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Electroweak and non-resonant corrections to top-pair production near threshold at NNLO Thomas Rauh

1. Introduction

The total inclusive cross section for the process e+e− → bb̄W+W−X is highly sensitive to
the value of the top-quark mass in the vicinity of the top-pair production threshold

√
s = 2mt . At

a future lepton collider this facilitates the determination of the top-quark mass in a well-defined
mass scheme like MS or PS [1] with an uncertainty of about 50 MeV [2, 3]. In addition the strong
coupling constant and the top-quark width and Yukawa coupling can be determined. Given that
theoretical uncertainties dominate over statistical ones, precise predictions for the cross section are
crucial for this programme.

The challenge in higher-order computations in the threshold region lies in dealing with the
non-relativistic nature of the process. The non-relativistic top pair interacts strongly through a
non-local color Coulomb potential which manifests itself at the level of the cross section as cor-
rections scaling with powers of αs/v, where v is the top-quark velocity. These effects become
non-perturbatively strong in the threshold region, where v∼ αs, and must be resummed. The tech-
niques to perform this resummation are based on effective field theories (EFT) and exploit the
hierarchy between the dynamical scales mt (hard), mtv (soft) and mtv2 (ultrasoft) of the process.
By integrating out the hard and soft modes the problem of solving multiscale Feynman integrals is
divided into simpler calculations of matching coefficients and of a non-relativistic Green function.
Within this approach the QCD corrections have been computed up to NNNLO [3], where the EFT
framework is given by potential non-relativistic QCD (PNRQCD) [4, 5].

The scale uncertainty of the NNNLO QCD result is at the level of only ±3%. We find, how-
ever, that non-QCD effects at NLO yield corrections up to 15% [6, 7], which motivates the calcu-
lation of the full NNLO non-QCD corrections [8] presented in these proceedings. The extension
of the calculation beyond pure QCD requires a systematic treatment of the instability of the top
quark. Counting αEW ∼ α2

s ∼ v2, the top-quark decay width Γt ∼ mtαEW is of the same order as
the ultrasoft scale mtv2, which implies that the narrow width approximation for the top quarks is
unphysical and that we must consider the final state bb̄W+W−X after top decay. Consequently, we
have to take into account not only the resonant production of the final state through the decay of an
intermediate non-relativistic top pair, but also the non-resonant production through hard processes
as shown in Figure 1. The example diagrams are of the relative order αEW/v ∼ αs, where the 1/v
factor accounts for the phase-space suppression for the production of a non-relativistic particle pair
in the resonant part which is not present in the non-resonant contribution, and therefore contribute
at NLO.
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Figure 1: Example diagrams contributing to the non-resonant cross section at NLO. In the left diagram, the
top lines are off-shell, and the antitop ones near mass-shell.
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For the systematic calculation of the non-QCD effects the EFT framework must be extended
to Unstable Particle Effective Theory [9, 10]. Utilizing the optical theorem, the cross section takes
the form

σ(s)∼ Im

[
∑
k,l

C(k)C(l)
∫

d4x 〈e−e+|T[iO(k)†(0) iO(l)(x)]|e−e+〉

+∑
k

C(k)
4e 〈e

−e+|iO(k)
4e (0)|e

−e+〉

]
, (1.1)

where only cuts corresponding to the final state bb̄WWX must be considered when taking the imag-
inary part. The first line of (1.1) corresponds to the resonant cross section, where the production
operator O(l) annihilates the external e+e− state and produces a non-relativistic top pair. The hard
matching coefficients C(l) absorb the corrections to the production from hard modes. The matrix
element must be evaluated with the EFT given by the Lagrangian

L = LPNREFT +L
(−)

SCET +L
(+)

SCET, (1.2)

where LPNREFT follows from the generalization of PNRQCD to electroweak effects and contains
the interactions of the non-relativistic top quarks through potentials and with ultrasoft modes and
L

(∓)
SCET contains the interactions of the collinear electron and positron with collinear and ultrasoft

modes.1 There are no interactions of the top quarks with collinear modes in the EFT, because
momentum conservation implies that they create hard modes which have been integrated out.

The second line of (1.1) corresponds to the non-resonant contribution, which is given by the
matrix elements of local four-electron operators since the non-resonant production is a hard process
and the hard scale has been integrated out in the EFT. The hard matching coefficients C(k)

4e contain
imaginary parts from cuts corresponding to the bb̄W+W−X final state. In practice, we do not
determine the coefficients, but compute the non-resonant cross section directly. The full NLO
contribution is given by the sum of the cross sections for the processes e+e−→ t̄bW+ and e+e−→
tb̄W− evaluated exactly at the threshold s = 4m2

t and has been computed in [6]. Setting s = 4m2
t

isolates the contribution from the hard momentum region, since all other modes only yield scaleless
integrals that vanish in dimensional regularization. The NNLO corrections are given by the O(αs)

corrections to these processes. Doubly non-resonant contributions scale as α2
EW/v∼ α3

s relative to
the LO and need not be considered at NNLO.

The resonant and non-resonant contributions contain finite-width and endpoint divergences,
respectively, which cancel in the sum (1.1) over both parts. Such spurious divergences are common
when momentum regions are separated [11, 12]. In the resonant part, finite-width divergences
appear in the UV region of the loop integration over the momenta of the non-relativistic top quarks,
i.e. in the limit where top quarks that are parametrically close to resonance are far off-shell. They
have been regularized dimensionally and we must employ the same scheme for the computation of
the non-resonant part. The origin of the divergences in the non-resonant part is discussed below.

1It is also possible to integrate out generic collinear modes, keeping only external-collinear modes whose momen-
tum differs from that of the external electron or positron by an ultrasoft amount, see [9, 10].
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2. Non-resonant part at NNLO

As discussed above the non-resonant contribution up the NNLO is given by the sum of the
processes e+e−→ t̄bW+ and e+e−→ tb̄W− at threshold at NLO in QCD. This is not a standard
2→ 3 NLO calculation because of the presence of endpoint divergences which must be regularized
dimensionally. To illustrate this issue we consider the phase-space integral of one of the tree level
diagrams ∫

dLIPSe+e−→t̄bW+ fi(pe+ , pe− , pt̄ , pW+ , pb)

=
m2

t

2π

1∫
x

dt
∫

dLIPSe+e−→t∗t̄

∫
dLIPSt∗→bW+ fi(pe+ , pe− , pt̄ , pW+ , pb)

≡
∫ 1

x
dtgi(t),

(2.1)

where standard phase-space integration techniques have been applied to split the 2→ 3 process into
2→ 1+1∗ and 1∗→ 2 parts with an additional integration over the invariant mass t = p2

t∗/m2
t of the

off-shell top quark. The integration limits x = m2
W/m2

t and 1 follow from the kinematic restrictions
when the bottom-quark mass is neglected. The divergences originate from the endpoint t → 1 of
the integration, where the top-quark, which is parametrically off-shell, becomes resonant. This is
exactly the opposite of the scenario in which the finite-width divergences occur in the resonant part.
E.g. the integrand of the left diagram in Figure 1 takes the form

gh1(t)
t→1
∝

(1− t)1/2−ε

(1− t)2 , (2.2)

where the numerator is a phase-space suppression factor and the denominator comes from the two
top-quark propagators. We note that the width-dependent term in the denominator (p2

t∗ −m2
t +

imtΓt) of the top propagator has been expanded out in (2.2) because in the hard momentum region
p2

t∗ −m2
t ∼ m2

t is parametrically much larger than mtΓt ∼ m2
t αEW. The contribution from this

diagram is divergent but finite in dimensional regularization, because the endpoint divergence as
t → 1 is non-logarithmic. The other tree-level diagrams contain at most one top-quark propagator
and are finite [6], because there are only integrable divergences as t→ 1.

At NNLO this holds no longer true and explicit 1/ε poles appear. We cannot expand the
integrands gi of the NNLO diagrams in ε without spoiling the dimensional regularization of the
remaining t-integration. However, the computation of the full ε-dependence of the gi, which con-
tain phase-space and (for the virtual corrections) loop integrations, is difficult. We therefore use
subtractions for the endpoint divergences

∫ 1

x
dt gi(t) =

1∫
x

dt

gi(t)− ∑
a=1, 3

2 ,2
∑
b

ĝ(a,b)i
(1− t)a+bε

+ ∑
a=1, 3

2 ,2
∑
b

ĝ(a,b)i (1− x)1−a−bε

1−a−bε
, (2.3)

where the expression in square brackets is finite and can be expanded in ε before the integration
over t and the second term is the integrated subtraction term. The subtraction terms are given by the
singular terms in (1− t) with the full ε dependence and have been determined in [13, 8] using the
expansion by regions [11, 12]. The NNLO contributions contain endpoint singular terms scaling as
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(1− t)−(a+bε) with a = 2,3/2,1. Only those with a = 1 yield explicit poles in ε , whereas the other
terms are divergent but finite in dimensional regularization.

We compute the contributions from the endpoint divergent diagrams manually using the sub-
tractions (2.3). For the endpoint finite diagrams we use MadGraph [14] code from which we
remove the contributions from the endpoint divergent diagrams. The details of this computation
are given in [8].

3. Electroweak corrections to the resonant part at NNLO

The resonant part receives corrections due to the decays of the top quarks and other elec-
troweak contributions. At NNLO, we have to consider O(αEW) corrections to the hard matching
coefficients C(k) [15], which become complex because of t̄bW+ and tb̄W− cuts [16, 8]. Further-
more, there are corrections to the matrix element from the QED Coulomb potential −e2

t αem/r and
higher-order terms involving the top-quark width, e.g. time dilatation effects. Last but not least,
we have to consider photon radiation from the initial state (ISR). The ISR yields large logarithms
ln(m2

e/s). Thus, in addition to the fixed order O(αEW) ISR corrections required at NNLO, we re-
sum logarithms at the LL level using the structure function approach where the cross section takes
the form

σw. ISR(s) =
1∫

0

dx1

1∫
0

dx2Γ
LL
ee (x1)Γ

LL
ee (x2)σ(x1x2s). (3.1)

The structure functions ΓLL
ee (x) give the probability of finding an electron with momentum x p in

the ‘parent electron’ with momentum p and can be found in [17]. They are currently not known at
NLL. A detailed discussion of the corrections to the resonant part is given in [8].

4. Phenomenology

The new results have been added to a new version of the QQbar_Threshold code [18],
which will soon become public. The effect of the non-QCD corrections is shown in Figure 2. The
input values are mPS

t = 171.5GeV, Γt = 1.33GeV and the default values of the code for all other
parameters. Our central scale choices are µr = 80GeV and µw = 350GeV where µr is the renor-
malization scale and µw is the scale associated with the finite-width divergences. The dependence
on the latter cancels exactly at NNLO when all corrections are included and only a tiny dependence
remains at NNNLO where not all contributions are known. The QCD cross section is the sum of
the S-wave [3] and P-wave [19] contributions while the full results includes in addition all NNLO
corrections [8] and Higgs effects at NNNLO [7], but no ISR effects. The bands in Figure 2 are
spanned by variation of the renormalization scale between 50 and 350 GeV. The largest corrections
are observed below the threshold where the cross section is reduced by up to 25%. This is where
the cross section itself becomes small and the almost energy-independent non-resonant contribu-
tion yields a large relative correction. The non-QCD corrections also modify the shape of the cross
section, making the remnant of the 1S toponium peak more pronounced.

The ISR corrections are shown in Figure 3 and reduce the cross section by 30 - 45 %. The peak
is smeared out and shifted to the right by almost 200 MeV. This emphasizes the need for a full NLL
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Figure 2: The pure QCD (gray) and full (red) prediction for the total cross section near threshold including
the uncertainty from variation of the renormalization scale between 50 and 350 GeV. Shown are the cross
section in pb (top) and normalized to the full cross section for the central scale µr = 80GeV (bottom).
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Figure 3: The effect of initial state radiation on the cross section.
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description of ISR which is crucial for precision physics at a future lepton collider. We also note
that when electromagnetic initial-state corrections are accounted for at NNLO, the definition of the
ISR convolution is factorization-scheme dependent and one can no longer use a phenomenological
convolution as is often done in experimental studies without reference to the factorization scheme
defining the cross section without ISR.
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Figure 4: The effect of a variation of the input value of the top-quark mass on the prediction for the cross
section. The scale uncertainty band of the full cross section is shown for comparison. The predictions
include ISR effects with the accuracy described in Section 3.

The sensitivity of the cross section to the top-quark mass can be estimated by comparing the
effects of a variation in the input value to the theoretical uncertainty as shown in Figure 4. To a
good approximation a shift δmt in the value of the top-quark mass moves the shape of the cross
section to the right by 2δmt . The region where the slope is large is most sensitive to this shift.
Comparing the effect to the scale uncertainty we expect that the theoretical uncertainty is of the
order of ±40 MeV. This estimate is in agreement with the results of a more realistic simulation [2],
which takes into account the luminosity spectrum and the properties of the detector. Including
statistical uncertainties and experimental systematics, the total uncertainty is expected to be about
±50 MeV.

5. Conclusions

We presented results of a computation of the complete NNLO non-resonant and electroweak
corrections to the total inclusive bb̄W+W−X production cross section in e+e− collisions near the
top-quark pair production threshold [8]. The contributions are important both conceptually, since
they are required to cancel left-over divergences in the pure QCD cross section, as well as phe-
nomenologically, since they lead to sizeable modifications of the cross section. Together with the
NNNLO QCD [3, 19] and Higgs [7] contributions, the high precision of the theory predictions al-
lows a determination of the top-quark mass in a well-defined scheme with an uncertainty of about
50 MeV at a future lepton collider.

Last but not least, we note that the EFT techniques developed for these calculations can also be
used in other contexts. For instance, the understanding of the behaviour of the gg→HH amplitude
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near the top-pair production threshold has recently been used [20] to reconstruct the top-quark mass
dependence of the two-loop amplitude [21, 22] with high accuracy and the approach used there can
also be applied at higher orders and for similar processes.
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