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1. Introduction

The lightlike cusp anomalous dimension (CAD) governs the structure of infrared (IR) diver-
gences and as such is a universal quantity with many physical applications, see e.g. [1-6]. The
latter range from string theory [7] over collider physics (see e.g. [8,9]) to flavour physics at scales
as low as my, ~ 5 GeV or even below [10]. The lightlike CAD possesses a loop expansion, and in
QCD its calculation was completed to three loops more than a decade ago [8,9]. Although QCD is
the theory for phenomenology, there were tremendous achievements in .4~ = 4 super Yang-Mills
(SYM) theory in recent years by studying scattering amplitudes [11], whose insights also catalyzed
QCD calculations, e.g. for LHC processes. However, calculations in .4 =4 SYM are usually
restricted to the planar limit, in which the lightlike CAD was explicitly computed to four-loop ac-
curacy [12-14], and predicted to all orders from integrability [15]. Beyond the planar limit, much
less is known in general despite some very recent progress [16,17]. In the perturbative expansion of
the CAD the first nonplanar correction enters at four loops, and no nonplanar correction had been
computed in any theory until the first numerical four-loop result in .4~ = 4 was presented in [18].

When analyzing the lightlike CAD in QCD one observes two interesting features. The first
is the maximal transcendentality principle [19, 20], a general conjecture that relates the maximal
transcendental terms appearing in QCD directly to .4 = 4 SYM for certain quantities. It was
verified to three loops in case of the lightlike CAD. The second feature concerns the fact that up
to three loops the quark and gluon CAD are proportional to each other and differ only by the
quadratic Casimir invariant of their respective gauge group representation. This property is known
as quadratic Casimir scaling of the CAD and plays an important role in IR factorization in gauge
theories [21-27]. In [24] it was even conjectured that the nonplanar part of the CAD vanishes in any
gauge theory, i.e. quadratic Casimir scaling should hold to all orders in perturbation theory. In [28],
on the other hand, it was noted that quadratic Casimir scaling may be violated at higher orders of the
perturbative expansion, see also [29]. Moreover, it is known that this scaling breaks down in .4 =4
SYM at strong coupling [30], and via instanton effects [31]. Finally, our work [18,32], on which
the present article is based on, disproved the conjecture in .4/~ =4 SYM by an explicit computation
of the four-loop nonplanar part of the lightlike cusp and collinear anomalous dimension via the
Sudakov form factor. After [18], violation of Casimir scaling in QCD was reported in [33,34].

2. Form factor and anomalous dimensions

One of the simplest observables that contains the lightlike CAD is the Sudakov form factor. It
can be obtained from the correlator of an operator of the stress-tensor multiplet with two on-shell
massless states. Since the operator has zero anomalous dimension, the form factor has no ultraviolet
but only IR divergences. Of particular interest are the loop expansion, the colour structure, and the
structure of the IR divergences of the form factor, which we briefly review in turn in the following.

The perturbative expansion of the Sudakov form factor takes the form

9 — ytreeZgZI(_qZ)fl&‘F(l) ) (21)
=0

If we denote the two on-shell momenta of the massless states by pi, p2, the off-shell quantity
q* = (p1+ p2)? is the only dimensionful scale of the problem. In dimensional regularisation (D =



The nonplanar cusp and collinear anomalous dimension at four loops in N =4 SYM Tobias Huber

4 —2¢), FU is a function of gauge group invariants and € only. The coupling constant g reads g2 =

g(%%\;c (4me~")E. The Sudakov form factor in .4 =4 SYM was computed to two loops in [35]. The

three-loop correction was completed in [36] by using insights from the corresponding calculation in

QCD [37-41]. The integrand of the complete four-loop contribution was derived in [42], followed
by its reduction to master integrals [43]. Also the five-loop integrand is known [44].

Turning to the colour structure of the form factor, let us take .#" =4 SYM with gauge group
SU (N, ) for definiteness here, although generalizations to other Lie groups are straightforward. The
colour structure to / < 3 loops is simply given by (C4)! = N'. This changes starting from four
loops since, besides (C4)* = N, also the so-called quartic Casimir invariant djb“idﬁb"d appears.
The tensor d4°°? is the symmetrized trace over four adjoint generators, d4°¢ = 1 /6 Tr[T{ TP TSTS +
perms.(b,c,d)], with [T{],y = —if*>. For SU(N,) one has d$*/d4><? /N, = N? /24 (N? +36) and
N4y = (N> —1). Hence besides the planar (i.e. N! leading-colour) contribution a nonplanar (i.e.
N!=2 subleading-colour) correction enters at four loops. Starting from six loops, additional group
invariants appear [42].

Finally, to see the connection between the form factor and the anomalous dimensions advo-
cated in the introduction, one has to analyze the IR structure of the form factor. Setting ¢g*> = —1
and .#"® = 1, the IR structure takes the following form [6] (see also [2-5])

oo () ()

_ o] Yeusp | Gooll | g ()
log.7 = l;g (218)2+ e +Fin" | +0(¢), (2.2)

where the leading and subleading singularity contains the cusp (Yusp) and collinear (%) anoma-
lous dimension, respectively. The [-loop form factor F(!) has leading divergence o< 1/€%. However,
exponentiation of IR divergences ensures that in the logarithm of the form factor at most a double
pole in € remains. To this end, lower-loop contributions have to be expanded to higher terms in
the Laurent expansion in €. For instance, the determination of Fin") requires F(!) to & (€272). As
mentioned above, the first nonplanar correction starts at four loops, and the nonplanar part of the
four-loop form factor takes the form

) ?’(4) NP g(?l NP ()
cusp, coll, .
Y = (82)2 — 2 —Fingy + 0(e). (2.3)

In particular, it can at most have a double pole in ¢ instead of the full 1/&® since, upon taking the
logarithm in (2.2), it cannot mix with any planar contribution from lower loops. We emphasize,
however, that individual integrals that contribute to FI\(;Q will typically show the full 1/ diver-
gence. The cancellation of these higher-order poles in the final result will provide a very strong
constraint as well as an important consistency check of our computation. The loop expansions of

the cusp and collinear anomalous dimension read [12—14,36,45]
Yeusp =88” — 1602g" — 17646° + (— 175285 — 6453 + 70 \p)s* +0(0), (24

80
Geott == 48" + (3285 + T L83 + @8 o+ 95 )t + 0 (8", 2.5)

Co.

A numerical result for the planar part of the collinear anomalous dimension at four loops was given
in [46]. Here we will present numerical results for the nonplanar part of both the cusp and collinear
anomalous dimension at four loops, which we will extract from the nonplanar part of the four-loop
Sudakov form factor.
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3. Sudakov form factor in UT basis

The integrand of both the planar and nonplanar four-loop Sudakov form factor in A" =4
SYM was derived in [42] based on colour-kinematics duality. There are 34 integral topologies
in total, each with 12 propagators. 24 (14) topologies contribute to the planar (nonplanar) part,
and hence 4 to both. The obtained integrals are very complicated for several reasons: Besides the
number of loops, many topologies are crossed, and integrals typically have irreducible numerators
of mass dimension four (i.e. two scalar products of loop and/or external momenta). In our present
approach, we aim for a numerical evaluation of the integrals in a basis where each integral has
so-called uniform transcendentality (UT), i.e. the constants that appear at a given order of the &-
expansion have all the same overall transcendental weight, which increases by unit steps from one
order in € to the next. We therefore have to solve two problems. First, transform the four-loop
integrand into a UT basis and second, integrate the appearing UT integrals numerically.

Starting with the first of these tasks, there are basically three ways to show that an integral is
UT without explicitly computing it

o A UT integral can be written in the dLog form [47,48].

e The leading singularities, or equivalently, the residues at all poles of a UT integral is always
a constant [48-50].

e A UT integral basis leads to simple differential equations [51].

Since the last item is subject to other articles in these proceedings [52], we illustrate the first two
UT properties here. For this purpose it is convenient to trade the four components of each loop
momentum [ for four scalar parameters according to

" = oy p + auph + aaql +augh 3.1

with pi2 = q% =gq;-pj=0 Vi, jand q;-g» = —p1 - p>2. In this so-called parametric form we now
attempt another variable transformation such that the integral turns into the form dw/w = dlog(w)
for each integration variable. The latter form is then referred to as dLog form. If such a dLog form
exists the integral is UT. We emphasize that finding a dLog form for generic four-loop form factor
integrals is, in general, a difficult task. Moreover, the method of obtaining a dLog form is more
suitable to show the UT property of a given integral, rather than to derive a UT numerator. Explicit
examples of four-loop form factor integrals where a dLog form could be derived are given in [32].

A procedure equivalent to deriving a dLog form is to study the leading singularity of an inte-
gral, which is most conveniently done in its parametric form. To this end one computes subsequent
residues for all occurring scalar parameters (16 at four loops) in an initially chosen order. If, during
this procedure, one encounters other than a simple pole in a remaining parameter, the integral is
not UT. This method has the advantage that, besides checking the UT property of a single integral,
it can be used to derive UT candidate integrals in a given topology. This derivation can be made
algorithmic, and the algorithm constitutes an essential part towards the success of our calculation.
For sake of brevity we sketch it here and refer to [32] for its full description. To determine UT nu-
merators, we make an ansatz of mass dimension four which is a linear combination of all products
of scalar products. The requirement of avoiding other than simple poles in the procedure of taking
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Figure 1: Topologies that contribute to the non-planar form factor at four loops in a basis of UT integrals.

residues gives constraints on the coefficients in the ansatz and finally enables us to obtain a set of
UT candidate integrals in each topology. In practice we take a few hundred to thousand random
residue orders to overcome the large (16! ~ 2 x 10'3) total number of different orders in which the
residues can be taken.

Having the UT candidates at hand we perform at least 10° additional residue checks and/or
derive dLog forms. Afterwards, we write the entire four-loop form factor in .4/ =4 SYM as a
rational linear combination of UT integrals by means of the relations from the IBP reduction [43,
53]. While the full four-loop form factor in the UT basis can be found in [32], we restrict the current
presentation to the nonplanar part. It turns out that only 10 out of 14 integral topologies contribute,
the remaining 4 (labelled (31) — (34) in [42]) do not contain any UT integrals. Below we list
the 23 UT integrals /| " )23 that appear in the nonplanar form factor at four loops. The superscript
(n) denotes the twelve propagators from topology (n) in Fig. 1, such that we only have to list the
numerator of each integral. The nonplanar form factor is then obtained as

F = N2Z ci™ (3.2)

with ¢={1/2,1/2,1/2,—1,1/4,—1/4,—1/4,2,1,4,1,1,—1/2,1,1,1,1,1,1,1,—1,1/4,1/2}.
The prefactor 48 /N2 =2 x 24/N? in (3.2) has its origin in the permutational sum over external legs
and the colour factor [42]. The UT integrals are

=[(ts—p1)*P? (3.3)
=l —p1)? [+ 205+ (0 —Ly+p1)* + (63— Ls—p1)?] (3.4)
=[(£3 P11 (3.5)
= (3 — )[(Cl 3 —05)* + ({5 + p2)?] (3.6)
B) = [(p1—L5)2 +2(0s — £5)> + (€3 — £4)> — (03 — £5)* — (p1 — £4)]

—4(44—65) (p1— 3+ L4 —15)? (3.7)

I8 = (03— ta— 052 = (63— b — p1)* = (b — p2)* — C2)[2 — 63 — 2+ (04 — Ls)?]
+ 403 (lg— pa)* + (ba—Us)* (l3 — La+ g — p2)* (3.8)

1) = 4[(04— £5) (03 — L4+ L5 — p1)][(ba — €6) (63 — by + s — p2)]
— 4 (g —05)* (b3 — Ly +Le— p2)* — (03— £s)* (s + e — {4)*
—le (bs— p1)* — (3 (bg— p2)* — 65 (L3 — La+ U5 + Lo — q)* (3.9)
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= % [ — 02— (s — 3 — p1)?] [(£3 — £a— €)% + (U5 + p2)?] (3.10)
1Y = (65—t —p2)* [(65— ) — (65— p1)?] (3.11)
@-1 S [B—G—(ta—t=p1)’] [ls- (s —La+ 13— p2)] (3.12)
1y = @Hrm)z[( )2+ (=) = (6= p1)?) (3.13)
17 = 36—t 2(t=p2P+ (ts=p) — G+ B = (=l +2(m+p)]  G14)
12 = %(23 —03)? [2(03 — Ly — p2)? + (Ls — p1)> + 03 — (La — £6)?] (3.15)
1) = (54—1?1) (€3 — L4+ L6)* + (b6 — p2)* — 3] (3.16)
120 = 2 (6 pr = p) [(la— )~ (ta— o)’ (b — 1)’ — (p1 + p2)’] (3.17)
157 = (63— p1— p2)* (U5 + p2)? (3.18)
15 = %(54 —p1)* [2(6s + p2)* — (b5 + p2 + L4 — (3)°] (3.19)
1y = %(fs —04)* [2(ls— s+ p1)* —30¢) (3.20)
157 = (63— 03)* (p1 — b3+ £)? (3.21)
1§§2> = 2 (p1—14)* (3.22)
I3 = (p1— b5 15)* (63— p1 — p)? (3.23)
159 = 2 (63— p1 — p2)? (3.24)
153 V= (= p1)> (65— s+ 05— p2)?. (3.25)

4. Numerical integration and error analysis

In order to numerically integrate the 23 UT integrals in the nonplanar sector of the four-loop
form factor we choose two main strategies: sector decomposition and Mellin-Barnes (MB) tech-
niques. Within the sector decomposition approach two computer implementations have been used:
mostly FIESTA 4 [54], with cross-checks for simpler integrals using SecDec 3 [55]. The numerical
integration with FIESTA is done with the VEGAS algorithm [56] from the CUBA library [57].
In SecDec, the CUHRE and DIVONNE algorithms are applied. Let us mention here the impor-
tant empirical observation that in sector decomposition UT integrals usually generate considerably
fewer integration terms compared to non-UT siblings of comparable complexity. Despite this sim-
plification, four-loop form factor integrals remain challenging to integrate owing to the appearance
of IR divergences. Typical runtimes are of the order of several weeks.

A second technique applied here is MB integration. Besides using automated tools such as
MB [58, 59] and AMBRE [60-62] we have to overcome the problem that it is not straightfor-
ward to derive valid MB representations for crossed four-loop topologies with the loop-by-loop
approach. For this purpose we constructed an in-house MATHEMATICA routine based on a hy-
brid of the loop-by-loop approach and using the .% and % graph polynomials. Although this in
principle renders valid MB representations for all crossed four-loop topologies, the obtained repre-
sentations are in many cases too high-dimensional to be integrated in practice. Still, efficient MB
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Figure 2: Scatterplot of the relative error of FIESTA results compared to analytic (PSLQ) results for

e{=60-5-4} orders. (a) Plot of cases AESTACIOr — () (b) Plot of cases FESTACIO () - A]] ratios larger
Ips1.Q—IFIESTA IpiESTA —IPSLQ

than 200 are not shown. All ratios are larger than unity.

representations could be found for some (planar and crossed) integrals, in which cases the preci-
sion of the numerical integration is typically 3 to 4 orders of magnitude better compared to sector
decomposition. Moreover, the runtimes are much shorter, typically a few days. More details and
examples on both sector decomposition and MB techniques are given in [32].

Since we use numerical integration methods, a thorough discussion of the errors in these inte-
grals is needed before we can present our results. In as many cases as possible we performed the
integration using two independent methods (Sector decomposition, MB techniques and an analytic
result from [50]). However, most of the coefficients needed for the cusp and collinear anomalous
dimension at order £{-2~1} were obtained using exclusively the VEGAS algorithm in FIESTA.
To check that the Gaussian regime in VEGAS is reached, we evaluate each integral for several
evaluation point settings, and make sure the error scales as 1//eval points. For all integrals in
the nonplanar sector of the form factor, this was reached very quickly. We have also checked that
fluctuations upon increasing the number of sampling points are well within the reported error bars
of previous runs where fewer points were used.

Luckily, the precision of our numerical result allows for another non-trivial cross-check: For
the poles at orders e{~8073~4} the precision of the numerical integration is good enough to allow
for a conversion of the reported central values into small rational multiples of {1, {, {3, {4} in the
spirit of PSLQ [63]. This can be used to obtain an estimate of the true precision for about seventy
data points. Then, we compute the ratio between FIESTA errors and the assumed ’true’ errors
obtained by comparing the reported central value to the PSLQ result at orders 6574} via,

FIESTA errory
LipsLQ — Ik FiESTA

“.n

where k labels the 23 integrals from section 3. The results are depicted in figure 2, which contains
two panels for positive and negative deviations, respectively. We emphasize that for all 23 integrals,
all ratios have absolute values larger than unity, which indicates that the reported FIESTA errors are
always larger than the discrepancy between the PSLQ result and the central value from numerical
integration. Moreover, by comparing the two panels in figure 2, it is clear that there is no definite
sign of the deviation. The presence of a definite sign might have indicated a systematic error.
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Table 1: Nonplanar form factor result and errors. The prefactor 48 /N2 in (3.2) is not included.

€ order —8 -7 —6 -5
result —38x1078 | +444x1077 | —12x10°° | —1.2x 1073
uncertainty - +5.7x 1077 | £1.0x 107 | £1.2x 1074
€ order —4 -3 -2 —1
result +3.5%x107° | +0.0007 | +1.60 | —17.98

uncertainty | £1.5x 1073 | £0.0186 | £0.19 | +3.25

In total, our error analysis shows that the uncertainties reported by FIESTA are stable and in
general conservatively estimate the errors for the form factor integrals in the present study. We will
therefore interpret the FIESTA reported error as statistical, and as representing the standard devia-
tion of a Gaussian error. As a consequence, the obtained individual errors are added in quadrature
to obtain the total error. For reference, also the result of adding errors linearly is provided, although
there is no hint for a systematic error in the case at hand.

5. Results and conclusion

Adding up the results for the integrals in the nonplanar part of the four-loop Sudakov form
factor as described in section 3 yields the numbers as shown in table 1. Each column contains
the central value and the total uncertainty at a given order in the &-expansion. According to our
reasoning in section 4 the total uncertainty was obtained by adding individual ones in quadrature.

On physical grounds (eq. (2.3)), the coefficients at orders g{=8—7.76.=5.~4.~
the final result, which is indeed well satisfied within error bars. This provides a strong consistency
check of our calculation. Whereas the coefficients at order £~/ must vanish in each of the 23 UT
integrals Il(’i) »3 separately, the orders g{=8-60-5-4.-3} are non-zero in most of the Il(nj )3 (see ap-
pendix A of [32]) but cancel in the final result. As mentioned earlier, the precision of the orders
g{=8-6-5-4} i5 good enough to allow for a conversion of the reported numbers a la PSLQ [63]
into small rational multiples of {1,,, {3, {4}. After this conversion, these orders cancel even ana-
Iytically in the final result of the nonplanar form factor.

Of particular interest is now the coefficient at order &(¢~2), since it is directly related to the
nonplanar four-loop CAD. Our result 1.6010.19 (see table 1) is clearly non-zero, with a statistical
significance of 8.40. Adding individual uncertainties linearly to account for potential systematic
effects yields 1.60 £ 0.58, which is still significantly non-zero. Taking all relevant prefactors from
egs. (2.3) and (3.2) into account allows us to translate this into a number for the nonplanar four-loop
CAD. For gauge group SU(N,) we get

(4) :
u

Vorip, Np = —3072 % (1.604:0.19) . (5.1)

It has the same sign as the planar result [12-15] yc(ﬁgpl, = —175286 — 64(3 ~ —1875. If N. = 3 is
(4) ’

used, its value becomes %3sp, Np ~ —346 165 and hence a factor of 3 — 4 smaller than the planar
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contribution. We conclude from this that quadratic Casimir scaling is violated starting from the
four-loop level.

From the result at order ¢’(¢~!) the nonplanar collinear anomalous dimension (AD) at four
loops can be derived. Using the result from table 1 gives

G0 p = —384 x (—17.98+3.25) % : (5.2)
c
There are two interesting features about this result. First, there is clear evidence that this result is
non-zero as well, being in tension with a vanishing result at the 5.50 level. We mention that the
linearly summed error is obtained as —17.98 £ 11.89. Second, the central value has opposite sign
compared to the four-loop planar collinear AD result [46], %c(:l)]’ p = —1240.9(3); and its sign is
also different from that of the nonplanar cusp AD above. However, one has to keep in mind here
that, unlike the cusp AD, the collinear AD is a scheme-dependent quantity. It would certainly be
interesting to confirm the sign of the collinear AD by other methods.

To conclude, we achieved to express the entire Sudakov form factor in .#* =4 SYM theory as
a rational linear combination of a few dozens of UT integrals only, which confirms the remarkable
simplicity of this quantity already observed at lower loop orders and, moreover, demonstrates the
power of techniques related to uniformly transcendental bases in maximal super-Yang Mills theory.
Moreover, we arrived at the numerical integration of the nonplanar part of the form factor through
to order &(¢~!). Our numerical results show explicitly the breakdown of quadratic Casimir scaling
from the first possible (i.e. four-loop) order. Moreover, the four-loop collinear AD seems to have
opposite sign compared to its planar counterpart.

The crucial steps towards these results were on the one hand the development of an algorithm
— partially based on the ideas in [47-50] — to construct UT candidate integrals from the principle
of constant leading singularities. On the other hand, numerical integration routines based on sec-
tor decomposition and Mellin-Barnes techniques, together with large computing resources, were
essential for stable numerical results and for reported error bars small enough to get a conclusive
picture of the physical quantities that govern the structure of infrared divergences.

Four-loop calculations in gauge theories will remain a vivid topic also in the future. The
computations of the four-loop quark and gluon form factors in QCD are in progress [50, 64—66].
Interesting further directions also involve the computation of the angle-dependent nonplanar cusp
AD in ./ =4 SYM theory at four loops, or the extension of the present calculation to five loops.
The relevant integrand is already known [44]. Moreover, it would be interesting to investigate the
consequences of the breakdown of quadratic Casimir scaling to factorization theorems formulated
in QCD and soft-collinear effective theory.
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