positron collisions:

1
σt

dΣ(χ)

dcos χ
≡ 1

σt

∫
∑
i, j

EiE j

Q2 dσe+e−→i j+X δ (cos χ + cosθi j) , (2.1)
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where σt is the total cross section corresponding to e+ e−→ hadrons, Q is the CM energy of the
collision, cosθi j is the enclosed angle between two hadrons observed and the double sum runs over
all possible pairs of final state hadrons produced in the event. The back-to-back region corresponds
to the region of χ → 0.

EEC is calculated in QCD perturbation theory as a series expansion in αS taking the following
form up to the NNLO contribution:[

1
σt

dΣ(χ,µ)

dcos χ

]
f.o.

=
αS(µ)

2π

dĀ(χ,µ)
dcos χ

+

(
αS(µ)

2π

)2 dB̄(χ,µ)
dcos χ

+

(
αS(µ)

2π

)3 dC̄(χ,µ)

dcos χ
+O(α4

S) ,

(2.2)

where Ā, B̄ and C̄ stand for the LO, NLO and NNLO contributions, respectively. The bar over
different contributions emphasizes that the total cross section was used for normalization.

To calculate the first three terms in the perturbative expansion we used the CoLoRFulNNLO
subtraction method as it is implemented in the numerical code called MCCSM (Monte Carlo for the
CoLoRFulNNLO Subtraction Method). To get a glimpse of the inner workings of the subtraction
method let us consider a completely general jet measurement function J which is IR-safe. For this
physical observable the cross section, as a perturbative series in terms of αS, takes the form of

σ [J] = σ
LO[J]+σ

NLO[J]+σ
NNLO[J]+ . . . , (2.3)

here σLO[J], σNLO[J] and σNNLO[J] stand for the LO, NLO and NNLO contributions, respectively.
The LO term is the easiest to calculate since it is always finite due to phase space cuts:

σ
LO[J] =

∫
m

dσ
B
m Jm , (2.4)

where dσB contains the Born squared matrix element and the integration is performed over an
m-parton phase space if our process has m final state partons at Born level. The NLO term is
composed of two separate contributions and can be written as

σ
NLO[J] = σ

NLO
m+1 [J]+σ

NLO
m [J] =

∫
m+1

dσ
R
m+1Jm+1 +

∫
m

dσ
V
m Jm , (2.5)

where the first term corresponds to the case where there is one more massless parton in the final
state, hence dubbed the real-emission part, while the other contains a virtual exchange of a massless
parton, commonly known as the virtual part. While the first contribution is divergent due to kine-
matic singularities appearing in the phase space the second one contains explicit ε poles coming
from the loop integral. When the phase space integral over m+1 parton is carried out in d = 4−2ε

dimensions the appearing poles exactly cancel those coming from the second term resulting in a fi-
nite correction for IR-safe observables due to the KLN theorem. To avoid the analytical integration
in d dimensions in the first term subtractions can be introduced mimicking the singularity structure
of the real-emission matrix element making the first integral finite even in 4 dimensions. Of course
to reinstate physicality the subtractions have to be added back in an integrated form:∫

m+1

[
dσ

R
m+1Jm+1−dσ

R,A1
m+1 Jm

]
d=4

+
∫

m

[
dσ

V
m Jm +

∫
1

dσ
R,A1
m+1 Jm

]
d=4

. (2.6)
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The NNLO contribution can be disentangled into three terms having completely different nature,
namely:

σ
NNLO[J] = σ

NNLO
m+2 [J]+σ

NNLO
m+1 [J]+σ

NNLO
m [J] =

∫
m+2

dσ
RR
m+2Jm+2 +

∫
m+1

dσ
RV
m+1Jm+1 +

∫
m

dσ
VV
m Jm .

(2.7)

The first term is the m+ 2-parton (double-real, RR) contribution containing matrix elements re-
sponsible for the emission of two additional massless partons, the m+ 1-parton (real-virtual, RV)
contribution has kinematic singularities due to the emission of one extra parton and explicit ε poles
due to the virtual exchange of one massless parton, finally the m-parton (double-virtual, VV) contri-
bution only contains explicit ε poles due to the virtual exchange of two massless partons. As in the
case of NLO, subtractions are introduced to regularize singularities of kinematic origin associated
to unresolved extra parton emission(s).

For the m+2-parton contribution subtractions have to be introduced to regularize the singly-
(A1) and doubly-unresolved emissions (A2). Since the presence of subtractions is not limited to
around their respective limits even the subtractions can develop spurious singularities away from
their singularity region. To remove these spurious singularities an additional term has to be included
(A12). After the inclusion of all the terms the m+2-parton line becomes finite in d = 4 dimensions:

σ
NNLO
m+2 =

∫
m+2

{
dσ

RR
m+2Jm+2−dσ

RR,A2
m+2 Jm−

[
dσ

RR,A1
m+2 Jm+1−dσ

RR,A12
m+2 Jm

]}
d=4

. (2.8)

In the m+ 1-parton line alongside from the real-virtual contribution the integrated version of
the A1 subtractions defined for the m+2-parton line appear also, hence subtractions are introduced
not only to regularize the kinematic singularities coming from the real-virtual part but also from
the integrated A1 terms. When all necessary subtractions are incorporated the m+ 1-parton line
becomes finite in d = 4 dimensions:

σ
NNLO
m+1 =

∫
m+1

{(
dσ

RV
m+1 +

∫
1

dσ
RR,A1
m+2

)
Jm+1−

[
dσ

RV,A1
m+1 +

(∫
1

dσ
RR,A1
m+2

)A1
]

Jm

}
d=4

, (2.9)

Finally, the m-parton line does not contain any kinematic singularity but instead explicit ε poles
coming from the double-virtual contribution. These poles are cancelled by the remaining integrated
subtraction terms resulting in a finite m-parton contribution:

σ
NNLO
m =

∫
m

{
dσ

VV
m +

∫
2

[
dσ

RR,A2
m+2 −σ

RR,A12
m+2

]
+
∫

1

[
dσ

RV,A1
m+1 +

(∫
1

dσ
RR,A1
m+2

)A1
]}

d=4

Jm .

(2.10)

Our theoretical predictions obtained with the help of MCCSM for EEC is shown in Fig. (1). The
non-overlapping of the NLO and NNLO uncertainty bands indicates that the scale uncertainties
are underestimated with the conventional sweep between µ = Q/2 and 2Q. The large difference
between NNLO prediction and measurement indicates that power corrections are sizable, thus for
a meaningful comparison to experimental data hadronization effects must be taken into account or
data has to be unfolded to the parton level.

3
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Figure 1: Fixed order predictions for EEC in the first three orders of QCD perturbation theory and data
measured by the OPAL collaboration [13]. On the lower panel ratios are shown with respect to the NNLO
prediction. The bands represent the uncertainty from scale variation obtained by varying µ between Q/2
and 2Q.

3. Resummed predictions

The most precise resummation for EEC in the back-to-back region is available at NNLL [11].
Formally the resummed prediction can be written as[

1
σt

dΣ(χ,µ)

dcos χ

]
res.

=
Q2

8
H(αS(µ))

∫
∞

0
dbbJ0(bQ

√
y)S(Q,b) , (3.1)

where y = sin2
χ/2 and S(Q,b) is the Sudakov form factor defined on impact parameter space:

S(Q,b) = exp

{
−
∫ Q2

b2
0/b2

dq2

q2

[
A(αS(q2)) log

Q2

q2 +B(αS(q2))

]}
, (3.2)

where A(αS), B(αS) and H(αS)–the hard function–are defined in QCD perturbation theory and are
free of logarithmic terms:

A(αS) =
∞

∑
n=1

(
αS

4π

)n
A(n), B(αS) =

∞

∑
n=1

(
αS

4π

)n
B(n), H(αS) = 1+

∞

∑
n=1

(
αS

4π

)n
H(n). (3.3)

In principle1 to retain NNLL accuracy we need A(1), A(2), A(3), B(1), B(2), H(1) and H(2).
The resummed predictions at various orders with their respective scale uncertainties and OPAL

measurement as a reference are depicted on Fig. (2). The resummed predictions, in particular the
NNLL, successfully reproduce the Sudakov shoulder at small angles as seen in the measurement.
Going to higher angles, the measurement and predictions start to deviate, hence the resummed
prediction by itself cannot describe the measurement. This necessitates the matching of fixed-order
and resummed predictions in order to obtain a theoretical prediction over a wide range of angles.

1As we will see we will not need the hard function explicitly by virtue of the matching scheme we employ.
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Figure 2: Resummed predictions at various logarithmic orders with their respective scale uncertainty bands
obtained by varying µ between Q/2 and 2Q. Data obtained by the OPAL collaboration is also shown.

4. The matching procedure

The resummed prediction contains specific logarithms from each order of perturbation theory
which are summed up hence appearing in an exponentiated form. A subset of these logs can also
be found in the fixed order prediction hence the most naive matching: adding up the resummed and
fixed-order predictions cannot result in a physical result due to double counting of those logs.

In order to avoid double counting those logs have to be subtracted from the sum of the re-
summed and fixed-order predictions. This can be achieved by expanding the resummed result in
αS and subtracting terms from the sum which appear in the same or lower order of αS as our
fixed-order prediction:

1
σt

dΣ(χ,µ)

dcos χ
=

[
1
σt

dΣ(χ,µ)

dcos χ

]
res.

+

[
1
σt

dΣ(χ,µ)

dcos χ

]
f.o.
−
{[

1
σt

dΣ(χ,µ)

dcos χ

]
res.

}∣∣∣∣
f.o.

. (4.1)

This matching is called the naive R-matching scheme and it relies on the assumption that the
resummed prediction is accurate enough to remove all the logs from the fixed-order prediction
when expanded in terms of αS. At NNLL+NNLO the remaining subleading logs in the fixed-
order result drive the matched prediction to non-physical values well, inside the range which can
be experimentally measured. In the absence of resummed predictions with higher accuracy the
problem can be circumvented by applying the log-R matching scheme.

In order to perform the matching in the log-R scheme a cumulative observable has to be de-
fined:

R(y,µ) =
1
σt

∫ y

0
dy′

dσ(y′,µ)
dy′

, (4.2)

and the differential cross section in the original observable can be obtained by differentiating with
respect to y. Also note that R(ymax,µ) = 1, where ymax is the kinematically allowed maximal value
of y. The perturbative expansion of the cumulative observable is:

[R(y,µ)]f.o. = 1+
αS(µ)

2π

¯A (y,µ)+
(

αS(µ)

2π

)2

B̄(y,µ)+
(

αS(µ)

2π

)3

C̄ (y,µ)+O(α4
S) . (4.3)
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On the other hand the resummed formula for R can be written as:

[R(y,µ)]res. =
(
1+C1αS +C2α

2
S + . . .

)
exp [Lg1(αSL)+g2(αSL)+αSg3(αSL)+ . . . ]+O(αSy) ,

(4.4)

where O(αSy) stands for those terms which are not log enhanced. The gn functions take the form:

gn(αSL) =
∞

∑
i=1

Gi,i+2−n

(
αS

2π

)i
Li+2−n (4.5)

where L = logy. Taking the logarithm of the fixed-order result and expanding in αS we get

log[R(y,µ)]f.o. =
αS(µ)

2π

¯A (y,µ)+
(

αS(µ)

2π

)2[
B̄(y,µ)− 1

2
¯A 2(y,µ)

]
+

(
αS(µ)

2π

)3[
C̄ (y,µ)− ¯A (y,µ)B̄(y,µ)+

1
3

¯A 3(y,µ)
]
+O(α4

S) , (4.6)

similarly for the resummed expression:

log[R(y,µ)]res. = Lg1(αSL)+g2(αSL)+αSg3(αSL)

+αSC1 +α
2
S

(
C2−

1
2

C2
1

)
+α

3
S

(
C3−C1C2 +

1
3

C3
1

)
+O(α4

S) . (4.7)

We can arrive at the log-R matching scheme formula for NNLL+NNLO if the first three terms in
the second line of Eq. (4.7) get replaced by those coming from the fixed order formula (Eq. (4.6)):

logR(y,µ) = Lg1(αSL)+g2(αSL)+αSg3(αSL)

+
αS(µ)

2π

[ ¯A (y,µ)−G11L−G12L2]
+

(
αS(µ)

2π

)2[
B̄(y,µ)− 1

2
¯A 2(y,µ)−G21L−G22L2−G23L3

]
+

(
αS(µ)

2π

)3[
C̄ (y,µ)− ¯A (y,µ)B̄(y,µ)+

1
3

¯A 3(y,µ)−G32L2−G33L3−G34L4
]

+O(α4
S) . (4.8)

By exponentiating the previous expression and differentiating it with respect to y we arrive at the
log-R matching formula for our original observable.

By taking a look at Fig. (1) it becomes apparent that the fixed-order prediction for EEC not only
diverges for small but also for large angles which in principle necessitates yet another resummation
for the y→ 1 region to have a physical prediction even there. Provided having NNLO fixed-order
predictions and NNLL resummation formula for y→ 0 it mandates for the use of log-R matching2.
Because of the double divergent nature of the fixed-order EEC distribution the original definition

2This is not the only possibility: the coefficients of missing logarithms from the resummed expression could be
obtained by a fitting procedure using the deep limit of the fixed-order calculation. This option is dropped since the
calculation, though possible, very challenging at NNLO.

6
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Figure 3: The NLO (green dashed) and NNLL+NLO matched predictions in the log-R (red) and R (blue
dashed) schemes. The lower panel shows the ratio to the NNLL+NLO prediction using log-R matching
while the bands correspond to the usual scale variation between Q/2 and 2Q.

for the cumulative observable (Eq. (4.2)) cannot be used, instead we need one which suppresses the
divergence appearing at large angles. One possible choice is:

1
σt

Σ̃(χ,µ)≡ 1
σt

∫
χ

0
dχ
′(1+ cos χ

′)
dΣ(χ ′,µ)

dχ ′
. (4.9)

This modified version of the cumulative observable also fulfills the requirement that Σ̃(χmax,µ)/σt =

1, where χmax = 180◦ and the original observable can be obtained by means of simple operations
from Σ̃:

1
σt

dΣ(χ,µ)

dχ
=

1
1+ cos χ

d
dχ

[
1
σt

Σ̃(χ,µ)

]
. (4.10)

In order to validate our log-R matched results we performed both the naive R and the log-R
matching at NNLL+NLO. At this order the resummation is accurate enough to cancel all the logs
from fixed order, and the predictions are depicted on Fig. (3). As it can be seen, both matched
predictions provide the same result within scale uncertainties and the difference between the two
schemes becomes very small at large angles.

5. Phenomenology

Our phenomenological studies are performed at Q = 91.2GeV energy. As for the strong cou-
pling we used αS(Q) = 0.118 and two- and three-loop running to obtain scale uncertainty bands
at NLO and NNLO, respectively. On the left hand side of Fig. (4) a comparison is shown between
NNLO and NNLL+NNLO. As it can be seen the fixed-order is ill-behaved as χ → 0 while the
matched prediction remains physical in the whole range showing a nice Sudakov shoulder around

7
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Figure 4: The left hand side shows the comparison between fixed-order and fixed-order matched with
resummation. On the right hand side we compare our two matched results using NNLL resummation and
NLO and NNLO for fixed-order, respectively. On the lower panels ratios are shown with respect to the
NNLL+NNLO prediction. The bands, as usual, stand for scale uncertainty obtained by variation in the range
of [Q/2,2Q].

Fit range
NNLL + NLO (R) NNLL + NLO (log-R) NNLL + NNLO (log-R)

αS(mZ) χ2/d.o.f. αS(mZ) χ2/d.o.f. αS(mZ) χ2/d.o.f.

0◦ < χ < 63◦ 0.133±0.001 1.96 0.131±0.003 1.21 0.129±0.003 4.13
15◦ < χ < 63◦ 0.132±0.001 0.59 0.131±0.003 0.54 0.128±0.003 1.58
15◦ < χ < 120◦ 0.135±0.002 3.96 0.134±0.004 5.12 0.127±0.003 1.12

Table 1: Strong coupling values obtained at an energy scale corresponding to the mass of the Z boson with
various fitting ranges but without hadronization effects incorporated.

5◦. On the right hand side of Fig. (4) our two matched results are compared: using NNLL accuracy
in the resummed part the matching was performed with NLO and NNLO. From the lower panel it
is apparent that while the Sudakov shoulder remains almost the same at moderate to high angles
the shape of the distribution changes significantly when going from NLO to NNLO.

Although as it was shown on Fig. (1) the hadronization corrections seem to be large an attempt
can be made to extract αS from our NNLL+NLO and NNLL+NNLO predictions using OPAL
and SLD data without taking into account any of these effects. In order to obtain a value for
αS a range of the physical observable has to be defined on which the fitting procedure can be
performed. In order to perform a fair comparison with the original NNLL+NLO computation we
adopted the fit ranges already used in Ref. [11]. The resulting αS values for the various ranges and
theoretical predictions are tabulated in Tab. (1). By taking a look at the obtained αS values it is clear
that the neglected hadronization effects do have a significant contribution since all the αS values
are much larger than the world average, a clear indication of omitting a significant contribution.
Judging by the goodness of fit the best value was obtained when the Sudakov shoulder region was

8
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Figure 5: Our best αS fits using various fixed-order predictions and matching schemes. The lower panels
show the ratios compared to the predictions obtained with the log-R matching scheme. Bands correspond to
scale variation in the range of [Q/2,2Q].

Accuracy αS(mZ) a1 [GeV2] a2 [GeV] χ2/d.o.f.

NNLL+NLO(R) 0.134+0.001
−0.009 1.55+4.26

−1.54 −0.13+0.50
−0.05 0.81

NNLL+NLO(log-R) 0.128+0.002
−0.006 1.17+1.46

−0.29 0.13+0.14
−0.09 0.85

NNLL+NNLO(log-R) 0.121+0.001
−0.003 2.47+0.48

−2.38 0.31+0.27
−0.05 1.18

Table 2: Result of our three-parameter fits involving the strong coupling and the two free parameters of the
analytical hadronization model.

excluded from the fit range and the range was large enough to involve data from regions with larger
angles and when the NNLL resummation was matched with our NNLO fixed-order prediction.
By investigating the different results we conclude that the hadronization effects indeed play an
important role and they also have a significant impact in the peak region.

There are two ways to incorporate hadronization effects: by using an analytic model or tak-
ing a fixed-order calculation, preferably a NLO computation, and matching it to a Shower Monte
Carlo (SMC) program which contains a phenomenological model for hadronization. By comparing
the fixed-order and hadron level predictions with the SMC we can obtain a bin-by-bin correction
factor, applying this differential factor on our parton level predictions these can be brought to the
hadron level. Since several SMC programs are available with their distinct hadronization models
αS extraction using this method needs a dedicated, detailed study which we leave for a future work
and we use the former approach. In particular we chose the analytic hadronization model of Ref.
[17] which was also used in Ref. [11].

In the hadronization model of Ref. [17] the Sudakov form factor is multiplied by

SNP = e−
1
2 a1b2

(1−2a2b) , (5.1)
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where b is the usual impact parameter while a1 and a2 are free model parameters. Thus when
αS is determined the one-parameter fit becomes a three-parameter fit involving a1 and a2 beside
αS. Our best fits to OPAL and SLD data are depicted on Fig. (5) and the obtained αS and free
parameter values with their respective χ2/d.o.f. are tabulated on Tab. (2). Taking a look at the left
hand side (NNLL+NLO) of Fig. (5) a clear trend is visible between data and fitted results. This
slope disappears if NNLO corrections are taken into account thus the inclusion of such corrections
is essential for the precision extraction of the strong coupling.

6. Conclusions

In this talk we have presented the first calculation of energy-energy correlation in electron-
positron annihilation using NNLL resummation matched with an NNLO QCD fixed-order compu-
tation. Using an analytical hadronization model we were able to extract the value of αS at the Z peak
using OPAL and SLD data and found complete agreement with the world average within uncer-
tainties. We observe that the inclusion of NNLO corrections is essential to get a shape compatible
with the one observed by the experiments. A more detailed study is underway where hadronization
corrections are obtained from SMC programs matched with NLO QCD calculations.
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