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We describe a new method [1] for the automated construction of one-loop amplitudes
based on the open-loop algorithm, where various operations are performed on-the-fly
while constructing the integrand. In particular, an on-the-fly reduction interleaved with
the construction steps of the amplitude keeps the maximum tensor rank in the loop
momentum at two throughout the algorithm, thus drastically reducing the complexity
of the calculation. The full reduction to scalar integrals is unified with the amplitude
construction in a single recursion within the OpenLoops framework. This approach
strongly exploits the factorisation of one-loop integrands in a product of loop segments.
The on-the-fly approach, which is also applied to helicity summation and the merging
of different diagrams, increases the speed of the original open-loop algorithm in a very
significant way. A remarkably high level of numerical stability is achieved by exploit-
ing freedoms in reduction identities and through simple expansions in rank-two Gram
determinants. These features are particularly attractive for NLO multi-leg and NNLO
real–virtual calculations. The new algorithm will be made public in a forthcoming release
of the OpenLoops program.
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1. Automated amplitude generation in OpenLoops

In the last decade, powerful methods for the calculation of one-loop scattering amplitudes
have been developed. Highly automated one-loop tools, such as OpenLoops [2,3], provide
the key to achieving NLO precision in multi-purpose Monte Carlo generators. The helicity-
and colour-summed scattering probability densities for an n-particle process

WLO =
∑

hel,col
|M0|2, Wvirtual

NLO =
∑

hel,col
2Re

[
M∗

0M1
]

withMl =
∑
d

M(d)
l (1.1)

are computed as sums of Feynman diagrams d with l = 0,1 loops and n external particles.
A one-loop Feynman diagram amplitude can be written as

M(d)
1 = C(d)

1

∫
dq̄

Tr
[
N (q)

]
D̄0(q̄) · · ·D̄N−1(q̄)

=

wN−1wN

w1 w2

D0

D1

D2

DN−1

q (1.2)

with a colour factor C(d)
1 and scalar propagators D̄i(q̄) = (q̄+pi)2−m2

i , which contain the
loop momentum q̄, the mass mi and the external momentum pi.1 This is computed by
cutting the loop open at one propagator D̄0 and numerically constructing the numerator2

[
N (q,h)

]βN

β0
=

wN

w1

βN

β0

=
[
S1(q,h1)

]β1

β0

[
S2(q,h2)

]β2

β1
· · ·
[
SN (q,hN )

]βN

βN−1
, (1.3)

where β0,N are the Lorentz or spinor indices of the cut propagator. Finally, the trace
is taken by multiplying with δβN

β0
and the tensor integrals are evaluated. A key feature

exploited in our approach is the factorisation of the numerator into segments Si(q,hi),
each consisting of a loop vertex and propagator and one or two external subtrees wi(hi),

[
Si(q,hi)

]βi

βi−1
= βi−1

wi

ki

Di

βi or
[
Si(q,hi)

]βi

βi−1
= βi−1

wi1
wi2

ki1
ki2

Di

βi . (1.4)

We construct the numerator recursively through so-called dressing steps

Nk(q) =Nk−1(q)Sk(q), k ≤N, (1.5)

starting from the initial condition N0 = 11. The partially dressed numerator, which we call
an open loop, is a q-polynomial3,

Nk(q) = β0

w1

D1

w2

D2

wk

Dk

βk

wk+1

Dk+1

wN−1

DN−1

wN

D0

βN =
k∏
i=1

Si(q) =
R∑
r=0
N (k)
µ1...µr

qµ1 · · ·qµr . (1.6)

︸ ︷︷ ︸
dressed segments

︸ ︷︷ ︸
undressed segments

1The bar marks D-dimensional quantities as opposed to four-dimensional ones, where D = 4−2ε.
2Here we explicitly include the dependence on the global helicity configuration h, or equivalently the

helicity configurations h1, . . . ,hN of the external subtrees in the individual segments.
3Dressing steps are performed numerically at the level of the coefficients N (n)

µ1...µr
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Figure 1: Evolution of the tensor rank R and number Ntcoeff (R) =
(R+4

4
)
of open-loop tensor

coefficients with the number k of dressed segments (if each dressing step increases the rank by 1).

The rank R is potentially increased by one in each step (see Fig. 1 (a)). In the first version of
OpenLoops [2, 3] the tensor reduction was performed a posteriori with external libraries,
such as Collier [4] or Cuttools [5]. The basic idea of the on-the-fly reduction is to
perform reduction steps at integrand level interleaved with the dressing steps (see Fig. 1
(b)), keeping the rank and hence the complexity of the tensor coefficients low throughout
the calculation.

2. The on-the-fly method

The on-the-fly reduction formulas are based on [6] and have the form4

qµqν = =
3∑

i=−1

(
Aµνi +Bµν

i,λ q
λ
)
Di(q), Di(q) =

1, i=−1
(q+pi)2−m2

i , i≥ 0
(2.1)

where the coefficients Aµνi and Bµν
i,λ are q-independent. The loop momentum dependence

resides in the reconstructed denominators Di = D̄i− q̃2 which cancel denominators in the
full integrand.5 Hence in each reduction step from rank-2 to rank-1 open loops new topolo-
gies with pinched propagators are created. Due to the factorisation (1.3) of the open loop
(2.1) can be applied to a partial integrand, e.g. after two dressing steps (see Fig. 2 (a)),
irrespective of segments to be dressed in subsequent steps and further D̄i,[ N µνqµqν

D̄0D̄1D̄2D̄3

] N∏
i=k+1

Si(q)
D̄i−1

=
[
N µ

−1qµ+N−1 + Ñ−1q̃
2

D̄0D̄1D̄2D̄3
+

3∑
i=0

N µ
i qµ+Ni

D̄0 · · · /̄Di · · ·D̄3

]
N∏

i=k+1

Si(q)
D̄i−1

.

(2.2)
The reduction step is then followed by the next dressing steps and further reduction steps
for each resulting topology until the loop is fully dressed and final reduction steps are
performed at integral level (for details see [1]). The freedom to choose D̄0, . . . , D̄3 from the

4This is also valid for triangles in renormalisable theories [1,6] if we set terms involving D̄3,p3 to zero.
5The terms ∝ q̃2, where q̃ = q̄− q is (D−4)-dimensional, lead to rational terms of type R1 [6].
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∼ Nµνqµqν

w3 wN

=





w1 w2 w3 wN

Nµ
−1qµ + Ñ−1q̃

2

+

w1 w2 w3 wN

Nµ
1 qµ

+

w1 w2 w3 wN

Nµ
2 qµ

+

w1 w2 w3 wN

Nµ
3 qµ

+

w1 w2 w3 wN

Nµ
0 qµ

(a)

wi

Di

wi+1

Di+1

−→

wi wi+1

Di+1

(b)

N (1)
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−→
N
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Figure 2: Creation of pinched topologies in on-the-fly reduction steps (a). Two dressed segments
with a pinched propagator in between can be treated as one effective segment (b) of an (N−1)-point
open loop. In many cases such an open loop can be absorbed into another (N −1)-point open loop
stemming from a genuine (N −1)-point Feynman diagram (c).

set of available scalar propagators allows us to avoid numerical instabilities due to vanish-
ing Gram determinants in four- and higher-point integrands and effectively shift them to
triangles. Here we identified a simple kinematical configuration responsible for numerical
instabilities due to a vanishing rank-two Gram determinant ∆ and perform an analytical
expansion in ∆ [1]. In this way we completely avoid Gram determinant instabilities in our
algorithm, which leads to excellent numerical stability (see section 3).
An important issue is the proliferation of pinched topologies, especially with many sub-
sequent on-the-fly reductions steps. The solution we implement is an on-the-fly merging
of open loops, which have the same topology6, and the same segments to be dressed in
subsequent steps. This means that we sum the β0, βk, helicity and q-tensor components
of the open loops to be merged into a single open loop. All future dressing and reduc-
tion steps are then performed on the merged open loop which in general contains a set of
contributions from different Feynman diagrams. In this way we can absorb most of the
pinched contributions into lower-point Feynman diagrams (see Fig. 2 (c)) with the same
topology and undressed segments. A requirement is that the segments left and right of
the pinched propagator are already dressed, in which case the two can be treated as one
effective segment (see Fig. 2 (b)).7 The on-the-fly merging requires the multiplication of
each Feynman diagram with its colour factor contracted with the full Born amplitude in
the beginning. In fact, we initialize each diagram d as

U (d)
0 (h) = U (d)

0 ({h1, . . . ,hN}) = 2
(∑

col
M∗

0(h)C(d)
1

)
, (2.3)

and perform the dressing, reduction and merging steps on these extended open loops. In
6A topology is defined as an ordered set {D̄0, . . . , D̄N−1} of propagator denominators.
7The on-the-fly merging is also applied to open loops stemming from different Feynman diagrams, which

have the same topology and last N −k segments, but differ in the first n segments, after k dressing steps,
giving a speed-up of about a factor 2 already without any on-the-fly reduction.
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this way diagrams with different original colour factors can be merged. The initial interfer-
ence with the Born, which is computed for all global helicity configurations h and hence all
helicity configurations hi of the individual segments, allows for an on-the-fly helicity sum-
mation, which significantly improves the CPU efficiency. We define the partially dressed
and helicity summed open loop as well as an extended dressing step

Uk(q,{hk+1, . . . ,hN}) =
∑
hk

Uk−1(q,{hk, . . . ,hN})Sk(q,hk) (2.4)

In this way, we reduce the number of dof of an open loop in the k-th dressing step by a factor
equal to the number of helicity dof of the k-th segment. This new helicity treatment leads
to an additional gain of a factor two–three in speed, depending on the process (see [1]).

3. Numerical stability

In this section we present numerical stability studies for the on-the-fly algorithm8 in
OpenLoops (OL2) compared to the previous version of OpenLoops (OL1) using Collier
or Cuttools for the tensor integral reduction. The numerical accuracy of the double
precision (DP) results is defined w.r.t. a benchmark derived with OL1+Cuttools in
quadruple precision (QP), A = log10 |(WDP−WQP)/min{|WDP|, |WQP|}|. To estimate the
intrinsic accuracy of the QP benchmark we use a so-called rescaling test [2].

In Fig. 3 and Fig. 4 we show the fraction of points with an accuracy A<Amin plotted
against Amin for sample 2→ 3 and 2→ 4 processes respectively.9 While the results of
OL1+Cuttools feature the highest instability tails for all considered processes, we find
that using Collier the probability of finding only a few correct digits goes down by one to
three orders of magnitude, depending on the process. Using OL2 we observe improvements
of one–two orders of magnitude w.r.t. OL1+Collier in many cases. For 2→ 3 processes,
the stability of the on-the-fly algorithm is remarkably close to the QP benchmark and even
superior for tt̄g production. In the case of 2→ 4 processes OL1+Collier and OL2 are
very close in the tail, both achieving excellent numerical stability.

4. Conclusion

We have presented a new approach for the automated calculation of scattering am-
plitudes at one loop. The key idea is that various operations, such as tensor reduction,
helicity summation and diagram merging, can be performed on-the-fly during the open-
loop recursion, exploiting the factorised structure of open loops in a systematic way. This
reduces the complexity of certain operations in a very significant way. The employed in-
tegrand reduction method allows us to isolate Gram determinant instabilities in triangle
topologies with a particular kinematic configuration and to cure them by means of simple
analytic expansions, leading to an unprecedented level of numerical stability. This feature

8The final scalar integrals are evaluated with Collier.
9For each process a sample of 106 homogeneously distributed phase space points at

√
s = 1TeV is taken.

Infrared regions are excluded through cuts, pi,T > 50GeV and ∆Rij > 0.5, for massless final-state partons.
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Figure 3: Stability distributions for sample 2→ 3 processes.
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Figure 4: Stability distributions for sample 2→ 4 processes.

is particularly attractive for the calculation of real–virtual contributions at NNLO. The
new algorithm is fully automated and validated at NLO QCD and will become publicly
available in the upcoming release of OpenLoops 2.
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