

CP-odd Higgs boson production in two-photon processes

Ken Sasaki

Dept. of Physics, Faculty of Engineering, Yokohama National University Yokohama 240-8501, Japan E-mail: sasaki@ynu.ac.jp

Tsuneo Uematsu*

Institute for Liberal Arts and Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan and Maskawa Institute, Kyoto Sangyo University, Kyoto 603-8555, Japan *E-mail:* uematsu@scphys.kyoto-u.ac.jp

We discuss the CP-odd Higgs boson production through the two-photon processes in $e\gamma$ collisions. First we briefly review the Standard Model Higgs boson production in $e\gamma$ collisions, with special attention to transition form factor and differential production cross section. We then study the production of the CP-odd Higgs boson A^0 which appears in the extended Higgs sector such as the Minimal Supersymmetric Standard Model (MSSM) or in the Two-Higgs Doublet Models (2HDM). The electroweak one-loop contributions to the scattering amplitude for $e\gamma \rightarrow eA^0$ as well as the transition form factor are calculated and expressed in an analytical form. We found that one-loop contribution only comes from top-quark loops. There are no contributions from W-boson loop nor from stop loop. Numerical analysis for the production cross section is presented. It turns out that the $\gamma^*\gamma$ -fusion is far more dominant over the $Z^*\gamma$ -fusion.

13th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to Phenomenology) 25-29 September, 2017 St. Gilgen, Austria

*Speaker.

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

Tsuneo Uematsu

1. Introduction

The Higgs boson with mass about 125 GeV was discovered by ATLAS and CMS at LHC [1] and its spin, parity and couplings were examined [2]. Now it would be intriguing to study its nature in e^+e^- collisions provided by such as linear collider [3]. Along with e^+e^- collider, other options such as e^-e^- , $e^-\gamma$ and $\gamma\gamma$ colliders have also been discussed. See Refs. [4]-[8] and the references therein. We first summarize what we have studied in [9, 10] about standard model (SM) Higgs boson H production through two-photon processes in $e\gamma$ collisions where the scattered electron detected in the final state (single tagging) shown in Fig.1. We calculated the so-

Figure 1: SM Higgs or CP-odd Higgs boson production in $e\gamma$ collision

called "transition form factor" as well as the production cross section, especially their Q^2 (virtual photon mass squared) dependence. It turned out at one-loop order the *W*-boson loop gives dominant contribution compared to the top-quark loop contribution.

We then extend our argument to CP-odd Higgs boson production in two-photon process of $e\gamma$ collisions [11]. In contrast to SM Higgs boson *H*, CP-odd Higgs A^0 has much simpler structure in transition form factor. We found that one-loop contribution only comes from top-quark loops. There are no contributions from W-boson loop nor from stop loop. Numerical analysis for the production cross section is presented. It turns out that the $\gamma^*\gamma$ -fusion is far more dominant over the $Z^*\gamma$ -fusion.

2. SM Higgs production in $e\gamma$ collision

The scattering amplitude for $e(l) + \gamma(p) \rightarrow e'(l') + H(q+p)$ shown in Fig.2 is given by

$$\langle e'H|T|e\gamma\rangle = \bar{u}(l')(-ie\gamma^{\mu})u(l)\frac{-i}{q^2+i\varepsilon}A_{\mu\nu}\varepsilon^{\nu}(p)$$
(2.1)

where $\varepsilon^{\nu}(p)$ is the polarization vector of the incident real photon. Here we have introduced the tensor $A_{\mu\nu}$ which can be decomposed due to gauge invariance as

$$A_{\mu\nu}(q,p) = \left(g_{\mu\nu}(q\cdot p) - p_{\mu}q_{\nu}\right)S_1(m^2, Q^2, m_H^2) + \left(q_{\mu}p_{\nu} - \frac{q^2}{q\cdot p}p_{\mu}p_{\nu}\right)S_2(m^2, Q^2, m_H^2) \quad (2.2)$$

where $q^2 = -Q^2 < 0$, $p^2 = 0$ and $(q + p)^2 = p_H^2 = m_H^2$. We denote collectively the mass of the intermediate particle in the loop by *m*. Since $p^{\nu} \varepsilon_{\nu}(p) = 0$, only S_1 is relevant for the scattering

Figure 2: The transition amplitude for Higgs production via virtual and real photon fusion.

amplitude. We define the "transition form factor" $F_i(m^2, Q^2, m_H^2)$ by

$$F_i(m^2, Q^2, m_H^2) = S_1(m^2, Q^2, m_H^2) / \left(\frac{ge^2}{(4\pi)^2} \frac{1}{m_W}\right)$$
(2.3)

where i = 1/2, 1 for a fermion-loop $F_{1/2}$ and for the W-boson loop F_1 , respectively. *e* and *g* are the electromagnetic and weak gauge couplings, respectively, and m_W is the *W* boson mass.

The total transition form factor is given by

$$F_{\text{total}}(Q^2, m_H^2) = \sum_f N_c e_f^2 F_{1/2}(m_f^2, Q^2, m_H^2) + F_1(m_W^2, Q^2, m_H^2)$$
(2.4)

where N_c is the number of the colors (1 for leptons and 3 for quarks) and e_f is the electric charge of the fermion f in the unit of proton charge. Evaluating the production cross section from Eq.(2.4), we found that at the one-loop level the W-loop contribution dominates over top-quark loop [9, 10].

3. MSSM/2HDM and *A*⁰ production

We now consider a minimal extension of the Higgs sector of the Standard Model (SM). Here we investigate the Two-Higgs Doublet Model (2HDM) for the type-II case which includes the MSSM as a special case [12]. We denote the two $SU(2)_L$ doublets H_1, H_2 , with weak hypercharge Y = -1 and Y = 1, respectively, by the 4 complex scalar fields, ϕ_1^0 , ϕ_1^- , ϕ_2^+ , ϕ_2^0 as follows:

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} \phi_{1}^{0*} \\ -\phi_{1}^{-} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} \phi_{2}^{+} \\ \phi_{2}^{0} \end{pmatrix}$$
(3.1)

where, in the type II model, H_1 (H_2) only couples to the down-type (up-type) quarks and leptons. They acquire the following vacuum expectation values after the spontaneous symmetry breaking:

$$\langle H_1 \rangle = \begin{pmatrix} v_1 \\ 0 \end{pmatrix}, \quad \langle H_1 \rangle = \begin{pmatrix} 0 \\ v_2 \end{pmatrix}, \quad \tan \beta = v_2 / v_1$$
 (3.2)

Then 3 degrees of freedom out of 8 consisting of the 4 complex scalar fields are absorbed by the longitudinal components of W^{\pm} , *Z*, and the remaining 5 physical degrees of freedom become the following two charged and three neutral physical Higgs bosons:

Charged
$$H^+$$
, H^- ; CP-even h^0 , H^0 ; CP-odd A^0 (3.3)

Here we are particularly interested in the CP-odd Higgs boson A^0 , and investigate its transition form factor and the production cross section in the $\gamma^* \gamma$ -fusion process.

We now enumerate some characteristics of the coupling of A^0 for the type II case:

- 1) In contrast to the CP-even Higgs bosons h^0 and H^0 , A^0 does not couple to W^+W^- and ZZ pairs at tree level. Hence W-boson and Z-boson one-loop diagrams do not contribute to the A^0 production.
- 2) A^0 does not couple to other two physical Higgs bosons in cubic interactions.
- 3) The couplings of A^0 to the fermions are proportional to the fermion masses. Therefore, we only consider the top quark for the charged fermion loop diagrams. The A^0 coupling to the top quark with mass m_t is given by $\lambda \gamma_5$ with [12]

$$\lambda = -\frac{gm_t \cot\beta}{2m_W} \,. \tag{3.4}$$

Here g and m_W are the weak gauge coupling and the weak boson mass, respectively.

4) In the case of MSSM, the trilinear A^0 coupling to mass-eigenstate squark pairs $\tilde{q}_i \tilde{q}_i$ (i = 1, 2) vanishes [12]. Hence, the scalar top-quark (stop) does not contribute to the A^0 production in $e\gamma$ collisions at one-loop level.

3.1 Scattering Amplitude for $\gamma^*\gamma$ **Fusion Process**

Figure 3: (a) $\gamma^* \gamma$ fusion diagram for $e\gamma \to e'A^0$ (b) $Z^* \gamma$ fusion diagram for $e\gamma \to e'A^0$

We first consider the case of $\gamma^* \gamma$ fusion process as shown in Fig.3(a). Since *p* is the momentum of a real photon, we have $p^2 = 0$ and $p^{\nu} \varepsilon_{\nu}(p) = 0$, where $\varepsilon_{\nu}(p)$ is the photon polarization vector. We set virtual photon momentum q = l - l'. Assuming that electrons are massless so that $l^2 = {l'}^2 = 0$, we introduce the following Mandelstam variables:

$$q + p = p_A, \quad q^2 = -Q^2, \quad p^2 = 0$$
 (3.5)

$$s = (l+p)^{2} = 2l \cdot p, \quad t = (l-l')^{2} = q^{2} = -Q^{2} = -2l \cdot l', \tag{3.6}$$

$$u = (p - l')^2 = -2l' \cdot p = m_A^2 - s - t .$$
(3.7)

where $p_A^2 = m_A^2$ with m_A being the CP-odd Higgs boson mass.

We evaluate the top-loop amplitude for the $\gamma^* \gamma$ fusion diagram as shown in Fig.3(a):

The scattering amplitude for $e(l) + \gamma(p) \rightarrow e'(l') + A^0(p_A)$ is given by

$$\langle e'A|T|e\gamma\rangle_{\gamma^*\gamma} = \overline{u}_{r'}(l')(-ie\gamma_{\mu})u_r(l)\frac{-i}{q^2+i\varepsilon}A^{\mu\nu}\varepsilon_{\nu}(p,\lambda_2)$$
(3.8)

where $\varepsilon_v(p, \lambda_2)$ is the polarization vector of the incident real photon with momentum *p* and helicity λ_2 . The $u_r(l)$ ($\overline{u}_{r'}(l')$) is the spinor for the initial (scattered) electron with momentum *l* (*l'*) and helicity *r* (*r'*). The tensor $A_{\mu\nu}$ is given as

$$A_{\mu\nu} = -8ie^2 m_t \lambda \varepsilon_{\mu\nu\alpha\beta} q^{\alpha} p^{\beta} \int \frac{d^4k}{(2\pi)^4} \frac{1}{[k^2 - m_t^2][(k+p)^2 - m_t^2][(k+p+q)^2 - m_t^2]} .$$
(3.9)

3.2 One-loop integrals

The above one-loop integral (3.9) is given by the three-point scalar integral by Passarino-Veltman [13]:

$$\frac{1}{(2\pi)^4} \int d^4k \frac{1}{[k^2 - m_1^2][(k + p_2)^2 - m_2^2][(k + p_1 + p_2)^2 - m_3^2]} = \frac{i\pi^2}{(2\pi)^4} C_0(p_1^2, p_2^2, p_3^2, m_1^2, m_2^2, m_3^2)$$
(3.10)

In our present case of e and real γ collision we have

$$C_0(-Q^2, 0, m_A^2, m_t^2, m_t^2, m_t^2) = -\frac{1}{Q^2 + m_A^2} \left\{ \frac{1}{2} g(\rho) + 2f(\tau) \right\}$$
(3.11)

where the dimesionless variables τ and ρ are defined as

$$\tau \equiv \frac{4m_t^2}{m_A^2}, \quad \rho \equiv \frac{Q^2}{4m_t^2} \tag{3.12}$$

and the two functions $f(\tau)$ and $g(\rho)$ we have introduced are given by

$$f(\tau) = \left[\sin^{-1}\sqrt{\frac{1}{\tau}}\right]^2 \qquad \tau \ge 1 \qquad (3.13)$$

$$= -\frac{1}{4} \left[\log \frac{1 + \sqrt{1 - \tau}}{1 - \sqrt{1 - \tau}} - i\pi \right]^2 \qquad \tau < 1$$
(3.14)

$$g(\rho) = \left[\log \frac{\sqrt{\rho+1} + \sqrt{\rho}}{\sqrt{\rho+1} - \sqrt{\rho}}\right]^2$$
(3.15)

Thus we have [11]

$$A_{\mu\nu} = \frac{ge^2}{(4\pi)^2} \frac{\cot\beta}{2m_W} \frac{\tau}{1+\rho\tau} [g(\rho) + 4f(\tau)] \varepsilon_{\mu\nu\alpha\beta} q^{\alpha} p^{\beta}$$
(3.16)

where we have used the relation $\lambda = -gm_t \cot \beta / 2m_W$. Similar combinations of functions $f(\tau)$ and $g(\rho)$ as in Eq.(3.11) with the time-like virtual mass, appear in the Higgs decay processes $H \to \gamma^* \gamma$ and $H \to Z^* \gamma$ in Ref.[14] (see also Ref.[12] for on-shell decays, $H \to \gamma \gamma$ [15] and $H \to Z \gamma$).

3.3 Transition Form Factor

We can define the so-called "Transition Form Factor" as in the case of the standard Higgs boson. Now first we note

$$A_{\mu\nu}(q,p) \equiv \tilde{S}(m_t^2, Q^2, m_A^2) \varepsilon_{\mu\nu\alpha\beta} q^{\alpha} p^{\beta}$$
(3.17)

where we now introduce the transition form factor \tilde{F} as

$$\tilde{F}(m_t^2, Q^2, m_A^2) \equiv \tilde{S}_1(m_t^2, Q^2, m_A^2) / \left(\frac{ge^2}{(4\pi)^2} \frac{1}{m_W}\right) \\ = -\frac{1}{2} \frac{\tau}{1+\rho\tau} [g(\rho) + 4f(\tau)] = 4m_t^2 C_0$$
(3.18)

Since $\tau = (2m_t/m_A)^2$ we have the following two cases depending on the mass of A^0 .

For $m_A < 2m_t$ *i.e.* $\tau > 1$ we have $f(\tau)$ given by Eq.(3.13) which is a real function. While for $m_A > 2m_t$ *i.e.* $\tau < 1$ we have $f(\tau)$ given by Eq.(3.14) which is a complex function. Therefore, the former is real while the latter becomes complex.

We also introduce the total transition form factor \tilde{F}_{total} which includes the all the flavors of the quark-loop, but dominated by top loop.

$$\tilde{F}_{\text{total}}(Q^2) = \sum_f N_c q_f^2 \tilde{F}(\rho_f, \tau_f) \simeq 3 \cdot \left(\frac{2}{3}\right)^2 \tilde{F}(m_t^2, Q^2, m_A^2)$$
(3.19)

We consider the two cases: (a) $m_A = 300 \text{ GeV}$ and (b) $m_A = 400 \text{ GeV}$ shown below (Fig.4(a),(b)).

Figure 4: Transition Form Factor for the mass (a) $m_A = 300 \text{GeV}$ (b) $m_A = 400 \text{GeV}$

(b)

(a)

3.4 Differential cross section

The differential cross section for the CP-odd Higgs production via $\gamma^* \gamma$ fusion in $e\gamma \rightarrow eA^0$ is given by

$$\frac{d\sigma(\gamma^*\gamma)}{dQ^2} = \frac{\alpha_{\rm em}^3}{64\pi} \frac{g^2}{4\pi} \frac{1}{Q^2} \left[1 + \frac{u^2}{s^2} \right] \frac{1}{m_W^2} |\tilde{F}_{\rm total}(Q^2)|^2$$
(3.20)

where $\alpha_{em} = e^2/4\pi$. Since $s = 2l \cdot p$ and $u = -2p \cdot l'$ we note $u = m_A^2 + Q^2 - s$. Hence we obtain

$$\frac{d\sigma(\gamma^*\gamma)}{dQ^2} / \frac{\alpha_{\rm em}^3}{64\pi} \frac{g^2}{4\pi} = \frac{1}{Q^2} \left[1 + \frac{(m_A^2 + Q^2 - s)^2}{s^2} \right] \frac{1}{m_W^2} \left| \frac{4}{3} \tilde{F}(m_t^2, Q^2, m_A^2) \right|^2$$
(3.21)

3.5 Z boson and real γ fusion

The scattering amplitude for $e(l) + \gamma(p) \rightarrow e'(l') + A^0(p_A)$ via $Z^*\gamma$ fusion shown in Fig.3(b) is

$$\langle e'A|T|e\gamma\rangle_{Z^*\gamma} = \frac{g}{4\cos\theta_W}\overline{u}_{r'}(l')(i\gamma_\mu)(f_{Ze}+\gamma_5)u_r(l)\frac{-i}{q^2-m_Z^2}\widetilde{A}^{\mu\nu}\varepsilon_\nu(p,\lambda_2)$$
(3.22)

where

$$\widetilde{A}_{\mu\nu} = 8e \frac{g}{4\cos\theta_W} m_t \lambda f_{Zt} \frac{1}{16\pi^2} C_0(-Q^2, 0, m_A^2, m_t^2, m_t^2, m_t^2) \varepsilon_{\mu\nu\alpha\beta} q^\alpha p^\beta$$
(3.23)

and *e-e-Z* coupling f_{Ze} and *t-t-Z* coupling f_{Zt} are given by

$$f_{Ze} = (-1 + 4\sin^2\theta_W), \qquad f_{Zt} = (1 - \frac{8}{3}\sin^2\theta_W).$$
 (3.24)

Note that the scattering amplitudes both from $\gamma^* \gamma$ -fusion and $Z^* \gamma$ -fusion should be added up. When taking absolute square of the amplitude we get an interference term, which turns out to be positive, in addition to the $\gamma^* \gamma$ - as well as $Z^* \gamma$ - fusion terms as follows:

$$\frac{d\sigma}{dQ^2}(\text{total}) = \frac{d\sigma}{dQ^2}(\gamma^*\gamma - \text{fusion}) + \frac{d\sigma}{dQ^2}(Z^*\gamma - \text{fusion}) + \frac{d\sigma}{dQ^2}(\text{Interference})$$
(3.25)

4. Numerical Analysis

4.1 production cross section

First let us note that the contribution from the $\gamma^* \gamma$ fusion is far more dominant over that from $Z^* \gamma$ -fusion as well as the interference term. We have shown the differential cross sections for the three process in Fig.5 in the case of $\sqrt{s} = 500$ GeV, $m_t = 173$ GeV, $m_A = 400$ GeV, $\cot \beta = 1$. (In fact, the cross sections are proportional to $\cot^2 \beta$.) We observe that at $Q^2 = 1000 (5000)$ GeV² the ratio of $d\sigma/dQ^2(Z^*\gamma)$ to $d\sigma/dQ^2(\gamma^*\gamma)$ is $4.3 \times 10^{-6} (5.2 \times 10^{-5})$ and $d\sigma/dQ^2$ (Interference) to $d\sigma/dQ^2(\gamma^*\gamma)$ is $4.1 \times 10^{-3} (1.4 \times 10^{-2})$. Thus the Z*-boson exchange reaction does not actually affect the $\gamma^* \gamma$ exchange process (Fig.3). This means that the transition form factor makes sense for the A^0 production in $e\gamma$ collision.

Now we shall focus on the $\gamma^* \gamma$ fusion process based on the formula for the production cross section Eq.(3.20). In Fig.6 we have plotted the differential production cross section of A^0 with

Figure 5: Comparison of the contributions from 3 processes: $\gamma^* \gamma$ -fusion, $Z^* \gamma$ -fusion and Interference for $\sqrt{s} = 500$ GeV, $m_t = 173$ GeV, $\cot \beta = 1$, $m_A = 400$ GeV.

mass $m_A = 200$, 300, 400 GeV, for $\sqrt{s} = 500$ GeV and $m_t = 173$ GeV. We find that for this kinematical region the production cross section for A^0 increases as m_A gets larger which looks somewhat unexpected result.

We can examine this behaviour in more detail by computing the differential cross section for fixed Q^2 , which we take to $(100)^2$ GeV².

4.2 The A^0 mass dependence of the production cross section

We have plotted the A^0 mass dependence of the differential cross section $d\sigma/dQ^2$ for $Q^2 = (100)^2 \text{ GeV}^2$ in Fig.7(a) as well as that for the total cross section σ_{total} in Fig.7(b). As m_A varies across the $t\bar{t}$ threshold $2m_t \approx 346$ GeV, the differential cross section $d\sigma/dQ^2$ increases in the region $m_A < 2m_t$, and it turns to decrease when m_A goes beyond $2m_t$.

In both cases, we see the strong kink structure corresponding to the threshold effect at $m_A = 2m_t \approx 346$ GeV.

5. Conclusion

In this talk we have investigated the possible production of the CP-odd Higgs boson A^0 which would appear in the 2HDM/MSSM through $e\gamma$ collisions. In contrast to the SM Higgs boson Has well as to the CP-even Higgs boson h^0 and H^0 , the A^0 does not couple to W^+W^- and ZZ pairs because of the CP-odd nature. Hence at one-loop order W^{\pm} bosons do not contribute to triangle diagrams for the A^0 production, and only top-quark one-loop triangle diagram is relevant. There is no scalar top-quark (stop) contribution. The transition form factor shows much simpler structure.

When the mass of the A^0 boson, m_A is smaller than $2m_t$ the transition form factor is a real function of Q^2 , while if m_A is larger than $2m_t$, the transition form factor becomes complex. The

Figure 6: Differential cross section for the production of CP-odd Higgs boson A^0 with mass $m_A = 200, 300, 400$ GeV.

Figure 7: (a) The A^0 mass dependence of the differential cross section for the CP-odd Higgs production with $Q^2 = (100)^2 \text{GeV}^2$ (b) The A^0 mass dependence of the total cross section for the CP-odd Higgs production.

production cross section of CP-odd Higgs boson is given by the absolute square of the transition form factor together with some kinematical factors.

For a fixed value of m_A , the differential production cross section shows a decreasing function of Q^2 . On the other hand, if we fix Q^2 and vary the mass of A^0 , it increases as m_A for $m_A < 2m_t$ and decreases for $m_A > 2m_t$. This feature is common with the total cross section.

In the $e\gamma$ scattering, the contribution from the $\gamma^*\gamma$ fusion is far more dominant over that from $Z^*\gamma$ fusion. Thus actually we only have to consider the photon- exchange diagram, and it makes sense to talk about the transition form factor of A^0 .

Tsuneo Uematsu

Acknowledgments

We would like to thank the organizers of the RADCOR 2017 for the hospitality at such a well-organized and stimulating symposium.

References

- [1] ATLAS Collaboration, Phys. Lett. B716, 1 (2012); CMS Collaboration, Phys. Lett. B716, 30 (2012).
- [2] ATLAS Collaboration, Phys. Lett. B726, 88 (2013); Phys. Lett. B726, 120 (2013); CMS Collaboration, Phys. Rev. Lett. 110, 081803 (2013).
- [3] http://www.linearcollider.org.
- [4] A. De Roeck, "Physics at a $\gamma^* \gamma$, $e\gamma$ and e^-e^- Option for a Linear Collider", arXiv:hep-ph/0311138 (2003).
- [5] V. I. Telnov, Nucl. Instrum. Meth. A455, 63 (2000) [hep-ex/0001029]; B. Badelek et al., Int. J. Mod. Phys. A19, 5097 (2004) [hep-ex/0108012]; M. M. Velasco et al., eConf C010630, E3005 (2001) [hep-ex/0111055].
- [6] M. Melles, W. J. Stirling and V. A. Khoze, *Phys. Rev.* D61, 054015 (2000); M. Melles, *Nucl. Phys. Proc. Suppl.* 82, 379 (2000); G. Jikia and S. Soldner-Rembold, *Nucl. Phys. Proc. Suppl.* 82, 373 (2000); M. M. Mühlleitner, M. Krämer, M. Spira and P. M. Zerwas, Phys. Lett. B508 (2001) 311; M. M. Mühlleitner, *Acta Phys. Polon.* B37 1127 (2006), [hep-ph/0512232]; D. M. Asner, J. B. Gronberg, and J. F. Gunion, *Phys. Rev.* D67, 035009 (2003); S. J. Brodsky, *Int. J. Mod. Phys.* A20, 7306 (2005); P. Niezurawski, *eConf* C050318, 0503 (2005).
- [7] S. A. Bogacz et al., "SAPPHiRE: a Small γγ Higgs Factory", arXiv:1208.2827 [physics.acc-ph] (2012).
- [8] I. F. Ginzburg and M. Krawczyk, "Testing Higgs Physics at the Photon Collider", arXiv:1310.5881
 [hep-ph] (2013); I. F. Ginzburg and M. V. Vychugin, *Physics of Atomic Nuclei*, 67, (2004) 281.
- [9] N. Watanabe, Y. Kurihara, K. Sasaki and T. Uematsu, *Phys. Lett.* B728, 202 (2014); PoS (RADCOR 2013) 050; PoS (RADCOR 2013) 053; PoS (QFTHEP 2013) 040.
- [10] N. Watanabe, Y. Kurihara, T. Uematsu, and K. Sasaki, Phys. Rev. D90, 033015 (2014).
- [11] K. Sasaki and T. Uematsu, arXiv:1712.00197 [hep-ph] (2017).
- [12] J. F. Gunion, H. E. Haber, G. Kane and S. Dawason, "The Higgs Hunter's Guide" (Addison-Wesley, 1990).
- [13] G. Passarino and M. Veltman, *Nucl. Phys.* B160, 151 (1979); G. 't Hooft and M.J.G. Veltman, *Nucl. Phys.* B153, 365 (1979); G.J. van Oldenborgh and J.A.M. Vermaseren, *Z. Physik* C46 425 (1990).
- [14] J.C. Romao and S. Andringa, Eur. Phys. J. C. 7, 631 (1997).
- [15] J. Ellis, M. K. Gaillard and D. V. Nanopoulos, *Nucl. Phys.* B106, 292 (1976); B. L. Ioffe and V. A. Khoze, *Sov. J. Part. Nucl.* 9, 50 (1978); M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and V. I. Zakharov, *Sov. J. Nucl. Phys.* 30, 711 (1979); *Phys. ReV.* D85, 013015 (2012); T. G. Rizzo, *Phys. ReV.* D22, (1980) 178; M. B. Gavela, G. Girardi, C. Malleville and P. Sorba, *Nucl. Phys.* B193,257 (1981); W. J. Marciano, C. Zhang and S. Willenbrock, *Phys. ReV.* D85, 013002 (2012).