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Higher dimensional HQET parameters
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Effective field theories such as Heavy Quark Effective Theory (HQET) are indispensable tools in
controlling the effects of the strong interaction. The increasing experimental precision requires
the knowledge of higher dimensional operators. We present a general method that allows for an
easy construction of HQET operators that contain two heavy quarks and any number of covariant
derivatives.
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1. Motivation

Inclusive semileptonic B decays and the Q7γ −Q7γ contribution to B→ Xsγ can be described
by a local operator product expansion: Γ = ∑

∞
n=0 m−n

b ∑k ck,n〈Ok,n〉 see the talk “Theory of radiative
B decays" in these proceedings. The Wilson coefficients ck,n are perturbative. The matrix elements
〈Ok,n〉 of Heavy Quark Effective Theory (HQET) operators are non-perturbative and often called
HQET parameters. Higher dimensional HQET parameters are of phenomenological interest. For
example, |Vcb| extraction from inclusive B decays [1] uses dimension 7 and 8 HQET operators [2].

Several questions arise. 1) Are these all the possible HQET operators at dimension 7 and 8?
or do inclusive B decays require a subset of the possible operators? 2) Can we construct higher
dimensional HQET operators? 3) Since HQET and Non Relativistic QCD (NRQCD) are related
[3, 4], what are the corresponding NRQCD operators? 4) What can we learn about the structure of
effective field theories (EFTs)? We will answer all of these questions during this talk.

2. A little bit of history

Because of the relation between HQET, NRQCD, and Non Relativistic QED (NRQED), the
question of possible operators at each dimension can be traced to the early days of quantum me-
chanics. The time and space components of the covariant derivative are Dt = ∂/∂ t + ieA0, DDD =

∇∇∇− ieAAA. Schrödinger equation contain the operator iDt +DDD2/2M. When discussing hydrogen
fine structure one encounters operators such as spin-orbit coupling: σσσ ·BBB, relativistic correction:
DDD4, and the Darwin term: ∂∂∂ ·EEE, where EEE = (−i/g)[D0,DDD] and BBBi = ε i jk(i/2g)[DDD j,DDDk]. Organiz-
ing the operators in a Lagrangian form and keeping operators up to dimension 6, one obtains the
dimension-6 NRQED Lagrangian first presented in 1986 [5]:

L dim≤ 6
NRQED = ψ

†
{

iDt +
DDD2

2M
cFg

σσσ ·BBB
2M

+ cDg
[∂∂∂ ·EEE]
8M2 + icSg

σσσ · (DDD×EEE−EEE×DDD)

8M2

}
ψ. (2.1)

In 1994 the first systematic discussion of HQET parameters was presented in [6]. Between
HQET fields h̄ . . .h the Dirac basis reduces to {1,σσσ}= {1,sλ} with v.s=0, where v is the velocity.
The most general bilinear HQET operator is of the form h̄ iDµ1 . . . iDµn(sλ )h. This operator van-
ishes if it is contracted with vµ1 , vµn , or vλ [6]. Consider matrix elements of such operators between
heavy meson states. One finds one dimension 3 operator with no derivatives: h̄h and dimension 4
operators with one derivatives: h̄ iDµ(sλ )h that have vanishing matrix elements. For dimension 5
and 6 one finds [6]

〈H|h̄(iDα)(iDβ )h|H〉 = 2MH [gαβ − vαvβ ]
1
3

λ1

〈H|h̄(iDα)(iDβ )sλ h|H〉 = 2MHdH iεναβλ vν 1
6

λ2

〈H|h̄(iDα)(iDµ)(iDβ )hv|H〉 = 2MH [gαβ − vαvβ ]vµ

1
3

ρ1

〈H|h̄(iDα)(iDµ)(iDβ )sλ h|H〉 = 2MHdH iεναβλ vνvµ

1
6

ρ2. (2.2)

The same source also discussed higher dimensional operators, but unfortunately the enumeration
of the operators is incorrect.
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For both dimension 5 and 6 we have two HQET parameters corresponding to two operators: a
Spin-Independent (SI) operator and a Spin-Dependent (SD) operator. Notice that this is the same
number of operator as in (2.1). This is not an accident. While HQET and NRQCD differ in their
kinetic terms: L kinetic

HQET = h̄iv ·Dh, L kinetic
NRQCD = ψ†

(
iDt +DDD2/2M

)
ψ , and power counting, there is a

correspondence between HQET and NRQCD (NRQED) operators [3, 4]. For example:

NRQED (1920’s-1980’s) HQET (1990’s)

Dimension 5 DDD2 (iD⊥)2

σσσ ·BBB (iDµ

⊥)(iD
ν

⊥)(−iσ µν)

Dimension 6 [∂∂∂ ·EEE] (iD⊥µ)(iv ·D)(iDµ

⊥)

σσσ · (DDD×EEE−EEE×DDD) (iDµ

⊥)(iv ·D)(iDν

⊥)(−iσ µν)

Table 1: Correspondence between dimension 5 and 6 HQET and NRQCD (NRQED) operators. The
notation is σ µν = i[γµ ,γν ]/2 and Dµ

⊥ = Dµ − v ·Dvµ .

In 1997 the NRQCD and HQET Lagrangian up to dimension 7 was given in [3]. The La-
grangian contains four SI and five SD operators. Two of the SD operators containing σσσ · (BBB×BBB)
and σσσ · (EEE×EEE) vanish for NRQED.

The dimension 7 contribution to semileptonic decays was discussed in 2006 in [7] and again
in 2010 in [2]. How many operators do we have at dimension 7? For SI operators [6] lists two, [3]
lists four, [7] lists three, and [2] lists four. For SD operators [6] lists five, [3] lists five, [7] lists two,
and [2] lists five. HQET-NRQCD correspondence implies four SI and five SD operators.

What about dimension 8 operators? [2] lists seven SI operators and eleven SD operators. In
2012 the dimension 8 NRQED Lagrangian was given in [8]. It lists four SI operators and eight SD
operators. Comparing to [2] the operators not listed in [8] are presumably NRQCD operators that
vanish for NRQED.

In all of the papers [5, 6, 3, 7, 2, 8] there is no derivation of the operators for each dimension.
We learn from this history that finding all of the HQET and NRQCD operators at a given dimension
is not easy. Is there a systematic way to do that?

3. Higher dimensional HQET parameters

As shown in [4] the answer is yes . We consider matrix elements of the form 〈H|h̄ iDµ1 . . . iDµnh|H〉
and 〈H|h̄ iDµ1 . . . iDµnsλ h|H〉 and decompose them in terms of tensors vµi , gµiµ j , and εαβρσ , sub-
ject to constraints from Parity and Time reversal symmetry (PT ), Hermitian conjugation, and the
fact that we are working in four dimensions.

Parity and time reversal are symmetries of HQET. In particular under their combined operation
we have p = (p0,~p) PT→ (p0,~p) = p⇒ v = p/m PT→ v, iDµ PT→ iDµ , h̄h PT→ h̄h, and h̄sλ h PT→− h̄sλ h.
Since T is anti-linear we have in total

〈H|h̄ iDµ1 . . . iDµnh|H〉 PT
= 〈H|h̄ iDµ1 . . . iDµnh|H〉∗

〈H|h̄ iDµ1 . . . iDµnsλ h|H〉 PT
= −〈H|h̄ iDµ1 . . . iDµnsλ h|H〉∗ . (3.1)
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We conclude that matrix elements of SI operators are real and matrix elements of SD operators are
complex.

Since h̄h, h̄sλ h, iDµ are hermitian, using Hermitian conjugation we find that

〈H|h̄ iDµ1 . . . iDµn(sλ )h|H〉= 〈H|
(

h̄ iDµ1 . . . iDµn(sλ )h
)†
|H〉∗ = 〈H|h̄ iDµn . . . iDµ1(sλ )h|H〉∗ .

(3.2)
Combining this with the PT constraints we find that under inversion of the indices matrix elements
of SI operators are symmetric and matrix elements of SD operators are anti-symmetric.

H is a pseudo-scalar so the matrix element can only depend on the tensor vµi ,gµiµ j , and εαβρσ .
Alternatively following [2] we define Πµν = gµν−vµvν . For the standard choice of v = (1,0,0,0):
Π00 = 0 and Πi j =−δ i j. Since the indices in εαβρσ cannot all be orthogonal to v, we can replace
εαβρσ by εαβρσ vα . In the following we will decompose the matrix elements in term of vµi ,Πµiµ j ,

and εαβρσ vα .
Another constraint arises from the fact that we are working in four dimensions. As a result not

all tensors with more than four indices are independent. For example for the dimension 7 SD HQET
operators we need the tensor Πµνεαβρσ vα . Three of its indices are the same and tensors obtained
by permuting its indices are not linearly independent. Analogous constraint for SI operators start
at dimension 11 where we need Πµ1µ2Πµ3µ4Πµ5µ6Πµ7µ8 . Since all of the indices are space-like, we
must have four identical indices.

Using these general consideration one can list the various HQET parameters that appear in
the decomposition of the general HQET operator of a given dimension. The dimension 5 and 6
decompositions are listed in (2.2). Let us find the decomposition of the dimension 7 SI operator.
The matrix element is 〈H|h̄ iDµ1 iDµ2 iDµ3 iDµ4h|H〉. Consider its decomposition in terms possible
tensors. We can have a product of two Π’s or a product of Π and two v’s. For products of two Π’s
we can contract µ1 with µ2,µ3, or µ4 using Π. The other two indices are also contracted by Π. In
total we have three such combinations of two Π’s. Using two v’s, they can only be contracted with
µ2 and µ3 giving us a fourth tensor. In total we have

1
2MH

〈H|h̄ iDµ1 iDµ2 iDµ3 iDµ4h|H〉 = a(7)12 Π
µ1µ2Π

µ3µ4 +a(7)13 Π
µ1µ3Π

µ2µ4 +

+ a(7)14 Π
µ1µ4Π

µ2µ3 +b(7)Πµ1µ4vµ2vµ3 . (3.3)

Similarly one can find the decomposition of the SD operator:

1
2MH

〈H|h̄ iDµ1 iDµ2 iDµ3 iDµ4sλ h|H〉= iã(7)12

(
Π

µ1µ2ε
ρµ3µ4λ vρ −Π

µ4µ3ε
ρµ2µ1λ vρ

)
+

+iã(7)13

(
Π

µ1µ3ε
ρµ2µ4λ vρ −Π

µ4µ2ε
ρµ3µ1λ vρ

)
+ iã(7)14 Π

µ1µ4ε
ρµ2µ3λ vρ +

+ iã(7)23 Π
µ2µ3ε

ρµ1µ4λ vρ + ib̃(7)vµ2vµ3ε
ρµ1µ4λ vρ . (3.4)

The notation for the parameters is such that the subscript denotes the first two indices that are
contracted via Π’s in numerical order, and the dimension of the operators appears in the superscript.
How many HQET operators do we have at dimension 7? the answer is four SI operators and five
SD operators confirming [3] and [2].
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The dimension 8 decomposition is

1
2MH

〈H|h̄ iDµ1 iDµ2 iDµ3 iDµ4 iDµ5h|H〉= a(8)12 (Πµ1µ2Π
µ3µ5vµ4 +Π

µ1µ3Π
µ4µ5vµ2)+

a(8)13 (Πµ1µ3Π
µ2µ5vµ4 +Π

µ3µ5Π
µ1µ4vµ2)+a(8)15 (Πµ1µ5Π

µ3µ4vµ2 +Π
µ1µ5Π

µ2µ3vµ4)+

b(8)12 Π
µ1µ2Π

µ4µ5vµ3 +b(8)14 Π
µ1µ4Π

µ2µ5vµ3 +b(8)15 Π
µ1µ5Π

µ2µ4vµ3 + c(8)Πµ1µ5vµ2vµ3vµ4 (3.5)

1
2MH

〈H|h̄ iDµ1 iDµ2 iDµ3 iDµ4 iDµ5sλ h|H〉= iã(8)12

(
vµ3Π

µ1µ2ε
ρµ4µ5λ vρ − vµ3Π

µ4µ5ε
ρµ2µ1λ vρ

)
+iã(8)14

(
vµ3Π

µ1µ4ε
ρµ2µ5λ vρ − vµ3Π

µ5µ2ε
ρµ4µ1λ vρ

)
+ iã(8)15 vµ3Π

µ1µ5ε
ρµ2µ4λ vρ + iã(8)24 vµ3Π

µ2µ4ε
ρµ1µ5λ vρ

+ ib̃(8)13

(
vµ2Π

µ1µ3ε
ρµ4µ5λ vρ − vµ4Π

µ5µ3ε
ρµ2µ1λ vρ

)
+ ib̃(8)14

(
vµ2Π

µ1µ4ε
ρµ3µ5λ vρ − vµ4Π

µ5µ2ε
ρµ3µ1λ vρ

)
+

+ ib̃(8)15

(
vµ2Π

µ1µ5ε
ρµ3µ4λ vρ − vµ4Π

µ1µ5ε
ρµ3µ2λ vρ

)
+ ib̃(8)34

(
vµ2Π

µ3µ4ε
ρµ1µ5λ vρ − vµ4Π

µ3µ2ε
ρµ5µ1λ vρ

)
+

+ ib̃(8)35

(
vµ2Π

µ3µ5ε
ρµ1µ4λ vρ − vµ4Π

µ3µ1ε
ρµ5µ2λ vρ

)
+ ib̃(8)45

(
vµ2Π

µ4µ5ε
ρµ1µ3λ vρ − vµ4Π

µ2µ1ε
ρµ5µ3λ vρ

)
+

+ ic̃(8)vµ2vµ3vµ4ε
ρµ1µ5λ vρ . (3.6)

How many HQET operators do we have at dimension 8? The answer is seven SI operators and
eleven SD operators confirming [2]. Similarly one can find the dimension 8 NRQCD operators that
vanish for NRQED. These are given in [4].

We can go beyond known results in the literature. For example, there are 24 possible dimension
9 HQET operators [4]:

1
2MH

〈H|h̄ iDµ1 iDµ2 iDµ3 iDµ4 iDµ5 iDµ6h|H〉= a(9)12,34 Π
µ1µ2Π

µ3µ4Π
µ5µ6 +

+a(9)12,35 (Π
µ1µ2Π

µ3µ5Π
µ4µ6 +Π

µ1µ3Π
µ2µ4Π

µ5µ6)+a(9)12,36 (Π
µ1µ2Π

µ3µ6Π
µ4µ5 +Π

µ1µ4Π
µ2µ3Π

µ5µ6)+

+a(9)13,25 Π
µ1µ3Π

µ2µ5Π
µ4µ6 +a(9)13,26 (Π

µ1µ3Π
µ2µ6Π

µ4µ5 +Π
µ1µ5Π

µ2µ3Π
µ4µ6)+a(9)14,25 Π

µ1µ4Π
µ2µ5Π

µ3µ6 +

+a(9)14,26 (Π
µ1µ4Π

µ2µ6Π
µ3µ5 +Π

µ1µ5Π
µ2µ4Π

µ3µ6)+a(9)15,26 Π
µ1µ5Π

µ2µ6Π
µ3µ4 +a(9)16,23 Π

µ1µ6Π
µ2µ3Π

µ4µ5

+a(9)16,24 Π
µ1µ6Π

µ2µ4Π
µ3µ5 +a(9)16,25 Π

µ1µ6Π
µ2µ5Π

µ3µ4 +b(9)12,36 (Π
µ1µ2Π

µ3µ6vµ4vµ5 +Π
µ1µ4Π

µ5µ6vµ2vµ3)+

+b(9)12,46 (Π
µ1µ2Π

µ4µ6vµ3vµ5 +Π
µ1µ3Π

µ5µ6vµ2vµ4)+b(9)12,56 Π
µ1µ2Π

µ5µ6vµ3vµ4 +

+b(9)13,26 (Π
µ1µ3Π

µ2µ6vµ4vµ5 +Π
µ1µ5Π

µ4µ6vµ2vµ3)+b(9)13,46 Π
µ1µ3Π

µ4µ6vµ2vµ5 +

+b(9)14,26 (Π
µ1µ4Π

µ2µ6vµ3vµ5 +Π
µ1µ5Π

µ3µ6vµ2vµ4)+b(9)14,36 Π
µ1µ4Π

µ3µ6vµ2vµ5 +b(9)15,26 Π
µ1µ5Π

µ2µ6vµ3vµ4 +

b(9)16,23 (Π
µ1µ6Π

µ2µ3vµ4vµ5 +Π
µ1µ6Π

µ4µ5vµ2vµ3)+b(9)16,24 (Π
µ1µ6Π

µ2µ4vµ3vµ5 +Π
µ1µ6Π

µ3µ5vµ2vµ4)+

+b(9)16,25 Π
µ1µ6Π

µ2µ5vµ3vµ4 +b(9)16,34 Π
µ1µ6Π

µ3µ4vµ2vµ5 + c(9) Π
µ1µ6vµ2vµ3vµ4vµ5 . (3.7)

An interesting question is what are the Wilson coefficients of the operators. In particular what
are the relations between coefficients of operators of different dimensions. These are known as
“reparameterization invariance" [10] or “Lorentz invariance" constraints [11]. For NRQED such
relations are known for up to dimension 8 operators [11, 8] but not for NRQCD or HQET operators
above dimension 6. Such relations allow to determine the contribution of a certain higher dimen-
sional operators based on the knowledge of lower dimensional operators. This has applications to
semileptonic and radiative B decays, see e.g. [12, 13, 14].
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4. Conclusions

We presented a general method to construct HQET operators by using the tensor decompo-
sition of HQET matrix elements. There are several applications to this method. First, the tensor
decomposition allows to easily relate different bases1. In [4] we relate it to the dimension 7 oper-
ators basis of [3] and [2] and the dimension 8 operators basis of [2]. Second, we present for the
first time the decomposition of the general SI dimension 9 HQET operator, equation (3.7). Third,
in [4] moments of the leading power shape function are calculated up to and including dimension
9 HQET operators. This can improve the parameterization of the shape function relevant to the
extraction of |Vub|. Fourth, in [4] we present the full dimension 8 NRQCD Lagrangian.

We can now answer the questions posed earlier. 1) Are the dimension 7 and 8 HQET operators
in [2] all the possible operators? Yes. 2) Can we construct higher dimensional HQET operators?
Yes, we presented the general method for that. 3) What are the corresponding NRQCD operators?
The answer is given in [4]. 4) What can we learn about the structure of EFTs? It seems to be
simpler than we might think. This is also the conclusion of [15] for the Standard Model EFT.
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