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Four-loop results on anomalous dimensions and splittimgfions A. Vogt

1. Introduction

Up to power corrections, observablegimandpp hard scattering can be schematically expressed as
O%P = fi®c’, OPP=ffac (1.2)

in terms of the respective partonic cross sections (coefficient fungSrad the universal parton
distribution functions (PDFs}, (x, u?) of the proton at a (renormalization and factorization) scale
u of the order of a physical hard scale, eMy for the total cross section for the production of the
Higgs boson. The dependence of the PDFs on the momentum fracioot calculable in pertur-
bative QCD; their scale dependence is governed by the renormalizatap-gvolution equations

0%“2 fi(x, u?) = [Py(as(1?)) @ fi(u?)] (%) (1.2)

where® denotes the Mellin convolution. The splitting functions, which are closely rlati¢he
anomalous dimensions of twist-2 operators in the light-cone operator-gregpansion (OPE),
and the coefficient functions can be expanded in powers of the stoumgdingas = as(u?)/(4m),

P= aP9%4+a?2p®1a3P@ a2p® 4 . | (1.3)
c = a®[cl? +ac” +aZct? +aict? +...]. (1.4)

Together the first three terms in eqp. [1.3) apd] (1.4) provide the nexbdetorleading order
(N2LO) of perturbative QCD for the observablds [1.1). This is now the stahdpproximation
for many hard processes; see refs. [1-4] for the corresponglittjng functions.

Corrections beyond ALO are of phenomenological interest where high precision is required,
such as in determinations af from deep-inelastic scattering (DIS) (see refs. [5, 6] for tie®
caorrections to the most important structure functions), and where thelpation series shows a
slow convergence, such as for Higgs production via gluon-gluon riusidculated in ref. [7] at
N3LO. The size and structure of the corrections beyoRtMare also of theoretical interest.

Here we briefly report about considerable recent progress on the fbur-loop (NLO)
non-singlet splitting functions. We focus on the quantiﬁé‘ég) (x) for the evolution of flavour-
differencesy, £+ g; — (g, = q,) of quark and antiquark distributions; for more details see ref. [8].

2. Diagram calculations of fixedN moments

Two methods have been applied for obtaining Mellin moments of the quarfitfésn eq. 3.
Depending on the function, both can be used to determine the sam&lesghe oddN moments.

In the first one calculates, via the optical theorem and a dispersion relatipithe unfactor-
ized structure functions in DIS, as done at two and three loops in ref62]9The construction of
the FORCERprogram [13] has facilitated the extension of those computations (whiclpedsae
moments of the coefficient functions) to four loops. For the hardestatiagrthe complexity of
these computations rises quickly wkh hence onlyN <6 has been covered completely so far [14].
Much higherN can be accessed for simpler cases, e.g., valuesNp-td0 have been reached for
high-n; parts. These were sufficient to determine the compiétendn? parts of the non-singlet

splitting functionsPr@ (x) and thenf3 parts of the corresponding flavour-singlet quantities [15].
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The increase of the complexity of the Feynman integrals Witk more benign for the second
method based on the OPE which was applied to the present non-singletat&4eO in ref. [16],
see also ref. [17]. BRCERcalculations in this framework have reachd- 16 for all contributions
to the functionsPrgg), N = 18 for theirn; parts andN = 20 for the complete limit of a large number

of coloursn, [8]. See refs. [18-21] for earlier calculationsl?pﬁ@ atN< 4.
3. Towards all-N expressions

If the anomalous dimensiornygs(N) = — Pas(N) at N">2LO are analogous to the lower orders, then
they can be expressed in terms of harmonic s§gi®2, 23] and denominatoBX = (N+a)* as

) 2n+1 2n+12n+1-k ‘
Yns (N) = z Coon Sw(N) + Z Z Z Caut Pa Su(N) . (3.1
w=0 a k=1 w=0

The denominators at the calculated valuebl afidicatea = 0, 1 for y%, with coefficientscoo, Caw
that are integer modulo low powers of 1/2 and 1/3. Sums up to weighn-+ 1 occur at N'LO.

Based on a conformal symmetry of QCD at an unphysical number of 4paeeimension®,
it has been conjectured that tNES functionsy,(N) are constrained by ‘self-tuning’ [24, 25],

Vns(N) = W (N+0Vns(N) _B(as)/as)) (3.2)

whereB(as) = —foaZ — B1ad — ... is the beta function, for its present status see refs. [26, 27].
The initial-state (PDF) and final-state (fragmentation-function) anomalousgiores are obtained
for o = —1 ando = 1, respectively, and the universal kernglis reciprocity respecting (RR),
i.e., invariant under replacemeNt— (1—N). Eq. (3.R) implies that the non-RR parts and the
spacelikgtimelike difference are inherited from lower orders. Hence ‘only’ which includes
2"-1RR (combinations of) harmonic sums of weightneeds to be determined at four loops.

Present information, given by the evhtoddN) valuesN < 16 (15) ofy,Ts(3)(N) (y;s(S)(N))
and endpoint constraints (see below), is insufficient to determine+h8 coefficients in eq[(3] 1).
However, y;s = Yy in the largenc limit, hence the known eveN-andodd-N values can be used.
Moreover, alternating sums do not contributeyr,ﬁ in this limit, leaving 1, 1, 2, 3, 5, 8, 13
Fibonacc{w) RR sums at weight'=1,...,7 and a total of 87 basis functions for= 3 in eq. (3.1).

LargeN and smallx limits provide more than 40 constraints on their coefficients. At ldige-
the non-singlet anomalous dimensions have the form [33—35]

VD(N) = AanN =By + N~HCoInN — Dy + L Ag} + O(N2) (3.3)
with InN = InN + ye, wherey, denotes the Euler-Mascheroni constaitandD,, are given by
Clas) = (Aas))® , D(as) = A(a)- (B(as) — B(as)/as) , (3.4)

in terms of lower-order information on the cusp anomalous dimen&fan) = Ajas +A2a,$2 + ...
and the quantity(as) = Bias + Bzas2 4 ... sometimes called the virtual anomalous dimension.

The resummation of smak-double logarithms [28—31] provides the four-loop coefficients of
x8InPx at 4< b < 6 and allain the larger, limit (in full QCD, this holds only at ever for P5(x)
and odda for P,4(X)). Moreover, a relation leading to a single-logarithmic resummati@n-a0,

Vas(N)- (Vns(N) + N — B(as) /as) = O(1) , (3.5)
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has been conjectured in ref. [32]. As far as it can be checked sthiarelation is found to be
correct except for terms wit, = 1% /6 that vanish in the larggg limit.

Taking into account all the above information, it is possible to set up systeBiephantine
equations for the coefficientgog, Caxw Of yﬁ;@)(N) in the largen. limit that can be solved using
the moments X N < 18, leaving the results of the diagram calculatioNat 19,20 as checks.

4. All-N anomalous dimension in the largen limit

The exact expressions for the neﬁ/andnfl parts cannot be shown here due to their length, they
can be found in eq. (3.6) and (3.7) of ref. [8]. For l'll}?eandnf3 terms see ref. [15]. The resulting
largeN coefficientsA_ 4 andB|_ 4 — the subscripk indicates the large limit — are found to be

A= Gend (T e s+ 1804, — 2224,0, ~ 3505 - 3203 — 8767,
~ Genin (2008 209977, | 102927+ 2000, - 2000, - 227,)
(B0 000, 4 2807, %) (2 2g,) (4.1)
and
BLa=Gend (— o Sy~ 1l g Lyt oo Lol + 100%g + 42

1355 — 800,05+ 32050, — 560Z7)

353 85175 137 16186 584 248 16 .,
+Ceng nf( 3 162 ¢ *753+727 54*75253*?55*§53*14456)

127 5036 932 1292 160 32
— G (S — g Cot o Gt o s — o Cala— 5 Gs)
i ey S SR

131 32 304 32
54)
The agreement of the four-loop cusp anomalous dimenfigh (4.1) with thi¢ sesained from the
largen; photon-quark form factor [36,37] provides a further non-trivia¢ck of the determination
of the alliN expressions from the momentshi 18, and hence also of the relatiofis}3.1) —(3.5).

The maximum-weigha‘,’32 and{ parts of eq.[(4]1) also agree with the result obtained in planar
A =4 maximally supersymmetric Yang-Mills theory (MSYM) obtained before in 28] There
is no such direct connection between the four-loop virtual anomalous diomefs?) and its coun-
terparts in planar/” = 4 MSYM; see ref. [39] where the maximum-weight part of €q.](4.2) has
been employed to derive the four-loop collinear anomalous dimension inrplara4 MSYM.

4.2)

The all-N largenc limit of y,i(g)(N) is compared in fig. 1 with the integ&-QCD results at
N < 16. As illustrated in the left panel, the former are a decent approximation tattbefor the
individual nf" contributions. However, as shown in the right panel, there are coabigerancella-
tions between the these contributions. These cancellations are mostpeceddar the physically
relevant number ofi, = 5 light quark flavours outside the large/largex region. Hence the
largen; suppressed contributions — indicated by the subsdtipselow — need to be taken into
account in phenomenologicaPNO analyses.
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Figure 1: The largenc limit of the four-loop anomalous dimensiorwsts<3> (N) (lines) compared to the QCD
results fory,TS(?’)(N) ateverN andy,;s@)(N) at oddN (points). Left: then;-independent contributions. Right:
the results for physically relevant valuesrpf The values have been converted to an expansior.in

5. x-space approximations of the largea. suppressed parts

With eight intege™N moments known for botRrs> (x) and = (x) and the large< and smallx
knowledge discussed in section 2, it is possible to construct approxisgi@ce expressions which
are analogous to (but more accurate than) those used before 2084t $¢e refs. [40—43]. For
this purpose an ansatz consisting of

the two largex parametergy, andBy in eq. (3.B),
two of three suppressed largdegs (1—X) Ink(l—x), k=123,

e one of ten two-parameter polynomialsxihat vanish fox— 1,
e two of the three unknown smatiiogarithms Ifx, k=1,2,3

is built for the largen. suppressed? andn? partsP,\T((;’)1 of Pis® (X). This results in 90 trial func-
tions, the parameters of which can be fixed from the eight available momeintises® functions,

two representative& andB are then chosen that indicate the remaining uncertainty, see fig. 2.

This non-rigorous procedure can be checked by comparing the saatradrd for the large
parts to our exact results. Moreover, the trial functions lead to very siwaliares for the next
moment, e.g.N = 18 for PrTS(3). The residual uncertainty at thid-value is a consequence of
the width of the band at large which in turn is correlated with the uncertainties at smatler
If the spread of the resuk and B would underestimate the true remaining uncertainties, then a

comparison with an additional analytic result at this next valull should reveal a discrepancy.
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Figure 2: About 90 trial functions for the, -independent contribution to the large-suppressed part of

splitting functionP,Ts@(x), multiplied byx%#(1—x). The two functions chosen to represent the remaining

uncertainty are denoted ByandB and shown by solid (blue) lines. Due to the fadtbrx) the contribution
Ay 4 to the four-loop cusp anomalous dimension can be read af=dt

We were able to extend the diagram computations offhearts ofPrg’H(x) toN =18 and find

Pyt (N=18) = 1958888792 < 1958888857..cxact < 1958888968, . (5.1)

A similar check foPJég) has been carried out by deriving a less accurate approximation uging on
seven moments and comparing the results to the now unused viNue 46.

The case 0P (x) has been treated in the same manner, but taking into account that only

its leading smallk logarithm is known up to now [29]. See ref. [8] for the (larjyesuppressed)

additionald 2°°d,;,. contributionPnS§3) (x) to the splitting function for the total valence quark PDF.

6. Numerical results for the cusp and virtual anomalous dimeasions

Combining the exact large; results, the approximations for the remaininfgandn? contributions
and the complete highy contributions of ref. [15], the four-loop cusp anomalous dimension for
QCD withn; quark flavours are given by

A, = 207022) —51719(2)n; +1955772n? + 3.2723443 (6.1)

where the numbers in brackets represent a conservative estimate eféi@ing uncertainty. The
conversion of this result to an expansion in powergglieads to

Aq(as,n; =3) = 0.42441a,(1 + 0.72657a, + 0.7340%2 + 0.66472)a +...)

Aq(as,n =4) = 0.424410, (1 + 0.63815a, + 0.509982 + 0.31682)a +...),

Aq(as,n; =5) = 0.424410, (1 + 0.549730, + 0.2840%2 + 0.01332)a+...). (6.2)
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The corresponding results for the virtual anomalous dimension, i.e., tffeceod of d(1—x) show
a similarly benign expansion with

B, = 2339310) —5551(1)n; + 1938554nf2 + 3.0149821f3 (6.3)
and

Bq(as,nf=3) = 0.31831a (1 + 0.997120, + 1.24116a2 + 1.079113)ad+...),

By(as,nf =4) = 0.318310, (1 + 0.87192a; + 0.9783%2 4 0.564913)a2 +...) ,

Bq(as,n; =5) = 0.318310, (1 + 1.746720, + 0.71907a2 + 0.108513)a +...). (6.4)
Due to constraints by largd-moments, the errors &, andB, are fully correlated. The accuracy
in egs. [6.R) and (8.4) should be amply sufficient for phenomenologigdications.

By repeating the approximation procedure in section 5 for individual cdémtors, it is pos-
sible to obtain corresponding approximate coefficientsAfpandB, which can be summarized as
(for a table of the relevant group invariants see, e.g., appendix C.q#¢dJf

Ay Ba
ct 0 197 + 3.
CG3Ca 0 —687. + 10.
(eZiere 0 1219 + 12,
CG-C3 6103+ 0.3 2956 + 2.4
dabedggeed/N,  —5075+6.0  —996 + 45.
n G —31.00+0.4 814422
nf CCa 3875+ 02 —4557+1.1
n; G-C2 —44065+02 2744+ 1.1
n; dgP°943Pd/N,  —12390+ 0.2 —1435+ 1.2
n?G? —21.31439 —5.775288
N7 CeCa 5836737 5103056
ndC 2.454258 2261237

where the exactly known? andn? coefficients have been included for completeness. Due to the
constraint provided by the exact larggdimit, the errors in this table are highly correlated; for
numerical applications in QCD eqs$. (6.2) ahd](6.4) should be used intkadbove results show
that both quartic group invariants definitely contribute to the four-loop emgpnalous dimension,

for this issue see also refs. [45—-48] and references therein. This éntipéiethe so-called Casimir
scaling between the quark and gluon cages= C- /CaAg, does not hold beyond three loops.

7. N3LO corrections to the evolution of non-singlet PDFs

The effect of the fourth-order contributions on the evolution of the sioglet PDFs can be il-
lustrated by considering the logarithmic derivatives of the respective ioatidns of quark PDFs
with respect to the factorization scalg,s = dIngls/dIn p?, at a suitably chosen reference point.
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As in ref. [1], we choose the the schematic, order-independent initnalitons
X (% 4E) = x%3(1—x)® and a,(ud) = 0.2. (7.1)

For as(M2) = 0.114...0.120 this value foras corresponds tqé ~ 25...50 Ge\? beyond the
leading order, a scale range typical for DIS at fixed-target expets@a at thepcollider HERA.

The new NLO corrections tog|, are generally small, hence they are illustrated in fig. 3 by
comparing their relative effect to that of the?IND contributions for the standard identification
U = Us = u of the renormalization scale with the factorization scale. Except close to the sig
change of the scaling violationsxat- 0.07, the relative RLO effects are (well) below 1% for the
flavour-differencesy; andgy (left and middle panel). TheLO and N'LO corrections are larger
for the valence distributiogs atx < 0.07 due to the effect of thé?°d,p,. ‘sea’ contributiorPS,(x),
note the different scale of the right panel in fig. 3. Also in this case theON\evolution represents
a clear improvement, and the relative four-loop corrections are below 2%.

The remaining uncertainty due to the approximate character of the fousfitiing functions
beyond the largex. limit is indicated by the difference between the solid and dotted (red) curves in
fig. 3 and fig. 4 below. Due to the small size of the four-loop contributiomstha x-averaging’
effect of the Mellin convolution,

P9 = [ Yeran(X). 72)

the results of section 4 are safely applicable to lower valuedtodn one might expect from fig. 2.

The stability of the NLO, NMLO and NPLO results under variation of the renormalization scale
over the range p? < p? < 8p? is illustrated in fig. 4 at typical values af Except close to the
sign change ofy, the variation is well below 1% for the conventional interéauf < My < 2.
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Figure 3: The relative NLO and N'LO corrections to the logarithmic scale derivative of thesinglet
combinationgy3; of quark PDFs for the schematic order-independent ir@b @rn, =4 atyu = .
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Figure 4: The dependence of the NLOZNO and NPLO results forgf; = dIngly/dIn u? on the renormal-
ization scaley, at six typical values ok for the initial conditions 1) and; = 4 flavours. The remaining

uncertainty of the four-loop splitting functidﬁ,§(3)(x) leads to the difference of the solid and dotted curves.

8. Summary and Outlook

The splitting functions for the non-singlet combinations of quark PDFs heee addressed at the
fourth-order (NLO) of perturbative QCD. The quantitié{éts(g) are now known exactly in the limit
of a large number of coloung.. Present results for the largg-suppressed contributions wiﬂﬁ’
and nf1 are still approximate, but sufficiently accurate for phenomenologicdicgipns in deep-
inelastic scattering and collider physicsov and FORTRAN files of these results can be obtained
by downloading the source of ref. [8] froar Xi v. or g.

It would be desirable, mostly for theoretical purposes, to obtain also thlgtemnforms nf0

andn! parts ofPﬁé(g). So far, only their contributions proportional to the valdgsand {; of the
Riemannd -function have been completely determined, together with the (unpubligheyt of
then? contributions. The, parts are particularly simple; in fact, it turns out that they (and atRer
terms) can be predicted via physical evolution kernels from lower-apantities, see refs. [49,50].

Theg part oanis(s), presented in appendix D of ref. [8], includes a (non lamglecontribution

128

= {3G2CR - 2G-GF -+ 120" d3"/NR } 55[S1(N)J2 (8.1)

The resulting IAN largeN behaviour needs to be compensated by fgrerms. Eq.[(8]1) looks ex-
actly like the{s-‘tail’ of the so-called wrapping correction in the anomalous dimensiongia- 4
maximally supersymmetric Yang-Mills theory, see refs. [51,52].
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Phenomenologically, of course, one rather needs corresponduntsries the flavour-singlet
splitting functionsP”@) (x), 1,j = q,9. At present, it appears computationally too hard to obtain
moments of all four functions beyordl = 6 using the method of refs. [9-12]. Therefore one will
need to resort to the OPE, which offers additional theoretical challdngbe massless flavour-
singlet case, see refs. [63-55]. We hope to address this issue i@ futolication.
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