

D^* and τ polarization measurements by Belle

Karol Adamczyk**

H. Niewodniczański Institute of Nuclear Physics, Kraków E-mail: adamczykarol@ifj.edu.pl

Semitauonic $\overline{B} \to D^{(*)} \tau \overline{v_{\tau}}$ decays provide a wide variety of observables sensitive to new physics contributions, such as differential distributions and polarizations. Of particular interest is τ polarization, that cannot be accessed in other semileptonic decays. Furthermore D^* polarization can be measured fairly accurately, so it can be good discriminant of some new physics scenarios. Correlations between various observables offer a rich laboratory to investigate the structure of interactions in semitauonic B decays. In this report, preliminary results on the first measurement of τ polarization and prospects for the D^* polarization measurements are presented.

9th International Workshop on the CKM Unitarity Triangle 28 November - 3 December 2016 Tata Institute for Fundamental Research (TIFR), Mumbai, India

*Speaker. [†]On behalf of the Belle Collaboration

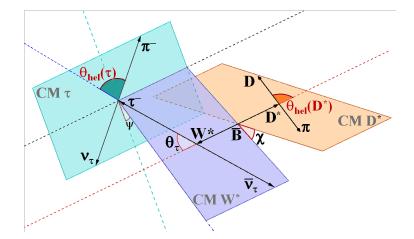
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Experimental situation and motivation

Semitauonic *B* decays are sensitive to new physics (NP), beyond the Standard Model (SM), at the tree level[1, 2]. Due to the larger mass of τ compared to others leptons, decays $\overline{B} \rightarrow D^{(*)}\tau \overline{v_{\tau}}$ are sensitive to NP contributions, especially in the form of charged scalars[3, 4]. Semitauonic *B* decays have been studied experimentally by Belle[5, 6, 7, 8, 9], BaBar[10] and LHCb[11]. So far measurements concerned mainly branching fraction ratios of semitauonic and semileptonic *B* decays defined as

$$R(D^{(*)}) = \frac{\mathscr{B}(B \to \bar{D}^{(*)}\tau^+ \nu_{\tau})}{\mathscr{B}(B \to \bar{D}^{(*)}\ell^+ \nu_{\ell})}$$
(1.1)

where ℓ refers to either an electron or a muon. The relative rates are independent of most theoretical (the $|V_{cb}|$ element of the CKM matrix, some form factors) and experimental uncertainties (reconstruction efficiencies). The world average of measured values of $R(D^{(*)})$ are approximately 4σ above the SM[12], with a surprisingly large effect observed in the $\overline{B} \rightarrow D^{(*)}\tau \overline{\nu_{\tau}}$ mode. Investigation of the nature of this tension is an important topic in flavor physics that requires comprehensive measurements covering a broad range of observables in semitauonic *B* decays. In particular, measurements of polarizations in semitauonic *B* decays can provide more information on a structure of new interactions.


 $\overline{B} \to D^{(*)} \tau \overline{v_{\tau}}$ decays are experimentally challenging since there are at least two neutrinos: one from *B* and one or two from τ decay, so they lack clear-cut kinematic constraints and cannot be fully reconstructed. In B-factories, that are clean sources of exclusive $B\overline{B}$ meson pairs, semitauonic *B* decays are tagged by reconstructing the recoiling *B*-meson (B_{tag}), which decays either hadronically or semileptonically. Most measurements employ hadronic decays of B_{tag} reconstructed in a large number of the exclusive modes [7, 9, 10]. B_{tag} reconstruction provides information on quantum numbers of the accompanying *B* meson (B_{sig}) and, in the case of hadronic B_{tag} decays, on the momentum vector of B_{sig} , allowing for a partial kinematic reconstruction of semitauonic *B* decays. Fig.1 shows kinematic variables describing $\overline{B} \to D^{(*)} \tau \overline{v_{\tau}}$ decay. Of special interest are the two helicity angles $\theta_{hel}(\tau)$ and $\theta_{hel}(D^*)$ (accessible at B-factories) that enable polarization measurements of τ and D^* respectively.

2. τ polarization measurement in $B \rightarrow D^* \tau v$ by Belle

The analysis is based on the full data sample of $772 \cdot 10^6 B\bar{B}$ pairs accumulated with the Belle detector at the $\Upsilon(4S)$ resonance in the e^+e^- asymmetric collider KEKB. Using hadronic tagging method and two-body τ decays $\tau^- \to \pi^- v_{\tau}$ and $\tau^- \to \rho^- v_{\tau}$ first measurement of P_{τ} simultaneously with $R(D^*)$ has been made[9] for combined $\overline{B^0} \to D^{(*)-}\tau \overline{v_{\tau}}$ and $B^- \to D^{(*)0}\tau \overline{v_{\tau}}$ decays. The τ lepton polarization is defined as:

$$P_{\tau} = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-},$$

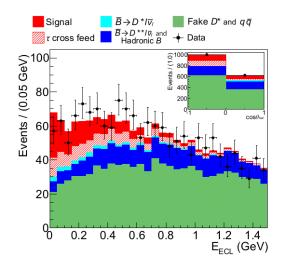
where Γ^{\pm} denotes the decay rate of $\overline{B} \to D^{(*)} \tau \overline{\nu_{\tau}}$ with a τ helicity of $\pm 1/2$. The SM value of τ polarization in $\overline{B} \to D^{(*)} \tau \overline{\nu_{\tau}}$ decay is $P_{\tau} = -0.497 \pm 0.013$ [2], however it can be significantly modified by NP. The τ polarization is accessible in two-body τ decays ($\tau \to h\nu_{\tau}$), and can be

Figure 1: Kinematic variables used to describe semitauonic *B* decays: θ_{τ} - angle between τ and *B* in W^* rest frame; $\theta_{hel}(D^*)$ - angle between *D* and direction opposite to *B* in D^* rest frame; $\theta_{hel}(\tau)$ - angle between π and direction opposite to W^* in τ rest frame; χ - angle between the W^* ($\tau \overline{v_{\tau}}$) and D^* decay planes; $q^2 \equiv M_W^2 = (p_{B_{tag}} - p_{D^*})^2$ - effective mass squared of the W^* ($\tau \overline{v_{\tau}}$) system; $M_M^2 = (p_{beam} - p_{B_{tag}} - p_{D^*} - p_l)^2$ - missing mass squared (effective mass of neutrinos). M_W^2 , M_M^2 , $\theta_{hel}(D^*)$ and $\theta_{hel}(\tau)$ can be reconstructed at B-factories using hadronic decays of B_{tag} .

extracted from the following formula:

$$\frac{d\Gamma}{d\cos\theta_{\rm hel}(\tau)} = \frac{1}{2}(1 + \alpha P_{\tau}\cos\theta_{\rm hel}(\tau)),$$

where θ_{hel} denotes the angle between meson momentum (the τ daughter) in the rest frame of the τ lepton with respect to the direction of τ lepton in the $(\tau \overline{v_{\tau}})$ rest frame. Optimal analyzing power have decays to pseudoscalar meson $h = \pi, K$, for which the coefficient $\alpha = 1$. In decays to vector meson $(h = \rho, a_1), \alpha = \frac{m_{\tau}^2 - 2m_V^2}{m_{\tau}^2 + 2m_V^2}$, where m_{τ} is the mass of τ lepton, m_V is the mass of vector meson, and for $\tau \to \rho v$: $\alpha = 0.45$. Even though the τ vector is not fully reconstructed the $\cos \theta_{hel}(\tau)$ can be uniquely determined from the following formula: $\cos \theta_{hel}(\tau) = 1 - \frac{2m_{\tau}^2 M_M^2}{(M_W^2 - m_{\tau}^2)(m_{\tau}^2 - m_h^2)}$, where m_h is the mass of τ daughter. Measurement of $\cos \theta_{hel}(\tau)$ distribution is demanding because it is modified by cross-feeds from signal events with other τ decays, and background contamination.


To measure P_{τ} , the region of $\cos \theta_{hel}(\tau)$ is divided into two bins: $\cos \theta_{hel}(\tau) > 0$ (forward) and $\cos \theta_{hel}(\tau) < 0$ (backward). The value of P_{τ} is then extracted from the forward-backward asymmetry of the signal yields, and it is given by the formula

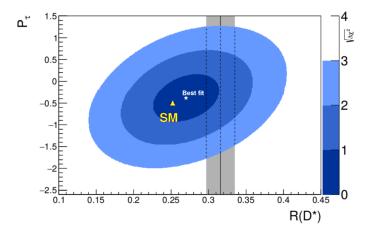
$$P_{ au} = rac{2}{lpha} rac{N_{ ext{sig}}^F - N_{ ext{sig}}^B}{N_{ ext{sig}}^F + N_{ ext{sig}}^B},$$

where the superscript F(B) denotes the signal yield in the forward (backward) region. For the $\tau \to \pi \nu$ mode the region of $\cos \theta_{hel} > 0.8$ is excluded from the analysis due to a large peaking background coming from $B \to D^* \ell \nu$ decays. Corrections to the raw P_{τ} value are applied to take into account detector effects (acceptance, asymmetric $\cos \theta_{hel}(\tau)$ bins, crosstalks between different τ decays). In the presented analysis, the value of P_{τ} is measured simultaneously with $R(D^*)$. The number of events in normalization mode $(B \to \overline{D}^{(*)} \ell^+ \nu_{\ell})$ is extracted from missing mass distribution in the region $-0.2 < M_{miss}^2 < 0.85 \text{ GeV}^2/c^4$.

Backgrounds can be categorized into four components: $\bar{B} \to D^* \ell^- \bar{v}_\ell$, $\bar{B} \to D^{**} \ell^- \bar{v}_\ell$ together with hadronic *B* decays, fake D^* and continuum. The semileptonic component contaminates the signal sample due to the misassignment of the lepton as a pion, and it is fixed from the fit to the normalization sample. In this analysis, the main background comes from the hadronic *B* decays with a few missing final-state particles, and its yield is determined as a free parameter in the final fit. The yield of the fake D^* component is fixed from a comparison of the data and MC in the $\Delta M = M_{D^*} - M_D$ sidebands regions. The fraction of the continuum $e^+e^- \to q\bar{q}$ process is negligible and is fixed using MC expectation.

Signal extraction is done by a 2D extended binned maximum likelihood fit to E_{ECL} (summed energy of clusters not used in the reconstruction of B_{sig} and B_{tag} candidates) and M_{M}^2 distributions. The fit is performed in two steps; the first fit is to the normalization sample, and then a simultaneous fit for the eight signal samples: $(B^-, \overline{B}^0) \otimes (\pi^- v_\tau, \rho^- v_\tau) \otimes$ (forward, backward). The fit result is illustrated in fig.2. The obtained signal and normalization yields for $B^-(B^0)$ mode are, respectively, 210 ± 27 (88±11) and 4711±81 (2502±52), where the errors are statistical.

Figure 2: Result of the fit[13] to the combined signal sample. The main panel and the sub panel show the E_{ECL} and the $\cos \theta_{\text{hel}}(\tau)$ distributions, respectively. The red-hatched histogram combines the $\rho \leftrightarrow \pi$ cross-feed and the other τ cross-feed components.


The following preliminary result¹ is obtained

$$P_{\tau} = -0.44 \pm 0.47(stat.)^{+0.20}_{-0.17}(syst.)$$
$$R(D^*) = 0.276 \pm 0.034(stat.)^{+0.029}_{-0.026}(syst.)$$

and is presented in fig.3. Dominant systematics come from hadronic *B* decays composition $\begin{pmatrix} +7.6\% \\ -6.8\% \end{pmatrix}$, $\begin{pmatrix} +0.13 \\ -0.10 \end{pmatrix}$ and limited MC statistics for probability density functions (PDFs) of shapes $\begin{pmatrix} +4.0\% \\ -2.8\% \end{pmatrix}$, $\begin{pmatrix} +0.15 \\ -0.11 \end{pmatrix}$. The first P_{τ} measurement in semitauonic *B* decays is achieved, and this is also the first $R(D^*)$ measurement using only the hadronic τ decays.

Combined $R(D^*)$ and P_{τ} result is consistent with the SM within 0.6 σ . These are still crude constraints due to limited statistics but better precision can be expected at Belle II experiment.

¹Final result is published in[13]

Figure 3: Comparison of Belle result (star for the best-fit value and 1σ , 2σ , 3σ contours) with the SM prediction[1, 2] (triangle). The shaded vertical band shows the world average[12] without Belle result.

3. Prospects for D^* polarization measurements

 D^* polarization in $\overline{B} \to D^{(*)} \tau \overline{\nu_{\tau}}$ decays is capable to distinguish between NP operators, whose Lorentz structure is different from that of the SM[14, 15, 16, 17, 18, 19]. Especially it can be sensitive to scalar and tensor operators, which are present in leptoquark models[20].

The D^* polarization can be extracted from angular distribution in $D^* \to D\pi$ decays. The polar angle distribution in the helicity frame is given by

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\rm hel}(D^*)} = \frac{3}{4} [2F_L^{D^*}\cos^2(\theta_{\rm hel}(D^*)) + (1 - F_L^{D^*})\sin^2(\theta_{\rm hel}(D^*))],$$

where $F_L^{D^*}$ is fraction of longitudinal polarization of D^* . The SM theoretical predictions for $F_L^{D^*}$ are in the range of [0.46 - 0.53][2, 21]

The D^* polarization is easier to measure than τ polarization because all τ decays are useful. Additionally, it is not affected by cross-feeds between different τ decays. Among the main experimental challenges to measure D^* polarization there are strong acceptance effects. In particular, the region of $\cos \theta_{hel}(D^*) > 0$ is depleted due to the fact that at $\cos \theta_{hel}(D^*)$ close to +1, the pion goes backwards in the D^* rest frame, and thus has lower momentum in the laboratory frame. The effect increases with increasing q^2 , and effectively only the region of $\cos \theta_{hel}(D^*) < 0$ is useful for measurement.

Using the full Belle data sample, and applying the most efficient technique of inclusive² B_{tag} reconstruction[5, 6] one can expect ~300 signal events in the cleanest decay mode $\overline{B^0} \rightarrow D^{*+}\tau^-\overline{\nu_{\tau}}$ (with the following decay chains: $D^{*+} \rightarrow D^0\pi; D^0 \rightarrow K^-\pi, K^-\pi^+\pi^0, K^-\pi^+\pi^-\pi^+; \tau^- \rightarrow \ell^-\nu_{\tau}\nu_{\overline{\tau}}, \pi^-\overline{\nu_{\tau}}$) allowing to measure $F_L^{D^*}$ with the statistical uncertainty of ~ ±0.1, so this observable can provide competitive tests of NP.

²In this method B_{tag} is reconstructed from all particles that remain after reconstructing the signal side ($D^{(*)}$ and τ daughter).

Karol Adamczyk

4. Summary

Combined $R(D^{(*)})$ measurements by BaBar, Belle and LHCb show about 4σ tension with the SM, so more data of different observables are needed to explain the puzzle. Polarizations of τ and D^* in $\overline{B} \to D^{(*)}\tau\overline{v_{\tau}}$ are interesting observables sensitive to NP that can be measured at B factories. In this paper the first constraint on τ polarization and a new, statistically independent, measurement of $R(D^*)$ are reported. Preliminary results show $P_{\tau} = -0.44 \pm 0.47(stat.)^{+0.20}_{-0.17}(syst.)$, $R(D^*) = 0.276 \pm 0.034(stat.)^{+0.029}_{-0.026}(syst.)$. Prospects of D^* polarization measurement are also discribed. Precise determination of the polarizations in semitauonic *B* decays will be important topic at Belle II, where 50 times larger data sample will be accumulated.

5. Acknowledgments

I would like to thank the organizers of CKM2016 conference for the opportunity to give this talk and for partial financial support.

References

- [1] S. Fajfer, J. F. Kamenik i I. Nisandzic, Phys. Rev. D 85, 094025 (2012)
- [2] M. Tanaka, R. Watanabe, Phys. Rev. D 87, 034028, (2013)
- [3] B. Grządkowski, W. Hou, Phys. Lett. B 283, 427, (1992).
- [4] W. S. Hou, Phys. Rev. D 48, 2342, (1993).
- [5] A. Matyja, M. Różańska, et al., [Belle collaboration], Phys. Rev. Lett. 99, 191807, (2007).
- [6] A. Bożek, M. Różańska, et al., [Belle Collaboration], Phys. Rev. D 82, 072005, (2010).
- [7] M. Huschle, T. Kuhr, M. Heck, P. Goldenzweig, *et al.* [Belle collaboration], Phys. Rev. D 92, 072014 (2015).
- [8] Y. Sato et al. [Belle collaboration], Phys. Rev. D 94, 072007
- [9] S. Hirose, T. Iijima, *et al.* [Belle collaboration], arXiv:1608.06391 (preliminary)
- [10] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. Lett. 109, 101802, (2012).
- [11] R. Aaij et al. [LHCb Collaboration] Phys. Rev. Lett. 115, 111803
- [12] Y. Amhis et al. (Heavy Flavor Averaging Group), arXiv:1612.07233 (2016) and online update at http://www.slac.stanford.edu/xorg/hfag/
- [13] S. Hirose, T. Iijima, et al. [Belle collaboration], arXiv:1612.00529 (final results)
- [14] A. Datta, M. Duraisamy, D. Ghosh, Phys. Rev. D 86, 034027 (2012)
- [15] Y. Sakaki, M. Tanaka, A. Tayduganov, R. Watanabe, Phys. Rev. D 91, 114028 (2015)
- [16] A.K. Alok, D. Kumar, S. Kumbhakar, S.U. Sankar, arXiv:1606.03164
- [17] M.A. Ivanov, J.G. Körner, C-T. Tran, arXiv:1607.02932
- [18] D. Becirevic, S. Fajfer, I. Nisandzic, A. Tayduganov, arXiv:1602.03030
- [19] S. Bhattacharya, S. Nandi, S. K. Patra, Phys. Rev. D 93, 034011 (2016)
- [20] Y. Sakaki, M. Tanaka, A. Tayduganov, R. Watanabe Phys. Rev. D 88, 094012, (2013).
- [21] M. Duraisamy, A. Datta, JHEP09(2013)059 (2013)