
P
o
S
(
C
K
M
2
0
1
6
)
0
7
8
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We investigate the impacts of resonant and non-resonant backgrounds to B→ K∗(→ Kπ)νν̄ de-
cay. Such effects arise beyond the narrow width approximation of the K∗ meson. The non-
resonant amplitudes are studied using Heavy-Hadron-Chiral-Perturbation theory in the kinematic
region of low hadronic recoil. We find that in the K∗ signal window the non-resonant amplitudes
induce an uncertainty of about 20% in the branching fraction, and at most few % in the longi-
tudinal polarization fraction FL. Uncertainties induced by broad scalar resonances K∗0 and κ are
at the level of few percents in the branching fraction in the K∗ signal window and negligible in
longitudinal polarization fraction FL. Since the effects of background in FL are small, this ob-
servable can be used to test form factors, or alternatively the right-handed currents in the entire
q2-region. We define a new observable, the forward-backward asymmetry AK

FBL that can be used
to experimentally constrain the resonant and non-resonant backgrounds.
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On the resonant and non-resonant effects in the B→ K∗(→ Kπ)νν̄

1. Introduction

The B→K∗(→Kπ)νν̄ is a rare semi-leptonic decay that is induced by b→ sνν̄ flavor chang-
ing neutral current (FCNC) transition which is sensitive to physics beyond the Standard Model
(SM). In the past several decades, FCNC transition in b→ s`+`− have been the topic of extensive
theoretical and experimental investigations [1, 2]. Unlike b→ s`+`−, the b→ sνν̄ is not sub-
ject to electromagnetic effects so factorization is exact and the form factors are the only source of
hadronic uncertainty in B→ K∗(→ Kπ)νν̄ decay. It is therefore expected to play and important
role in searches of new physics in the upcoming B-physics experiments. However, final state neu-
trinos make it experimentally challenging to measure and the current best upper limit from Belle at
90% confidence level reads [3]

B(B→ K∗νν̄)< 1.8×10−5 , (1.1)

which is around the corner of the prediction in the SM. For detailed NP analysis in b→ sνν̄ see
Refs. [4, 5, 6, 7, 8]. In this article we study the backgrounds induced by the broad scalar resonances
K∗0 (1430) and κ that decay to a Kπ pair and that induced by the non-resonant B→ Kπνν̄ decay.
These effects in B→ K∗`+`− have been studied in [9, 10, 11] and [12, 13] and recently the S-wave
fraction in B→ K∗(→ Kπ)µ+µ− was measured by the LHCb Collaboration [14].

The article is organized as follows. We describe the b→ sνν̄ effective Hamiltonian in Sec. 2.
The differential distributions in the presence of resonant and non-resonant modes are worked out
in Sec. 3 and we do the numerical analysis in Sec. 4.

2. Effective Hamiltonian

The low energy effective Hamiltonian for b→ sνν̄ transition reads [4, 6]

Heff =−
4GF√

2
λt

α

8π

[
(CL +CR)(s̄γµb)+(CR−CL)(s̄γµγ5b)

]
∑

i
ν̄iγ

µ(1− γ5)νi +h.c , (2.1)

where α is the electromagnetic coupling constant, λt =VtbV ∗ts and i = e,µ,τ . In the SM the Wilson
coefficient CL is calculated at the next-to-leading order in perturbative QCD [15, 16] and is given
by CL = −X(m2

t /m2
W )/sin2

θW where the loop function is X(m2
t /m2

W ) = 1.469± 0.017 [17]. The
right handed coupling CR is zero in the SM but arise in the extensions of SM.

3. The resonant and non-resonant contributions to B→ K∗(→ Kπ)νν̄

In our notation, the four-momentum of B,K∗,K,π are pB,k, pK and pπ , respectively, and the
four-momentum of neutrino and the anti-neutrino are pν and pν̄ . The angle between the kaon and
the opposite direction of B in the Kπ rest frame is defined as θK . We work in the transversity
basis where the three transversity amplitudes in the narrow width approximation (NWA) of the K∗

are denoted by H⊥,‖,0. The detailed expressions of H⊥,‖,0 in terms of the B→ K∗ form factors
V (q2),A0,1,2(q2), where q = pν + pν̄ , are given in Ref. [18]. For our numerical analysis we use the
form factors given in Ref. [19] that were obtained from the combined fit to the results calculated in
the light-cone sum rules (LCSR) [19] and in the Lattice QCD [20].
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In this work, we go beyond the NWA of the K∗ by parameterizing its propagator by Breit-
Wigner type ansatz and re-writing the transversity amplitudes as H̃0,‖,⊥(q2, p2), where p= pK + pπ .
As we go beyond the NWA we include the contributions of broad intermediate scalars K∗0 (1430)
and κ that decay to Kπ pair and the contributions four body non-resonant B→ Kπνν̄ mode. For
simplicity we will denote both K∗0 (1430) and κ as K∗0 .

The B→ Kπ form factors are known from calculations in Heavy-Hadron-Chiral-Perturbation-
Theory (HHχPT) [21] expected to be valid in the region where pB.pK,π/mB . 1GeV which is
satisfied in the high-q2 region. We take the B→ K∗0 form factors from QCD-sum-rules calculations
[22] which is valid in the low-q2 region. To this end in Sec. 4 we perform our analysis in two q2

regions, “low-q2” corresponds to [0-14]GeV2 and “high-q2” corresponds to [14-19]GeV2.
Adding the amplitudes of three contributions we get the three-fold differential distribution as

d3Γ

dq2d p2d cosθK
=

3N(q2)|~q′||~p′K |
3×8(2π)5m2

B

√
p2

[
|e−iδ H̃⊥+Hnr

⊥ |2 + |e−iδ H̃‖+Hnr
‖ |

2

+ |e−iδ H̃0 +Hnr
0 + e−iδ H̃0

′
|2
]
. (3.1)

In the numerator of the above equation, the factor of three correspond to summation of three flavors
of the final state neutrinos. Here Hnr

0,‖,⊥(q
2, p2) are the transversity amplitudes of the non-resonant

mode while H̃ ′0(q
2, p2) denote the transversity amplitudes of the B→K∗0 (→Kπ)νν̄ for finite width

of the K∗0 [18]. The expressions of |~q′|, |~p′K | are defined in [18]. Here we have introduced a relative
strong phase δ between the resonant and the non-resonant modes. We define the longitudinal
polarization fraction FL and its q2-averaged version 〈FL〉 as

FL =
dΓL/dq2

dΓ/dq2 , 〈FL〉=

∫ q2
max

q2
min

dΓL/dq2∫ q2
max

q2
min

dΓ/dq2
. (3.2)

In addition, we define the forward-backward asymmetry AK
FB, or alternatively, AK

FBL as

AK
FB(L) ≡

∫ 1
0 d cosθK

d2Γ

dq2d cosθK
−
∫ 0
−1 d cosθK

d2Γ

dq2d cosθK

Γ(L)
, (3.3)

where ΓL is the longitudinal decay rate defined in [18]. These observables are studied in the next
section

4. Numerical Analysis

We perform our analysis in two different regions of p2, P-cut within [(mK∗−0.1GeV)2,(mK∗+

0.1GeV)2] and S+P-cut within [(mK +mπ)
2,1.44GeV2]. For a fixed p2, the q2 end point is a

function of p2, that is q2
max = (mB−

√
p2)2. We begin with by calculating the branching ratio and

the FL in the NWA of the K∗ in the absence of any backgrounds. Integrating in the full q2 region
[0-19]GeV2 we find

B(B→ K∗ν̄ν) = (9.49±1.01)×10−6 , 〈FL〉= 0.49±0.04 , (4.1)
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which are consistent with [5, 8, 17]. For the pure B→K∗(→Kπ)νν̄ at finite width, the differential
branching ratio and the FL are shown in Fig. 1. The bands correspond to the uncertainties coming
from the B→ K∗ from factors and input parameters. In the first two rows of Tab. 1 we show the
values of q2 integrated branching ratio in the NWA and for finite width of the K∗ with P- and S+P-
cuts. The q2 integrated values of FL do not differ between P- and S+P-cut for finite width of the K∗

and in NWA. Our predictions read FL = 0.54± 0.04 for low-q2 and FL = 0.34± 0.02 for high-q2

where errors correspond to the uncertainties in B→ K∗ and parametric inputs.

0 5 10 15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

q2@GeV2D

dB
�d

q2
´

10
-

6
@G

eV
-

2
D

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

q2@GeV2D

F
L

Hq
2

L

Figure 1: Shown are the differential branching fraction (on the left) and longitudinal polarization fraction
FL (on the right) for pure B→ K∗(→ Kπ)νν̄ as a function of q2 for p2 in the P-cut. The error bands
correspond to the uncertainties due to the B→ K∗ form factors and parametric inputs. The data points in
black correspond to form factor calculations in lattice QCD [20, 23].

The effects of the intermediate scalar states are shown in Fig. 2 as the ratio of pure B→ K∗(→
Kπ)νν̄ branching ratio and branching ratio that additionally includes B→K∗0 (→Kπ)νν̄ for P- and
S+P-cuts. The scalar backgrounds induced uncertainties are at most few percents in P-cut and at
most∼ 10% in the S+P-cut. We find that such effects are negligible in the longitudinal polarization
fraction. Note that we refrain from studying the impacts of the scalar resonances at high-q2 as it
would require extrapolation of the scalar form factor into the highly off-shell region for the scalar
resonances. In the third row of Tab. 1 we show the low-q2 integrated branching ratio involving both
K∗ and K∗0 . The ranges shown correspond to the minimal and maximal values obtained by varying
the scalar form factor and input parameters related to the scalar amplitude only. The forward-
backward asymmetry AK

FB(L) which is shown in Fig. 2 is induced by the interference of the K∗ with
intermediate scalars can be used to test the model of the scalar contribution.

In Fig. 3 we show the ratio of branching ratio and FL involving the vector meson K∗ and the
non-resonant mode, normalized by the pure K∗ mode as a function of the relative strong phase δ in
the high-q2 region. Both the numerator and the denominator of the ratios are separately integrated
over high-q2 and in P- and S+P-cuts. As can be seen from the figures the strong phase induces an
uncertainty up to 20% in the branching ratio for P-cut and about 2.5% in longitudinal polarization
fraction. In the last row of Tab. 1 we show the high-q2 integrated branching ratio involving the
K∗ and the non-resonant mode. The first errors correspond to the uncertainties coming from the
B → K∗ from factors and and the last errors correspond mostly to the unknown strong phase.
Our prediction for longitudinal polarization is 〈FL〉(B→ (K∗+ nonres)(→ Kπ)νν̄)|P−,S+P−cut =

0.34± 0.02± 0.01, where the first error correspond to the uncertainties coming from the B→ K∗

form factors while the second errors correspond to the uncertainties coming from the B→Kπ from
factors and the relative strong phase. Also shown in Fig. 3 is the forward-backward asymmetry
AK

FB L which can be used to constrain the strong phase [18].
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Figure 2: Left: The ratio of differential branching ratios involving only the K∗ meson and the differential
branching ratio that additionally involves intermediate scalar resonances. Middle (Right): The forward-
backward asymmetry AK

FB(p2) (AK
FB L(p2)) as a function of p2 in the low-q2 region. The corresponding

decay rate(see Eq. 3.3) have been obtained by integrating in the low-q2 region and p2 in the S+P-cut.

q2 ∈ [0−14]GeV2 q2 ∈ [14−19]GeV2

B(B→ K∗νν̄)|NWA 6.96±0.76 2.50±0.22

B(B→ K∗(→ Kπ)νν̄)|P−cut 6.01±0.65 2.09±0.22
B(B→ K∗(→ Kπ)νν̄)|P+S−cut 6.80±0.73 2.29±0.23

B(B→ (κ,K∗0 )(→ Kπ)νν̄)
∣∣
P−cut [0.01 . . .0.07] −

B(B→ (κ,K∗0 )(→ Kπ)νν̄)
∣∣
S+P−cut [0.04 . . .0.30] −

B(B→ (K∗+nonres)(→ Kπ)νν̄)|P−cut − 2.09±0.22+0.56
−0.29

B(B→ (K∗+nonres)(→ Kπ)νν̄)|S+P−cut − 2.29±0.23+0.77
−0.27

Table 1: The SM branching fractions (in units of 10−6) in low- and high-q2 and for different cuts in p2. See
texts for details.
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Figure 3: Left(Middle) :The ratio between the branching ratio (〈FL〉) involving intermediate vector meson
K∗ and non-resonant mode and the branching ratio (〈FL〉) involving the intermediate vector meson K∗ only
as a function of the relative strong phase δ for p2 in the P- and S+P-cut. The bands correspond to the
uncertainties coming from the non-resonant form factors only. Right: The forward-backward asymmetry
AFBL(p2) for different values of the relative strong phase.

5. Conclusions

We have investigated the B→ K∗(→ Kπ)νν̄ decay and its uncertainties induced by the broad
intermediate scalar resonances K∗0 (1430), κ that decay to Kπ final states, and that induced by the
non-resonant four body decay B→ Kπνν̄ . These effects are important beyond the NWA of the
vector meson K∗. The current availability of the B→ (K∗0 ,κ) and B→ Kπ form factors restrict
us to study the effects separately in the low- and high-q2 regions. At low-q2, the contributions of
the scalar resonances on branching ratio are at most of the order 1% in the P-cut and . 4% in the
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S+P-cut. However, the impacts of scalar resonances on the longitudinal polarization fraction FL

is negligible. On the other hand, at high-q2 the non-resonant contributions to the uncertainty in
branching ratio is of O(0.1) and few % in FL. These uncertainties can be reduced with a better
knowledge of form factors and line shapes. Additionally, the forward-backward asymmetry AK

FB L
can be used to experimentally constrain hadronic backgrounds irrespective of the short distance
model.
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