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Exclusive differential spectra in color-singlet processes at hadron colliders are benchmark observ-
ables that have been studied to high precision in theory and experiment. We present an effective-
theory framework utilizing soft-collinear effective theory to incorporate massive (bottom) quark
effects into resummed differential distributions, accounting for both heavy-quark initiated primary
contributions to the hard scattering process as well as secondary effects from gluons splitting into
heavy-quark pairs. We discuss a variable flavor number scheme (VFNS) for the Drell-Yan pro-
cess for the vector-boson transverse momentum qT as an example of an exclusive observable. The
theoretical description depends on the hierarchy between the hard, mass, and the qT scale, rang-
ing from the decoupling limit qT � m to the massless limit m� qT . The phenomenologically
relevant intermediate regime m ∼ qT requires in particular quark-mass dependent beam and soft
functions. We find that the rapidity divergences are different from the massless case and we dis-
cuss features of the resulting rapidity evolution. Our results will allow for a detailed investigation
of quark-mass effects in the ratio of W and Z boson spectra at small qT , which is important for
the precision measurement of the W -boson mass at the LHC.
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Figure 1: Primary (a) and secondary (b) heavy-quark mass effects for Z-boson production.

1. Factorization of quark mass effects for the qT spectrum

1.1 Factorization for massless quarks

Before discussing the massive quark corrections, we first briefly summarize the EFT setup and
factorization for qT � Q for massless quarks. Within this framework the factorized differential
cross section with n f massless quarks reads

dσ

dq2
T dQ2 dY

= ∑
i, j∈{q,q̄}

H(n f )
i j (Q,µ)

∫
d2 pTa d2 pT b d2 pT s δ (q2

T −|~pTa +~pT b +~pT s|2) (1.1)

×B(n f )
i

(
~pTa,xa,µ,

ν

ωa

)
B(n f )

j

(
~pT b,xb,µ,

ν

ωb

)
S(n f )(~pT s,µ,ν)

[
1+O

(qT

Q

)]
,

where

ωa = QeY , ωb = Qe−Y , xa,b =
ωa,b

Ecm
, (1.2)

with Y denoting the rapidity of the Z-boson.
In eq. (1.1), the superscript (n f ) on all functions indicates that the associated EFT operators

and the strong coupling constant in these functions are renormalized with n f active quark flavors.
The logarithms of qT/Q are resummed by evaluating all functions at their characteristic renormal-
ization scales and evolving them to common final scales µ and ν , where ν is the rapidity scale (see
below).

Hi j denotes the process-dependent hard function. It encodes the tree-level result and hard
virtual corrections of the partonic process at the scale µ ∼ Q. The soft function S describes the
wide-angle soft radiation at the invariant mass and rapidity scale µ ∼ ν ∼ qT . Following refs. [1,
2, 3], the renormalized transverse-momentum dependent (TMD) beam functions Bi, which are
essentially equivalent to TMDPDFs, can be matched onto PDFs as

B(n f )
i

(
~pT ,x,µ,

ν

ω

)
= ∑

k

∫ 1

x

dz
z

I
(n f )

ik

(
~pT ,z,µ,

ν

ω

)
f (n f )
k

(x
z
,µ
)[

1+O

(
Λ2

QCD

|~pT |2

)]
≡∑

k
I

(n f )
ik (~pT ,x,µ,

ν

ω
)⊗x f (n f )

k (x,µ) , (1.3)
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where the perturbative matching coefficients Iik describe the collinear initial-state radiation at the
invariant mass scale µ ∼ qT and rapidity scale ν ∼ Q, and the nonperturbative parton distribu-
tion functions (PDFs) are denoted by fk. The matching coefficients Iik and the soft function are
process-independent and have been computed to O(α2

s ) in refs. [4, 5, 6, 7] allowing for a full
NNLL′ analysis of Drell-Yan for massless quarks.

The soft and collinear modes are only separated in rapidity leading to the emergence of rapid-
ity divergences and associated rapidity logarithms. The traditional approach for their resummation
in QCD relies on the work by Collins, Soper, and Sterman [8, 9, 10]. In SCET the factorization
and resummation were devised in refs. [11, 12, 13, 14]. Here we use the rapidity renormalization
approach of refs. [12, 13], where the rapidity divergences are regularized by a symmetric regulator
and are renormalized by appropriate counterterms (by a MS-type subtraction). The rapidity loga-
rithms are then resummed by solving the associated rapidity renormalization group equations (see
sec. 2).

1.2 Factorization with massive quarks

For Z-boson production at NNLL′, primary effects contribute via O(αs)×O(αs) heavy-quark
initiated contributions, illustrated in fig. 1(a). Secondary effects contribute as O(α2

s ) corrections
to light-quark initiated hard interactions, illustrated in fig. 1(b). Due to the strong CKM suppres-
sion primary mb-effects do not play any significant role for W -production, which represents a key
difference to Z-boson production.

Here we do not discuss the factorization in the hierarchy qT �m∼Q, because it is not of phe-
nomenological interest. For further details on the different factorization theorems for the different
hierarchies as well as the one and two-loop results for the massive quark contributions to the beam
and soft functions we refer to ref. [15].

Quark mass effects for qT � m� Q
First we consider the hierarchiy where the quark mass is parametrically larger than the qT

scale, qT � m. In a first step the QCD current is matched onto the SCET current with nl + 1
dynamic quark flavors at the scale µ ∼ Q. Since m� Q this matching can be performed only with
massless quarks, leading to the hard function with nl +1 massless flavors, H(nl+1)

i j , with the strong
coupling inside it renormalized with nl +1 flavors.

In a second step at the scale µ ∼ m, the mass modes are integrated out and the SCET with
nl massless and one massive flavor is matched onto SCET with nl massless flavors with the usual
scaling as in the massless case. Since the soft and collinear mass modes have the same invariant
mass set by the quark mass and are only separated in rapidity, there are rapidity divergences in their
(unrenormalized) collinear and soft contributions. Their renormalization and the resummation of
the associated logarithms can be again handled using the rapidity RG approach in refs. [12, 13],
which has been explicitly carried out in ref. [16].In addition, all renormalized parameters like the
strong coupling constant are matched at the mass scale from nl +1 to nl flavors taking into account
that the massive flavor is removed as a dynamic degree of freedom.

After these steps, the factorization at the low scale ∼ qT proceeds as in the massless case with
all operator matrix elements depending on the nl massless flavors, which yields the factorization

2
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theorem

dσ

dq2
T dQ2 dY

= ∑
i, j∈{q,q̄}

H(nl+1)
i j (Q,µ)Hc

(
m,µ,

ν

ωa

)
Hc

(
m,µ,

ν

ωb

)
Hs(m,µ,ν)

×
∫

d2 pTa d2 pT b d2 pT s δ (q2
T −|~pTa +~pT b +~pT s|2)B(nl)

i

(
~pTa,xa,µ,

ν

ωa

)
×B(nl)

j

(
~pT b,xb,µ,

ν

ωb

)
S(nl)(~pT s,µ,ν)

[
1+O

(qT

Q
,

q2
T

m2 ,
m2

Q2

)]
. (1.4)

Here Hc and Hs denote the hard functions that arise from the matching at the mass scale µ ∼ m.
Their natural rapidity scales are ν ∼ Q for the collinear contributions and ν ∼ m for the soft ones.

Quark mass effects for qT ∼ m� Q
If the qT scale is of the order of the quark mass, qT ∼m, the massive quark becomes a dynamic

degree of freedom, which contributes to the qT spectrum via real radiation effects. In this case, there
is only a single matching at the hard scale µ ∼ Q from QCD onto SCET with these common soft
and collinear modes. This hard matching gives again rise to the (mass-independent) hard function
H(nl+1)

i j for nl +1 massless flavors. The SCET operator matrix elements at the scale µ ∼ qT , i.e. the
beam and soft functions, now encode the effects of the massive quark. They are now renormalized
with nl +1 quark flavors and contain an explicit dependence on the quark mass. When integrating
out the modes with the virtuality qT also the massive quark is integrated out and the collinear
matching functions Iik between the beam functions and the PDFs thus also contain the effect from
changing from nl +1 to nl flavors, i.e.

B(nl+1)
i

(
~pT ,m,x,µ,

ν

ω

)
= ∑

k∈{q,q̄,g}
Iik

(
~pT ,m,x,µ,

ν

ω

)
⊗x f (nl)

k (x,µ)
[
1+O

(Λ2
QCD

m2 ,
Λ2

QCD

q2
T

)]
.

(1.5)

Written out explicitly, the factorization theorem reads

dσ

dq2
T dQ2 dY

= ∑
i, j∈{q,q̄,Q,Q̄}

H(nl+1)
i j (Q,µ)

∫
d2 pTa d2 pT b d2 pT s δ (q2

T −|~pTa +~pT b +~pT s|2)

×
[

∑
k∈{q,q̄,g}

Iik

(
~pTa,m,xa,µ,

ν

ωa

)
⊗x f (nl)

k (xa,µ)

]
×
[

∑
k∈{q,q̄,g}

I jk

(
~pT b,m,xb,µ,

ν

ωb

)
⊗x f (nl)

k (xb,µ)

]

×S(~pT s,m,µ,ν)

[
1+O

(qT

Q
,
m2

Q2 ,
Λ2

QCD

m2 ,
Λ2

QCD

q2
T

)]
, (1.6)

where i, j = Q, Q̄ denotes the massive quark flavor in the sum over flavors. While the evolution of
the PDFs proceeds in nl flavors, the µ-evolution for the hard, beam, and soft functions above the
scale m is now carried out purely with nl +1 flavors.

In this hierarchy quark mass effects enter in eq. (1.6) at O(α2
s ) in two ways: There are sec-

ondary radiation effects appearing in the two-loop soft function S(2) and the flavor-diagonal beam

3
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function matching coefficients I
(2)

qq . In addition, there are primary mass effects arising from a
massive-quark initiated hard process. For Z/γ∗ production, this requires the production of the mas-
sive quarks via gluon splitting in both collinear sectors, which manifests itself in two one-loop
collinear matching coefficients I

(1)
Qg ×I

(1)
Q̄g . For W -boson production, primary charm quark ef-

fects enter already at O(αs) from a single I
(1)

Qg with Q = c. The one loop primary and two loop
secondary massive quark contributions to the beam function and the massive two-loop soft function
have been calculated in ref. [15].

Since the renormalization of the beam functions does not involve parton mixing, the one-loop
primary mass contributions to I

(1)
Qg cannot give rise to rapidity divergences and associated loga-

rithms. On the other hand, the secondary mass effects change the rapidity evolution. In particular,
the beam and soft ν-anomalous dimensions become mass dependent

ν
d

dν
B(nl+1)

i

(
~pT ,m,µ,

ν

ω

)
=
∫

d2kT γ
(nl+1)
ν ,B (~pT −~kT ,m,µ)B(nl+1)

i

(
~kT ,m,µ,

ν

ω

)
,

ν
d

dν
S(nl+1)(~pT ,m,µ,ν) =

∫
d2kT γ

(nl+1)
ν ,S (~pT −~kT ,m,µ)S(nl+1)(~kT ,m,µ,ν) . (1.7)

where γν is the rapidity anomalous dimension. We discuss the implications of the mass dependence
for the rapidity evolution in sec. 2.

Quark mass effects for m� qT � Q

If qT is much larger than the mass, the fluctuations around the mass-shell take place at a
different scale than the jet resolution measurement. This means that the soft modes are described by
a soft function with nl +1 massless flavors at the scale µ ∼ qT . Due to the collinear sensitivity of the
initial-state radiation there are still relevant collinear mass modes. Thus there are collinear modes
in SCET at different invariant mass scale, which can be disentangled by a multistage matching.
First, the beam functions are matched onto the PDFs with nl massless and one massive flavor.
Since this matching takes place at the scale µB ∼ qT � m this gives just the matching coefficients
Iik for nl +1 massless flavors,

B(nl+1)
i

(
~pT ,m,x,µ,

ν

ω

)
= ∑

k∈{q,q̄,Q,Q̄,g}
I

(nl+1)
ik

(
~pT ,x,µ,

ν

ω

)
⊗x f (nl+1)

k (x,m,µ)
[
1+O

(m2

q2
T

)]
.

(1.8)

In a second step, at the mass scale µm ∼ m, the PDFs including the massive quark effects are
matched onto PDFs with nl massless quarks, and with αs in the (nl) flavor scheme,

f (nl+1)
i (x,m,µ) = ∑

k∈{q,q̄,g}
Mik(x,m,µ)⊗x f (nl)

k (x,µ)
[

1+O
(Λ2

QCD

m2

)]
. (1.9)

The PDF matching functions Mik can be expressed in either the (nl) or the (nl +1) flavor scheme
for αs. The PDF matching coefficients are all known at two loops [17].

4
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In total, the factorization theorem reads

dσ

dq2
T dQ2 dY

= ∑
i, j∈{q,q̄,Q,Q̄}

H(nl+1)
i j (Q,µ)

∫
d2 pTa d2 pT b d2 pT s δ (q2

T −|~pTa +~pT b +~pT s|2)

×
[

∑
k∈{q,q̄,Q,Q̄,g}

∑
l∈{q,q̄,g}

I
(nl+1)

ik

(
~pTa,xa,µ,

ν

ωa

)
⊗x Mkl(xa,m,µ)⊗x f (nl)

l (xa,µ)

]
×
[

∑
k∈{q,q̄,Q,Q̄,g}

∑
l∈{q,q̄,g}

I
(nl+1)
jk

(
~pT b,xb,µ,

ν

ωb

)
⊗x Mkl(xb,m,µ)⊗x f (nl)

l (xb,µ)

]

×S(nl+1)(~pT s,µ,ν)

[
1+O

(qT

Q
,
m2

q2
T
,
Λ2

QCD

m2

)]
. (1.10)

As in (1.6), massive quark corrections can arise at O(α2
s ) either via primary mass effects involv-

ing the product of two one-loop PDF matching corrections M
(1)
Qg (for Z/γ∗) generating a massive

quark-antiquark pair that initiates the hard interaction, or via secondary mass effects involving one
two-loop contribution M

(2)
qq . Note that also the running of the light quark and gluon PDFs above

µm generates an effective massive quark PDF, which for large hierarchies m� qT can give O(1)
contributions.

2. Rapidity evolution

Here, we discuss the solutions of the rapidity RGEs and in particular the rapidity evolution
for the mass-dependent soft function in eq. (1.7) for qT ∼ m, where the massive quark corrections
give rise to a different running than for massless flavors. Our primary aim here is to highlight the
different features with respect to the massless case, while leaving the practical implementation for
future work. The rapidity evolution for the mass-mode matching functions Hs and Hc has been
discussed in ref. [16].

The solution of the rapidity RGE for the soft function is substantially more involved due to its
two-dimensional convolution structure on ~pT . The formal solution of the rapidity RGE for massless
quarks is most conveniently found by Fourier transforming to impact parameter space with b = |~b|,
where the rapidity RGE becomes multiplicative

ν
d

dν
S̃(n f )(b,µ,ν) = γ̃

(n f )
ν ,S (b,µ) S̃(n f )(b,µ,ν) . (2.1)

The general form of the rapidity anomalous dimension is

γ̃
(n f )
ν ,S (b,µ) =−4η

(n f )
Γ

(µ0(b),µ)+ γ̃
(n f )
ν ,S (b,µ0(b)) , (2.2)

where the evolution function ηΓ is defined by

η
(n f )
Γ

(µ0,µ) =
∫

µ

µ0

dµ ′

µ ′
Γ
(n f )
cusp[α

(n f )
s (µ ′)] . (2.3)

The logarithms of ln(µ beγE/2) in the second boundary term are eliminated by the canonical scale
choice

µ
(l)
0 (b) =

2e−γE

b
. (2.4)

5
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With this choice, the ν evolution of the soft function in Fourier space at any given scale µ is given
by

S̃(b,µ,ν) = S̃(b,µ,ν0)exp
[

γ̃
(n f )
ν ,S (b,µ) ln

ν

ν0

]
. (2.5)

As is well known, the rapidity evolution kernel becomes intrinsically nonperturbative at 1/b�
ΛQCD [8, 9, 10]. This nonperturbative sensitivity appears through the resummed rapidity anomalous
dimension, which with the canonical scale choice in eq. (2.4) gets evaluated at αs(1/b).

For the massive quark corrections in the regime qT ∼ m the µ dependence of the rapidity
anomalous dimension is the same as for the massless quarks, such that

γ̃
(h)
ν ,S(b,m,µ) = 4η

(nl)
Γ

(µ0(b,m),µ)−4η
(nl+1)
Γ

(µ0(b,m),µ)+ γ̃
(h)
ν ,S(b,m,µ0(b,m)) . (2.6)

Here γ̃
(h)
ν ,S denotes only the contributions of the massive flavor to the full anomalous dimension.

The explicit mass dependence arises in the µ-independent boundary contribution, which depends
on both b and m. From consistency relations we can directly infer the limiting behavior to the
anomalous dimension,

γ̃ν ,S(b,m,µ) = γ̃
(nl+1)
ν ,S (b,µ)+O(m2b2) ,

γ̃ν ,S(b,m,µ) = γ̃
(nl)
ν ,S (b,µ)+ γν ,Hs(m,µ)+O

( 1
m2b2

)
. (2.7)

This means that the massive quark corrections γ̃
(h)
ν ,S are the same as for a massless flavor in the limit

m� 1/b and are the same as the rapidity anomalous dimension of the soft mass mode function Hs

in the limit 1/b� m, provided one uses the (nl + 1) and (nl)-flavor scheme for αs, respectively.
To eliminate the logarithms inside γ̃

(h)
ν ,S, the canonical scale choice µ0(b,m) should behave like the

massless case for m� 1/b and like the choice for the mass-mode matching functions for m� 1/b,

µ
(h)
0 (b,m)∼ µ

(l)
0 (b) =

2e−γE

b
for 1/b→ ∞ ,

µ
(h)
0 (b,m)∼ m for 1/b→ 0 . (2.8)

Since µ
(h)
0 (b,m) freezes out naturally at the perturbative mass scale for 1/b→ 0, the nonperturba-

tive sensitivity in the ν evolution gets regulated by the quark mass for the massive quark contribu-
tions. A convenient choice to eliminate any large terms in both limits is

µ
(h)
0 (b,m) = meK0(bm) , (2.9)

where K0 denotes the modified Bessel function of the second kind. The behavior of this choice as
a function of b compared to the massless result is shown in fig. 2.

The full secondary massive quark corrections at O(α2
s ) to the rapidity anomalous dimension

of the soft function in Fourier space read

γ̃
(h)
ν ,S(b,m,µ) =

(
α
(nl+1)
s (µ)

4π

)2
CFTF

{
−32

3
LbLm−

16
3

L2
m−

160
9

Lm−
448
27

+
8
√

π

3

[
2G3,0

1,3

(
3
2

0,0,0

∣∣∣m2b2
)
+G3,0

1,3

(
5
2

0,0,1

∣∣∣m2b2
)]}

, (2.10)
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Figure 2: The canonical scales µ
(h)
0 (b,M) for the massive case (red, solid) and µ

(l)
0 (b) = µ0(b,M = 0) for

the massless case (blue, dashed) with M = 5 GeV.

where G denotes a Meijer G function and Lb ≡ ln b2µ2e2γE

4 and Lm ≡ ln m2

µ2 .
This result has the limiting behavior

γ̃
(h)
ν ,S(b,m,µ) =

(
α
(nl+1)
s (µ)

4π

)2
CFTF

(
16
3

L2
b +

160
9

Lb +
448
27

)
+O(m2b2) ,

γ̃
(h)
ν ,S(b,m,µ)−

(
α
(nl)
s (µ)

4π

)4
3

Lmγ̃
(1)
ν ,S(b,µ)

=
(

α
(nl+1)
s (µ)

4π

)2
CFTF

(
−16

3
L2

m−
160
9

Lm−
448
27

)
+O

( 1
m2b2

)
, (2.11)

where γ̃
(1)
ν ,S is the one loop anomalous dimension. This term arises when changing the strong cou-

pling from the nl + 1 to the nl flavor scheme, which is necessary to get both limits correctly. To
minimize the logarithms for any regime one should thus adopt a canonical scale choice that satisfies
eq. (2.8), as for example in eq. (2.9).

3. Outlook: Phenomenological impact for Drell-Yan

An accurate description of the qT spectrum is also a key ingredient for a precise measurement
of the W -boson mass at the LHC, which requires a thorough understanding of the W -boson and
Z-boson spectra and in particular their ratio [18, 19, 20, 21]. The associated uncertainties are one
of the dominant theoretical uncertainties in the recent mW determination by the ATLAS collabora-
tion [22]. Our results can be applied to properly take into account bottom quark mass effects for
the Drell-Yan qT spectrum at NNLL′. While a full resummation analysis is beyond the scope of
this paper, we can estimate the potential size of the quark-mass effects by looking at the fixed-order
qT spectrum.

In fig. 3, we show separately the contributions from primary and secondary massive quarks to
the cross section at O(α2

s ), normalized to the O(αs) spectrum dσ (1) including all flavors (treating
the charm as a massless flavor). We utilize the MMHT2014 NNLO PDFs [23] and evaluate the

7
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contributions for µ = mb = 4.8 GeV, Q = mZ , Y = 0, and Ecm = 13 TeV. Note that the secondary
mass contributions at O(α2

s ) are explicitly µ-dependent and scheme-dependent, the nonsingular
mass correction, i.e. the difference between the full massive result for µ ∼ mb and the massless
limit (encoded partially in a massive PDF), is µ independent at this order. As can be seen, the
relative contribution of the bb̄-initiated channel grows with larger qT , while the impact of the sec-
ondary contributions including the full mass dependence is at the sub-percent level throughout the
spectrum. As expected, the nonsingular mass corrections are very small for mb� qT , but can reach
the order of percent for qT ∼ mb, which roughly corresponds to the peak region of the distribution
where the cross section is largest.

The same can also be seen in fig. 4, where we show the mass nonsingular corrections to the
massless limit for primary and secondary contributions as well as their sum. They are shown for
µ = mb on the left and for µ = qT on the right. We see that these corrections are (at fixed order) in-
deed only weakly dependent on the value of µ (for qT & 2 GeV). All in all, the bottom quark mass
can have a relevant effect for high precision predictions of the qT -spectrum at the order of percent
around the peak of the distribution (∼ 5 GeV). Below the peak of the distribution the fixed-order
result is of course not expected to give a reliable quantitative result, and furthermore nonperturba-
tive corrections become important in this regime. Nevertheless, we expect the qualitative features
like the sign and order of magnitude of the mass effects to provide an indication for the behaviour
of the full resummed result.

For W production sizable corrections from bottom quark effects arise only through secondary
contributions (due to the strong CKM suppression of the primary contributions), which have a sim-
ilar impact as for Z-production. On the other hand, charm-initiated production plays an important
role and enters already at O(αs). Estimating the nonsingular mass corrections for qT ∼mc is more
subtle, since higher-order corrections in the strong coupling and nonperturbative effects are likely
to dominate the effect from the known beam function at O(αs) at these low scales. Thus, we do
not attempt to determine their characteristic size here and leave this to future work. An analysis
based on the leading-order matrix element and its potential impact on the determination of mW can
be found in ref. [24].
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Figure 3: Primary (left panel) and secondary (right panel) massive bottom quark contributions for the Z-
boson qT spectrum at fixed O(α2

s T 2
F ) and O(α2

s CF TF), respectively. The results are given relative to the full
O(αs) result including all flavors.
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Figure 4: Different types of mass nonsingular corrections for Z-boson production at µ = mb (left panel) and
µ = qT (right panel).
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