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The measurement of RD (RD∗ ), the ratio of the branching fraction of B→ Dτν̄τ(B→ D∗τν̄τ) to
that of B→ Dlν̄l(B→ D∗lν̄l), shows 1.9σ (3.3σ) deviation from its Standard Model (SM) pre-
diction. The combined deviation is at the level of 4σ according to the Heavy Flavour Averaging
Group (HFAG). In the paper [1] , we perform an effective field theory analysis (at the dimension
6 level) of these potential New Physics (NP) signals assuming SU(3)C×SU(2)L×U(1)Y gauge
invariance. We first show that, in general, RD and RD∗ are theoretically independent observables
and hence, their theoretical predictions are not correlated. We identify the operators that can ex-
plain the experimental measurements of RD and RD∗ individually and also together. Motivated by
the recent measurement of the τ polarisation in B→ D∗τν̄τ decay, PD∗

τ by the BELLE collabora-
tion, we study the impact of a more precise measurement of PD∗

τ (and a measurement of PD
τ ) on

the various possible NP explanations. Furthermore, we show that the measurement of RD∗ in bins
of q2, the square of the invariant mass of the lepton neutrino system, along with the information
on τ polarisation, can completely distinguish the various operator structures.
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1. Introduction

The quantity RD(∗) is defined as the following ratio between two branching ratios:

RD(∗) =
B(B→ D(∗)τν̄τ)

B(B→ D(∗)lν̄l)
(1.1)

where l = e,µ . This quantity, being a ratio, is a ‘clean’ observable devoid of the systematic uncer-
tainties that plague individual measurements of branching ratios. Experimental measurements of
these two quantities - 0.397± 0.028 for RD and 0.316± 0.019 for RD∗ [2] - don’t match with the
theoretical predictions from the Standard Model (SM) - 0.300±0.011 for RD and 0.254±0.004 for
RD∗ . This corresponds to deviations 1.9σ and 3.3σ significance for RD and RD∗ respectively, while
the discrepancy for the two taken together is quite large ∼ 4σ 1. This might well be a signal for
new physics and we perform a model-independent analysis of the process using six-dimensional
operators; in this analysis, we assume that any NP only affects the third leptonic generation.

Besides RD and RD∗ , we also consider the binned value of RD and RD∗ , the polarisation of
the final state τ lepton, PD

τ and PD∗
τ and the forward-backward asymmetry in the two processes,

A D
FB and A D∗

FB
2. While a recent measurement of PD∗

τ has been reported by BELLE for the first time
(although with large errors) [4], none of the other quantities have been experimentally measured as
yet. The definitions of the observables is given below:

Binned RD(∗) : RD(∗) [q2 bin] =
B(B→ D(∗)τν̄τ)[q2 bin]
B(B→ D(∗)lν̄l)[q2 bin]

(1.2)

Tau Polarisation : PD(∗)
τ =

ΓD(∗)
τ (+)−ΓD(∗)

τ (−)
ΓD(∗)

τ (+)+ΓD(∗)
τ (−)

(1.3)

FB Asymmetry : A D(∗)
FB =

∫ π/2
0

dΓD(∗)
τ

dθ
dθ −

∫
π

π/2
dΓD(∗)

τ

dθ
dθ∫ π/2

0
dΓD(∗)

τ

dθ
dθ −

∫
π

π/2
dΓD(∗)

τ

dθ
dθ

(1.4)

The branching ratio can be written as

d2BD(∗)
`

dq2d(cosθ)
= N |pD(∗) |

(
aD(∗)
` +bD(∗)

` cosθ + cD(∗)
` cos2

θ

)
(1.5)

where

N =
τB G2

F |Vcb|2q2

256π3M2
B

(
1−

m2
`

q2

)2

and |pD(∗) |=

√
λ (M2

B,M
2
D(∗) ,q2)

2MB

where λ (a,b,c) = a2 +b2 + c2−2(ab+bc+ ca) and θ is the angle between the lepton and D(∗)-
meson in the lepton-neutrino centre-of-mass frame.

The decay amplitude for the process can be factorised into two parts - the hadronic part an the
leptonic part. The hadronic part of the decay amplitude cannot be calculated exactly and is param-
eterised using form factors. These form factors are calculated in some theoretical and numerical
framework and, in this work, we choose to simply borrow those results.

1It is worth noting that even though the quoted results suggest a large deviation, a recent measurement of RD∗ by
the BELLE collaboration [4] is consistent with the SM value, although the measurement is quite imprecise.

2In principle, various differential distributions are also sensitive to the different NP Lorentz structures, see e.g., [3].
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2. Lagrangian and Operator Basis

The effective six-dimensional Lagrangian for b→ c` ν̄` we use for the analysis is given by:

Ocb`
VL = [c̄γ

µ b][ ¯̀γµ PL ν ]

Ocb`
AL = [c̄γ

µ
γ5 b][ ¯̀γµ PL ν ]

Ocb`
SL = [c̄ b][ ¯̀PL ν ]

Ocb`
PL = [c̄γ5 b][[ ¯̀PL ν ]

Ocb`
TL = [c̄σ

µν b][ ¯̀σµν PL ν ]

Ocb`
VR = [c̄γ

µ b][ ¯̀γµ PR ν ]

Ocb`
AR = [c̄γ

µ
γ5 b][ ¯̀γµ PR ν ]

Ocb`
SR = [c̄ b][ ¯̀PR ν ] (2.1)

Ocb`
PR = [c̄γ5 b][[ ¯̀PR ν ]

Ocb`
TR = [c̄σ

µν b][ ¯̀σµν PR ν ]

and the set of Wilson Coeffients (WCs) corresponding to these operators are defined at the
renormalization scale µ = mb.

In the SM, we would have Ccb`
VL = −Ccb`

AL = 1. We wish to go beyond the SM, but we shall
respect the full gauge invariance of the SM and consequently only consider the operators listed on
the left in 2.1. Further, since it is difficult to build a microscopic model with tensor interaction, we
neglect its contribution in this note.(For the study of tensor operators, refer to the Appendix of [1]).

3. Form Factors

3.1 For B→ D decay

The non-zero hadronic matrix elements for B̄→ D transition (ignoring the tensor) are param-
eterized by

〈D(pD,MD)|c̄γ
µb|B̄(pB,MB)〉 = F+(q2)

[
(pB + pD)

µ −M2
B−M2

D

q2 qµ

]
+F0(q2)

M2
B−M2

D

q2 qµ

〈D(pD,MD)|c̄b|B̄(pB,MB)〉 = F0(q2)
M2

B−M2
D

mb−mc
(3.1)

Calculations for the form factors F0(q2) and F+(q2) are known in a lattice framework [5]. The axial
vector and the pseudoscalar matrix elements are zero from symmetry considerations and thus only
the WCs Cτ

VL and Cτ
SL contribute to this decay.

3.2 For B→ D∗ decay

The non-zero hadronic matrix elements for B̄→ D∗ transition are parametrised by

〈D∗(pD∗ ,MD∗)|c̄γµb|B̄(pB,MB)〉 = iεµνρσ ε
ν∗pρ

B pσ
D∗

2V (q2)

MB +MD∗

〈D∗(pD∗ ,MD∗)|c̄γµγ5b|B̄(pB,MB)〉 = 2MD∗
ε∗.q
q2 qµA0(q2)+(MB +MD∗)

[
ε
∗
µ −

ε∗.q
q2 qµ

]
A1(q2)

− ε∗.q
MB +MD∗

[
(pB + pD∗)µ −

M2
B−M2

D∗

q2 qµ

]
A2(q2)

〈D∗(pD∗ ,MD∗)|c̄γ5b|B̄(pB,MB)〉 = −ε
∗.q

2MD∗

mb +mc
A0(q2) (3.2)
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While no lattice calculations exist for the form factors in this case, they have been calculated in a
Heavy Quark Effective Theory (HQET) framework [6] and we borrow those results. In this case,
symmetry dictates that the scalar current is zero and thus there is no contribution to the decay width
from Cτ

SL.

3.3 Independence of RD and RD∗

We see that while Cτ
V L and Cτ

SL contribute to the B→ D decay process, Cτ
V L, Cτ

AL and Cτ
PL

contribute to the other one. Thus, given the independence of the WCs, the two processes are
independent of each other since they depend of different sets of WCs. In other words, RD and RD∗

are theoretically independent measurements and allow for separate explanations.

4. Explaining RD Alone

The quantities aD
` , bD

` and cD
` (in 1.5) can be calculated for a particular helicity of the final state

lepton using a helicity amplitude approach. The complete expressions are given in [1] and it is not
repeated here. Since only Cτ

V L and Cτ
SL are relevant, we can plot RD as a variation of the two WCs

and note the range of values for which it satisfies the experimental bounds. This is done in Fig. 1,
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Figure 1: The dependence of RD with respect to the variation of the WCs Cτ
V L (left) and Cτ

SL (right).

where the red (brown) band corresponds to the 1σ (2σ ) value on the experimental measurement.
We can use this range of the WCs to make a prediction of the value of the binned RD, and for the
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Figure 2: The binwise RD for four q2 bins. On the left, Cτ
V L is varied, while on the right, Cτ

SL is varied within
their 1σ allowed ranges.

values of PD
τ and A D

FB. These are shown in Fig. 2 and Fig. 3 respectively.
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Figure 3: Predictions for the polarisation fraction Pτ(D) (left) and A D
FB (right)

5. Explaining RD∗ Alone

We can carry out a similar treatment for the case of B→ D∗ decay. In this case, three WCs
- Cτ

V L, Cτ
AL and Cτ

PL - contribute. The plots of RD∗ as a function of the different WCs are given in
Fig. 4 As before, the 1σ (2σ ) bands are indicated by the red (brown) bands. The prediction for
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Figure 4: The dependence of RD∗ with respect to the variation of the WCs Cτ
V L (left), Cτ

AL (middle) and Cτ
PL

(right). A thin vertical line shows the SM values of the WCs.
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Figure 5: The binwise R∗D for four q2 bins. On the left, Cτ
V L is varied, in the middle Cτ

AL is varied, annd on
the right, Cτ

PL is varied within their 1σ allowed ranges. The SM predictions are shown in red.

the binned RD∗ is given in Fig. 5. In this case, we do have a measurement of PD∗
τ , but it is quite

imprecise. In the left plot of Fig. 6, the size of the errors indicated for the BELLE measurement is a
projection with 20 ab−1 data, which is expected to be collected by the year 2021; the central value
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Figure 6: Predictions for the polarisation fraction Pτ(D∗) (left), A D∗
FB (right). In the left plot, the Belle II 20

ab−1 projection is shown.

indicated is the current central value. As a matter of completion, we also plot the prediction for
A D∗

FB on the right of Fig. 6, although no measurement of this quantity exists as yet. We can combine
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Figure 7: The predictions for PD∗
τ , RD∗ in the last bin and A D∗

FB are shown in three different planes for the
ranges of the three WCs Cτ

V L, Cτ
AL and Cτ

PL.

the predictions for the binned RD∗ restricted to the highest q2 bin, PD∗
τ and A D∗

FB to construct three
planes. When plotted in these three planes, the regions of the allowed values of the WCs all separate
out nicely as shown in Fig. 7. A future measurement of any two of these three observables would
help in restricting us to a particular region, thus limiting the scope of any NP model.
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