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Neutrino physics from A to Z : two lectures at Corfu

A Introduction. The last few decades have seen a tremendous progress in particle physics

and cosmology, the physics of the early universe. The discoveries of the Higgs boson at the Large

Hadron Collider at CERN [1, 2] and of neutrino oscillations [3, 4] as a result of solar and atmo-

spheric studies constitute major milestones in astroparticle physics which led to the 2012 and 2015

physics Nobel prizes. It is not an overstatement to say that the discovery of the Higgs boson has

brought our field to euphoria. Some considered it as the last brick in the construction of the stan-

dard model. It is not, since in the Standard Model neutrinos have no mass, needed to account

for the oscillation data [5]. More bricks are needed to fabricate neutrino mass. Indeed, as a key

building block of the Standard Model, the properties of neutrinos may point us the way beyond the

standard model [6]. However small the magnitude of their masses results to be, the electroweak

breaking mechanism can be significantly affected by the presence of massive neutrinos, with po-

tentially profound implications, e.g. for the consistency of the electroweak vacuum. Likewise

neutrinos constitute an ideal cosmic messenger capable of exploring the earliest moments after the

Big Bang. For example, establishing the existence of leptonic CP violation is an important goal in

the agenda of upcoming oscillation experiments such as that of the DUNE proposal. Such a discov-

ery would pave the way to elucidate one of the great cosmological puzzles i.e. the understanding

the prevalence of matter over anti-matter in our universe.

On the other hand, the Standard Model does not include gravity. The first observation of

gravitational waves by the LIGO Scientific Collaboration and Virgo Collaboration teams [7], have

brought the ultimate need for the inclusion of gravity in our world picture more into the forefront

than ever. Reconciling gravity and quantum mechanics is a formidable challenge that lies with

us for over a century. Now the time seems to have come ! There are, in addition, a variety of

other, theoretical motivations for having beyond the Standard Model physics, such as understand-

ing anomaly cancellation, unification of the forces, the consistency of the spontaneous symmetry

breaking mechanism, including naturalness, stability and perturbativity. Unfortunately, other than

the discovery of neutrino mass and some cosmological hints, the search for unambiguous signs of

new phenomena in particle physics has so far been fruitless. In these lectures I will assume that

you know the basics and focus on illustrating how the theory responsible for generating neutrino

mass may also touch several of the above points.

B Neutrino probes. Neutrinos are tiny weakly interacting particles travelling close to the

speed of light. They constitute one of the most ubiquitous particles in nature. Thanks to their weak

interaction, neutrinos are excellent astrophysical messengers, probing the deep interior of the Sun

or of a supernova. Likewise they probe the earliest instants of the universe, just after the Big Bang.

Natural and artificial neutrino sources span about 20 orders of magnitude in energy, all the way

from the abundant neutrinos produced in the Big-Bang to the ultra high energy cosmic ray neutri-

nos. The former are abundant, though currently undetectable because of their very low energy. The

latter have much higher interaction rates, though their detection also constitutes a challenge thanks
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to the small fluxes. In between these extremes we have geoneutrinos, supernova neutrinos, as well

as solar and atmospheric neutrinos.

C Solar and atmospheric neutrinos. Neutrinos are copiously produced in nuclear fusion

reactions that power the Sun, while atmospheric neutrinos hit the Earth from all directions in the

sky, produced by cosmic ray interaction in the upper atmosphere. These neutrinos are detected in

gigantic underground detectors. In both cases there is a significant discrepancy between produced

and detected neutrinos. The study of solar and atmospheric neutrinos wrote an important chapter

in particle physics, leading to the discovery of neutrino oscillations [3, 4] and the physics Nobel

prize in 2015. The discovery of neutrino oscillation has been beautifully confirmed by earthbound

experiments based at reactors and accelerators.

Figure 1: Left: Current status of oscillation parameters. Note the octant ambiguity in the atmospheric angle
determination for NH and the very poor CP violating phase determination, according to the global fit [5].
Right: expected octant and CP sensitivity at the long baseline oscillation experiment NOvA, from [8].

D Reactors and accelerator neutrinos. All of these data are beautifully described by assum-

ing that neutrinos undergo oscillations, a quantum mechanical phenomenon, as they propagate.

The phenomenon is affected by the presence of matter, as it happens both in the interior of the

Sun as well as in the Earth. Except for the atmospheric angle and CP violating phase, current neu-

trino oscillation experiments provide a good determination of the oscillation parameters, as seen in

Fig. 1. Apart from the smallness of neutrino squared mass splittings, one thing that strikes the eye

is the large values of the lepton mixing angles with respect to those that characterize the Kobayashi-

Maskawa matrix. Resolving the atmospheric octant will require an improved measurement of the

reactor angle θ13 [8]. The precision in the measurement of θ23 and δCP will be improved at the long

baseline oscillation experiment NOvA and at the upcoming DUNE The bands correspond to the 2,

3, and 4σ C.L uncertainties. Note that oscillations do not probe the absolute neutrino mass nor are

they currently sensitive to the ordering of the neutrino states.
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E The absolute neutrino mass. Currently there are three realistic ways to probe the absolute

neutrino mass: (i) measuring the shape of the end point of the spectrum in tritium beta decays, (ii)

the search for neutrinoless double beta decay ββ0ν as well as (iii) measurements of temperature

anisotropies in the cosmic microwave background. Now we discuss (ii). Two-neutrino double-beta

decay is the second-order weak interaction process by which two neutrons in a nucleus are con-

verted to protons, plus two electrons plus two electron anti-neutrinos, (A,Z)→ (A,Z+2)+2e+2ν .

This very rare process has been detected in a few nuclei. It conserves lepton number. On the other

hand ββ0ν is a neutrinoless variety expected to occur if neutrinos are Majorana. Its amplitude is

proportional to an effective mass parameter
〈
mββ

〉
given in Fig. 2 as a function of the lightest neu-

trino mass. The dark shaded regions are generic predictions based on best-fit neutrino oscillation

parameters for normal hierarchy (NH) and inverted hierarchy (IH). The light shaded regions are the

corresponding 3σ ranges. The lowest horizontal band indicates the 90% C.L. upper limit on
〈
mββ

〉
from KamLAND-Zen, using 136 Xe. The upper bands give the sensitivities for other nuclei taking

into account nuclear matrix element calculations [9]. The side-panel shows the corresponding lim-

its for each nucleus as a function of the mass number. One sees a big experimental race to search

Figure 2: Status and prospects for ββ0ν searches, from [9], see text.

ββ0ν and possibly discover it! However, in the case of NH there can be destructive interference

leading to a cancellation in the expected ββ0ν rate. From this point of view it is very interesting

to consider theories where the flavor structure is predicted in such a way that the cancellation is

prevented. In such models there is a lower bound on the ββ0ν decay rate. Examples are given

in [10–13]. Note also that ββ0ν can be induced by a short range mechanism, mediated by heavy

states, through a variety of mechanisms [14]. In such case new signatures are expected at collid-

ers such as the LHC [15, 16]. The deep significance of ββ0ν rests upon the fact that, irrespective

of its origin, the observation of ββ0ν implies lepton number violation and the Majorana nature

of neutrinos [17, 18]. This summarizes our brief summary of the experimental status of neutrino

physics. For the corresponding references, see Refs. [3, 4], [6, 9] and references therein. Now we

turn to theory, starting with the origin of neutrino mass and then moving to the structure of neutrino
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mixing and their theoretical origin.

F Weinberg dimension five operator. The origin of neutrino mass is one of the most well kept

secrets of nature. A very general model independent approach was suggested by Weinberg, who

noted that one can form a dimension five operator1 , with the Standard Model lepton and Higgs

doublets. This turns into a Majorana neutrino mass once the electroweak symmetry breaks through

the nonzero vacuum expectation value (vev) of the Higgs doublet. The smallness of neutrino mass

would be ascribed to the mass scale characterizing the d=5 operator O , which was originally ex-

pected to be violated at high scale. However, the operator O may also be characterized by a small

ΦΦ

LL

Figure 3: Dimension 5 operator leading to neutrino mass.

scale, so that in its absence the symmetry of the theory would increase, since lepton number would

be recovered. This is a realization of t’Hooft’s naturalness criterion. This is a generic argument.

Nothing is known about the underlying mechanism that engenders this operator, its characteristic

scale or its flavor structure. For that we need a theory. Various alternative theories may be classi-

fied by the way they generate the operator O , with two broad sub-categories, namely seesaw and

radiative schemes.

G Standard seesaw mechanism. This is by far the most popular approach to neutrino mass

generation [6]. It assumes that the dimension five operator arises at tree level either through the

exchange of new heavy right-handed neutrinos (type-I seesaw) or by the exchange of a triplet of

scalars (type-II or triplet seesaw). Although the seesaw can be motivated by grand unified theories

(GUTS) or by models with intermediate scales (e.g. Pati-Salam or Peccei-Quinn), the most general

seesaw formulation is at the Standard Model level [20] 2. In its original formulation, for example,

νννν νc νc

〈Φ〉 〈Φ〉

〈Φ〉〈Φ〉
∆

Figure 4: Type-I (Left) and Type-II (Right) seesaw mechanism.

1It is also possible to induce neutrino mass through higher order operators [19].
2It is curious that, in Ref. [20], the type-I/type-II naming was swapped with respect to what became later established.
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the type-I seesaw mechanism was thought to involve the exchange of heavy intermediate fermions,

at a mass scale associated, say, with grand unification. Barring the the use of arbitrarily small

Yukawa couplings to account for the small neutrino masses, there are no expected collider physics

implications in this case. See, in contrast, discussion on low-scale seesaw, below.

H Low-scale seesaw mechanism and t’Hooft’s naturalness. One should realize that the

seesaw mechanism is not a model, rather a general framework for generating neutrino mass. As

such, its general formulation clearly allows for “genuine” low-scale realizations 3 so that when the

coefficient of the operator O becomes zero the symmetry of the theory enhances as a result. Hence

S S

νν

νcνc

ΦΦ

Sν ννc

Φ

Φ

χ
L

χ
R

χ
R

Figure 5: Low-scale seesaw mechanism: inverse (left) and linear (right) realizations.

there is, in this case, no need for the accompanying physics to live at a large scale. This is the

theoretical basis of the low scale seesaw mechanism. There are two variants, namely linear and

inverse seesaw. They are currently very popular as they open the possibility of direct production of

the neutrino mass generation messengers at colliders experiments. In the presence of a new gauge

portal these lead to lepton flavour violation signatures at colliders such as the LHC or the future

proposals such as ILC/CLIC [15, 16].

I Dirac seesaw mechanism. Almost forty years after the seesaw idea first appeared, we have

developed a full conceptual description of both Type-I as well as Type-II seesaw siblings of the

seesaw mechanism for the case of Dirac neutrinos. In order to ensure the Dirac nature of neutrinos,

two states associated to “left” and “right” are needed and, moreover, some extra symmetry prin-

ciple is needed for “Diracness”. For example, in the type-II case the smallness of neutrino mass

SR , S̃R ν̄L , N̄L

φ1,2

〈φ2,1〉〈φ0〉
f

Figure 6: Type-II Dirac seesaw mechanism.

follows from a parameter whose absence enhances the symmetry of the theory, hence natural in
3Genuine low-scale means that tiny neutrino masses do not require arbitrarily small parameters, such as Yukawa

couplings. The seesaw scale in any high-scale type-I seesaw can be made arbitrarily low by lowering the Dirac Yukawas.
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t’Hooft’s sense. Neutrino mass generation may result from the spontaneous breaking of a global

U(1) symmetry, leading to a physical Nambu-Goldstone boson - a Dirac sibling of the majoron - we

call Diracon. Like the majoron case also the Diracon couplings are severely restricted by bounds

from stellar cooling rates in astrophysics. Although stringent, these are consistent with possibly

significant invisible Higgs decays to Diracons, well constrained by studies at colliders such as the

LHC.

J Radiative mechanisms. These constitute an interesting alternative to generate O without

the need to invoke physics at inaccessible mass scales [21]. These typically involve new scalar

ν ν

φ0 φ0

η0 η0

χ χc

Figure 7: Dark matter as messenger of radiative neutrino mass generation [22, 23].

bosons. A specially attractive example are the scotogenic models [24], interesting because they

naturally incorporate dark matter. The latter emerges as a messenger of neutrino mass generation.

The model invokes a Z2 symmetry ensuring the radiative nature of neutrino mass and, at the same

time, also stabilizing dark matter. A phenomenological richer realization of Ma’s original idea has

been proposed and studied in [22, 23]. It is also possible that, in extensions of the electroweak

gauge symmetry such as SU(3)C⊗SU(3)L⊗U(1)X schemes, neutrino masses may be induced ra-

diatively as a result of the exchange of new gauge bosons [25].

K The flavor problem. The pattern of charged fermion masses is very strange, spanning about

six orders of magnitude between the electron mass and the top quark mass. This is just one aspect

of the flavor problem. Another one is the observed disparity between quark and lepton mixings.

In fact, as seen above, the smallest of the lepton mixing angles, i.e. the “reactor” angle θ13, is

similar to the largest of the quark mixing angle, namely the Cabibbo angle. In fact this may well

be a subtle message nature is conveying to us. For example there may be a symmetry rationale in

which the Cabibbo angle acts as a universal seed for all quark and lepton mixings [26–28] Also

the magnitudes of the lepton mixing angles do not seem arbitrary parameters. The way we face

the challenge of bringing some rationale to the observed pattern of fermion masses and mixings

is through the use of symmetry approaches. In this context let us mention the interesting case of

non-Abelian flavor symmetries.
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L Flavor-dependent b-τ unification. As an example we mention here a successful flavor

generalization of the b-τ unification formula characteristic of minimal SU(5), namely,

mb√
mdms

=
mτ√memµ

(1)

This relation holds approximately in a number of flavor models based on the A4 [12, 29, 30] and

T7 [13] symmetries. This formula is a consistent, and fairly stable, generalization of the conven-

tional SU(5) prediction, showing how one can relate quark and lepton masses without the need for

grand-unification.

M BMV model as prototype flavor model. We now turn to the minimal flavor scheme pro-

posed in [31], we call it BMV, for short. The model adopts A4, the smallest non-Abelian symmetry

group with three-dimensional irreps where the three families of leptons can fit nicely. Valid at some

high-energy scale, the flavor symmetry naturally leads to degenerate neutrino masses and hence to

a sizeable rate for neutrinoless double beta decay. Realistic neutrino mass splittings are then in-

duced by renormalization group evolution with threshold corrections. Assuming CP invariance the

atmospheric mixing is predicted to be maximal, θ23 = π/4, and the reactor mixing θ13 is predicted

to vanish 4. Note that lepton flavour violation processes such as τ → µγ are expected to lie within

reach of upcoming experiments [32]. However, given the reactor results, e.g. from Daya-Bay, the

prediction θ13 = 0 needs to be corrected.

N Oscillation prediction in revamped BMV. Generalizing BMV is simple and leads to non-

trivial results. One finds that not only θ13 is generated, and hence CP violation in oscillations, but

also a departure from maximality in the atmospheric mixing θ23. Moreover, that these parameters

are correlated as shown in Fig. 8, left panel. The green region is the theory prediction, while the

narrow dark bands are 1σ and the broad light band corresponds to 3σ , according to the global fit [5].

Figure 8: Left: CP versus atmospheric angle correlation predicted in revamped BMV model [33]. Right:
Correlation between reactor and solar mixing in ∆(54) flavor model [34]. Bands indicate oscillation results.

4In the presence of CP violation θ13 is arbitrary and CP must be maximally violated in neutrino oscillations ggg
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In fact, very often the predictions one obtains from flavor models are expressed as correlations be-

tween oscillation parameters, for example between the solar angle θ12 and the reactor θ13, as seen

in the right panel of Fig. 8. There is a huge literature on flavor model building, many symmetries

can be used, one-by-one on a trial-and-error basis [35–37]. It is fun, but can be rather tedious.

O Residual CP symmetries. Before closing this discussion, let me comment on an alternative

model-independent approach is to exploit symmetries of the neutrino mass matrix, such as general-

ized CP symmetries, irrespective of how exactly they emerge within a particular model. This way

one can study flavor predictions in a model-independent way. The prototype case is mu-tau parity

symmetry and generalizations thereof [38]. For example, a particular prediction in the δCP versus

θ23 plane has been studied in [39] and many more were analysed in [40]. These may be eventually

tested by the new generation of neutrino oscillation experiments, such as NOvA, DUNE and T2HK.

P Gauge coupling unification. Within the Standard Model gauge coupling unification is a

“near-miss”: when extrapolated to high energies from their measured low-energy values, the three

gauge couplings almost meet together, but not quite. Gauge coupling unification constitutes, in-

deed, an attractive argument suggesting the existence of physics beyond the Standard Model. What

Figure 9: Gauge coupling unification may be triggered by the physics inducing small neutrino mass [41,42].

makes the gauge couplings unify? Common frameworks to provide plausible answers to this ques-

tion are (i) grand unification and (ii) TeV scale supersymmetry. However, neither of their character-

istic predictions, such as proton decay or the existence of supersymmetric states, have so far been

vindicated experimentally. A logical possibility is that gauge coupling unification is a consequence

of the same mechanism responsible for small neutrino mass generation, as recently proposed [41].

This is illustrated in Fig. 9. The model employs an extended SU(3)C⊗SU(3)L⊗U(1)X elec-

troweak gauge structure, in the presence of a set of leptonic octets, directly involved in neutrino

mass generation [42]. Possible embeddings probably require an F-theory GUT setup [43].

Q What and where is the new physics? So far there has been no hint of supersymmetry nor for

any unexpected signature. Given the lack of striking new results from the LHC a burning question

9
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is what is the expected profile and scale of the new physics? Can one expect any “oasis” at the en-

ergies currently available at the LHC? Here we note that the historic discovery of the Higgs boson

may suggest that it is only the first of a family associated, perhaps, to symmetry breaking patterns

of more mundane extensions of the SU(3)C⊗SU(2)L⊗U(1)Y gauge group. There are motivations

for extended gauge structures. For example left-right symmetry, which has as attractive feature the

fact that it elevates parity to the status of a spontaneously broken symmetry, associated to the see-

saw mechanism. Likewise, there are chiral Standard Model extensions whose quantum consistency

requires exactly three families of fermions. Which pattern of new physics should be expected at

current and upcoming accelerator experiments? Similarly important, On what grounds can one

choose the preferred one?

R Parity non-conservation, the number of families and new gauge bosons.
In order to provide a framework to answer the above questions one may consider some of the

open conceptual issues in weak interaction theory. For example, (i) What is the role of parity non-

conservation?, (ii) what is the origin of neutrino mass? or (iii) Is there a rationale for having just

three families of quarks and leptons? Here we consider these three features as possible ways to es-

tablish a criterion for choosing the Standard Model extension. They can be reconciled in a left-right

103 106 109 1012 1015

103

106

109

1012

1015

vR HGeVL

n
HGe

V
L

SU
H2L L

ÄU
H1L Y

SU
H2L L

ÄSU
H2L R

ÄU
H1L B

-L
ÄU

H1L A

SU
H3L L

ÄU
H1L X

'Ä
SU

H2L R
'

Figure 10: Dynamically determining the new physics profile through the vev ratio n/vR [44].

symmetric “mother” theory based on the SU(3)C⊗SU(3)L⊗SU(3)R⊗U(1)X gauge group [44].

Indeed, the mother theory is a realistic manifestly left-right symmetric setup, requiring the number

of families to match the number of colors in order to achieve quantum consistency. Neutrino masses

arise either from the canonical seesaw mechanism [44] or from a low-scale seesaw picture [45].

Small neutrino mass correlates with the observed V-A nature of the weak force. Depending on the

symmetry breaking path to the Standard Model one recovers as the next step towards new physics

either a conventional SU(3)⊗SU(2)L⊗SU(2)R⊗U(1)B−L scenario or one based on a manifestly

chiral extension of the electroweak symmetry based on SU(3)C⊗SU(3)L⊗U(1)X in which the

number of families is fixed through anomaly cancellation. If light enough, the resulting Z′ gauge

bosons can be produced at the LHC, providing a production portal for the right-handed neutrinos,
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whose decays would engender lepton flavour violation processes [46]. On the other hand, its flavor

changing interactions would also affect the K, D and B neutral meson systems [47]. The interplay

of the B0
d − B̄0

d mass difference (left panel in Fig. 11) and the LHC dilepton mass constraints for

two different parametrizations of the quark mixing matrix is illustrated in right panel in Fig. 11. In

Figure 11: Feynman diagrams relevant for dilepton production at the LHC and the B0
d− B̄0

d mass difference
in minimal low-scale SU(3)C⊗SU(3)L⊗U(1)X model.

Figure 12: 3-3-1 model.

such scenario the right-handed neutrino messengers of neutrino mass generation may be produced

via a Z′ portal and can decay via small flavor violating couplings. This leads to lepton flavour vio-

lation at the LHC [15,16], whose the rates are unsuppressed despite unobservably small µ→ e+ γ

gamma rates [46].

S Neutrino mass generation The historic discovery of the 125 GeV Higgs boson may suggest

that it is only the tip of the iceberg. Indeed, it is likely that this Higgs is just the first of a family, there

could be others associated with the breaking of symmetries such as lepton number. For example

extra scalar multiplets beyond those in the SU(3)C⊗SU(2)L⊗U(1)Y theory, such as singlet and

triplet Higgses, are used to generate small neutrino mass in the seesaw mechanism. If ungauged,

spontaneous lepton number violation implies the existence of a physical Nambu-Goldstone boson

- the majoron [48, 49]. The good measurement of the invisible Z0 decay width implies that the

majoron must be mainly singlet. If the associated scale is relatively low, such singlet “majoron

model” naturally implies potentially observable rates for invisible Higgs decays [50], leading to

missing momentum signatures at accelerators [51,52]. Such are now well constrained by LEP [53]

11
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and LHC experiments [54].

Figure 13: Small neutrino mass, vacuum stability and perturbative electroweak breaking.

Figure 14: Schematic type-II seesaw Higgs spectrum.

T Neutrino mass generation and the consistency of the electroweak vacuum. We have just

discussed that, if the smallness of neutrino mass is associated to a spontaneously broken symmetry,

we need extra Higgs multiplets. Hence, in addition to the SU(3)C⊗SU(2)L⊗U(1)Y gauge invari-

ance of the Standard Model we must also break such symmetry, such as lepton number, so as to

account for naturally small neutrino mass. In the presence of extra “leptophilic” scalars the quartic

coupling, whose positivity characterizes electroweak vacuum stability, gets new contributions. This

naturally provides a mechanism to stabilize the theory’s vacuum leading to a bounded-from-below

potential energy. [55]. The mechanism may be qualitatively understood by “squaring” Weinberg’

s operator, as indicated in Fig. 14. If we now evolve the theory with renormalization group equa-

tions all the way up to the Planck scale and require perturbativity to be maintained, then we find

further constraints on electroweak breaking. For example, if a Higgs triplet is present, as in type-II

seesaw, the mass splitting of its components is strongly restricted [56], leading to a “compressed”

Higgs mass spectrum, as seen in the middle and right panels in Fig. 14. They give a schematic view

of the scalar boson mass spectrum in the triplet seesaw model and one sees that the heavy scalars

are nearly degenerate. There is a broad class of “neutrino motivated” extensions of the Standard

Model Higgs sector, which provide interesting benchmark theories of electroweak breaking.

U How about Gravity? As a fundamental interaction of nature, gravity is described geomet-

rically in Einstein’s General Relativity. This is an elegant classical theory, not part of the Standard

Model. Indeed, we still have not been able to develop a quantum theory of gravity. Unifying

12
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gravity with the quantum field theoretic Standard Model description of microphysics constitutes

the biggest challenge in contemporary physics. The current approaches employ extra space-time

dimensions either in the context of string theories or of warped geometries. Although both scenar-

ios can be employed to provide frameworks for adding gravity, here we just consider the effective

four-dimensional low energy theory that results from them after decoupling gravity. The ques-

tion one may pose is whether the latter can lead to some predictions for neutrinos. For example,

consider the extended SU(3)C⊗SU(3)L⊗U(1)X electroweak symmetry framework discussed in

P . Although it can not easily be unified within the conventional field theory sense, it was shown

that it admits a string completion within a quiver setup [57]. They constitute one of the most

ubiquitous particles in nature. Thanks to their weak interaction, neutrinos are excellent astrophys-

ical messengers, probing the deep interior of the Sun or of a supernova. Likewise they probe the

earliest instants of the universe, just after the Big Bang. Natural and artificial neutrino sources

span about 20 orders of magnitude in energy, all the way from the abundant neutrinos produced

in the Big-Bang to the ultra high energy cosmic ray neutrinos. The former are abundant, though

currently undetectable because of their very low energy. The latter have much higher interaction

rates, though their detection also constitutes a challenge thanks to the small fluxes. One finds that

lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac fermions. More-

over, consistent anomaly cancellation require extra “right-handed” neutrino-like states which lead

to a natural realization of a novel, potentially low scale, type-II seesaw mechanism [58], as was

illustrated in Section I , above.

V Neutrino predictions from Warped Standard Model. Randal and Sundrum [59] suggested

a higher-dimensional mechanism to account for the hierarchy problem. The weak scale is gener-

ated from a large scale of order the Planck scale through an exponential hierarchy arising from

the background metric, assumed to be a slice of AdS5 space-time. In principle this nice mecha-

nism may be used to “explain” other mass hierarchies, such as those amongst the Standard Model

fermions. Ref. [60] proposed a realistic five-dimensional warped Standard Model scenario with all

fields propagating in the bulk, as illustrated in Fig. 15

ds2 = e−2kyηµνdxµdxν − dy2 , S1/Z2

∆(27)⊗ Z4 ⊗ Z ′4
UV

y = 0

ϕ

IR

y = L

ξ, σ1, σ2

`L, QL, τR, νR, uR, dR H, eR, µR

SU(2)L ⊗ U(1)Y

Figure 15: Basic structure of the warped model, showing the UV (IR) peaked nature of the fields, from [60].

Mass hierarchies are accounted for by judicious choices of the bulk mass parameters, while fermion
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mixing angles are restricted by a ∆(27) flavor symmetry broken on the branes by flavon fields. Note

that, like the other fermions, here neutrinos are Dirac type. The flavor symmetry implies latter gives

stringent predictions for the neutrino mixing parameters, and the Dirac CP violation phase, all de-

scribed in terms of only two independent parameters at leading order. This leads to a correlation

between CP violation and the atmospheric mixing parameter, in the same spirit as that in Fig. 8.

These lead to predictions for the upcoming long baseline accelerator experiments T2K, NOvA and

DUNE [61]. Note also that this Warped Standard Model gives a realistic CKM matrix [60].

X Neutrinos in Cosmology. According to the Big Bang the evolution of the universe started

from a very hot and dense past and went through a number of phase transitions, dictated by the

microphysics. In other words, the particle physics describing the interaction of the elementary con-

stituents will determine how the universe evolves. As one of the most ubiquitous particles in nature,

neutrinos play a key role in the evolution of the universe. Thanks to their weak interaction, they can

probe the earliest epochs in the history of the universe, just after the Big Bang. In contrast, through

optical means the universe can only be probed after the decoupling at 400,000 years or so [62].

Indeed, observations of temperature and polarization anisotropies of the Cosmic Microwave Back-

ground (CMB) enable us to obtain limits of the neutrino total mass. However, neutrinos can probe

much earlier epochs, such as that associated with the breaking of the electroweak or higher sym-

metries. Indeed, it is precisely in association new physics at these scales that can address current

puzzles in cosmology, such as dark matter, inflation and generation of the baryon asymmetry.

Z Majoron as warm decaying dark matter. One can formulate interesting new physics sce-

narios where the physics associated with neutrino mass generation can potentially reconcile at least

some of the current cosmological puzzles as well. For example in the scheme suggested in [63] a

single complex field is added whose vacuum expectation value breaks lepton number and generates

neutrino mass through the seesaw mechanism, while the real part drives inflation and the imagi-

nary part plays the role of metastable warm dark matter. Indeed this scenario has been shown to be

consistent with restrictions from the CMB [64, 65], and also to lead to potentially viable indirect

detection by searching for X-ray lines [66, 67].
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