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1. The crossover transition

The properties of strongly interacting matter can in principle be revealed within the context
of lattice QCD, first principle calculations, based on a Euclidean Lagrangian with physical quark
masses m and a gauge coupling g [1].

L =
1

2g2 Tr
(
FµνFµν

)
+ ψ̄γµ

(
∂µ +Aµ +m

)
ψ (1.1)

Fµν = ∂µAν −∂νAµ +
[
Aµ ,Aν

]
The transition from QCD Lagrangian (eq. 1.1) to QCD Thermodynamics is achieved with the

help of the action S which leads to the partition function Z of the system at high temperatures
(where the quark-hadron transition occurs) and zero chemical potential:

S =
∫

d4xL , Z = ∑
f ield con f igurations

exp(−S) (1.2)

The ambiguities in lattice QCD studies are removed if we use physical quark masses and extrapo-
late to vanishing lattice spacing (continuum limit). After enormous theoretical and computational
effort, these requirements are now fulfilled and the lattice formulation (1.2) is well defined at zero
chemical potential (µb = 0). A serious problem still remains, for µb 6= 0, and this difficulty pro-
hibits the unambiguous, first-principle description of strongly interacting matter near the QCD
critical point. The chemical potential issue arises from the integration of fermion fields in eq. (1.2)
which leads to an effective theory containing only bosonic fields (gluons):

Z =
∫

[Dυ ]detM(υ)exp [−Sg(υ)] (1.3)

The measure of integration in eq. (1.3) is positive definite for µb = 0 but at non-vanishing chemical
potentials the fermion determinant can take complex values and the probabilistic interpretation
of eq. (1.3) is no longer valid. Several proposals to overcome this difficulty exist but a general
consensus is still missing [2].

Figure 1: Phase diagram of QCD. Crossover is de-
picted with slashed line.

Within this context, the nature of the
QCD transition at µb = 0 can be studied,
without ambiguities, leading to a rigorous
result: The phenomenon of quark-hadron
phase transition in this corner of the phase
diagram (Fig. 1) is an analytical crossover.
The proof is based on the study of finite-size
scaling at the susceptibility peak which oc-
curs when the system approaches the critical
temperature T = Tc. The behaviour of the
volume dependence is drastically different if
the transition is of first or second order, or if
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it is an analytical crossover:

1st order transition : χmax
T ∼ V (1.4)

2nd order transition : χmax
T ∼ V γ/νd (γ,ν : critical exponents)

crossover transition : χmax
T ∼ const.

In general, the susceptibility of a thermal system is obtained from the second derivative of the
Gibbs free energy G with respect to the ordering field H [3]:

G =−T lnZ , M =−∂G
∂H

, χ =
1
V

∂M
∂H
→ χ =

∂ 2

∂H2

(
T
V

lnZ
)

(1.5)

For chiral susceptibility, the ordering field is the mass of light quarks mu,d , therefore:

χch(Ns,Nt) =
∂ 2

∂m2
u,d

(
T
V

lnZ
)

(1.6)

where Ns(Nt) is the spatial (Euclidean time) extension.
A remarkable result is given in reference [1] where a study of χch is performed in a lattice

with two choices of spatial extension: 4× 123, 4× 243 corresponding to a volume ratio V2
V1

= 8.
According to the rule (1.4) a first-order phase transition would predict a susceptibility peak, χmax

ch ,
eight times higher for the second choice of spatial extension, whereas for a second-order phase
transition this ratio would be approximately four (corresponding to the 3d Ising universality class,
ν ' 2

3 , γ ' 4
3 ). The computational solution [1] shows clearly that there is no volume dependence,

providing us with a proof that the phenomenon of quark-hadron transition at µb = 0 is an analytical
crossover. The result is exact and suggests that the crossover phenomenon can be extended along
the critical line (µb 6= 0) with a limiting location at the QCD critical point where the transition
becomes of second order. This conjecture remains to be shown together with the solution of the
finite µb problem in lattice QCD.

Finally, it is of interest to note that the QCD transition for small values of the baryonic density,
takes place in a cosmological path and therefore the nature of the phase transition may affect the de-
tailed mechanism of Big Bang nucleosynthesis. In fact, a strong first-order phase transition creates
baryon rich nuggets which could remain for a long time, contributing to dark matter. Theses inho-
mogeneities in the hadronic phase could have a strong effect on nucleosynthesis [4]. Obviously, in
a physical world where the Universe has undergone a crossover transition, the above picture, based
on a strong first-order transition, is ruled out.

Experimental support to the transition being a crossover at small µb can only be indirect.
Using the crossover equation of state in a hydrodynamic description of charged hadrons, produced
in high-energy nuclear collisions, the data on invariant yields at LHC are easily explained [5].
Moreover, the ratio of baryon susceptibilities of various orders, given by lattice calculations with a
crossover at µb = 0 [2] agree with experimental measurements of similar quantities, extracted from
correlations of protons, on the basis of fluctuation-dissipation relations.

2. Critical fluctuations

The QCD critical point at high temperatures (Tc ' 200 MeV) is a distinct phenomenon. It is
the endpoint of a series of first-order phase transitions which occur at relatively high values of the
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chemical potential µb
Tc

> 1. A first principle theory of the QCD critical point is not yet available,
mainly due to the ambiguities of lattice QCD formulation at µb 6= 0. However, owing to the fact that
at the critical endpoint (CEP) the system of strongly interacting matter undergoes a second-order
phase transition, the universality principle may reveal significant properties of the critical system
which do not depend on the microscopic details of the theory. In this context one may try to build
a universal, effective theory with the following tools and ingredients, linked to the macroscopic,
critical profile of the system:

1) The order parameter: It is linked to an extensive thermodynamic variable accessible to mea-
surements. Near the critical point the order parameter describes, with its behaviour, the fundamen-
tal property of symmetry breaking and it is, in this region, the only important thermodynamic
quantity. In the case of QCD critical point, a natural choice for the order parameter is the chiral
condensate 〈ψ̄ψ〉 with the quantum numbers of a scalar-isoscalar field (sigma field). In a finite-
density medium, the critical fluctuations of the sigma field develop the same singular behaviour as
the baryon-number density nb (δσ ' δnb) and therefore, nb is also qualified as an order parameter
of the QCD critical system [6]. In fact, if we consider the requirements of dynamics, nb is the only
unambiguous order parameter since, as a conserved quantity, is a “slow” thermodynamic variable
whereas the σ -field, being massive near the critical point, represents a “fast” variable during the
dynamical process of relaxation [7]. This fundamental distinction follows from the behaviour of
long wavelength components of nb and σ :
(a) the conservation law of baryon number leads to the continuity equation in Fourier space:

∂nb(~k, t)
∂ t

+ i~k ·~j(~k, t) = 0 (2.1)

where~k is the wave-number vector. In the long wavelength limit (k→ 0) the motion of the corre-
sponding components nb(~k, t) is very slow and this property guarantees a correct behaviour of nb

as an order parameter,
(b) on the contrary, a massive σ -field leads to a dispersion relation, ω =(k2+m2

σ )
1/2 corresponding

to a fast mode of the long wavelength components (k→ 0). Only in the chiral limit (mσ = 0) the
long wavelength components correspond to a slow mode, ω ∼ k, and the chiral condensate (σ -field)
becomes an unambiguous order parameter of chiral phase transition.

2) The universal effective action: The QCD critical point belongs to the 3d Ising universality
class with approximate critical exponents: α ' 0, β ' 1

3 , γ ' 4
3 , δ ' 5, ν ' 2

3 and η = 0. In
this framework, a universal effective action was found recently [8] on the basis of a Monte Carlo
computation in the 3d Ising model, in an external field. Introducing a dimensionless scalar field
φ = β 3

c nb as the order parameter, compatible with our previous discussion, the Tsypin effective
action [8] for T = Tc is written as follows:

Se f f =
∫

d3x̂
[

1
2

∣∣∣∇̂φ

∣∣∣2 +Gφ
δ+1− Ĥφ

]
(2.2)

where x̂i =
xi
βc

and Ĥ = (µ−µc)βc, the ordering field, identified with appropriate (dimensionless)
chemical-potential variable of the net-baryon fluid.

On the basis of the discussion above and the formulation (2.2) one may extract the baryon
density fluctuations at the critical point (T = Tc, µ = µc) and try to make them accessible to
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measurements. Considering the ensemble of constant configurations φ in the partition function
Z = ∑

φ

exp(−Se f f ) we obtain a finite-size scaling relation for the average multiplicity 〈Nb〉 as a

function of volume: 〈Nb〉 ∼ V 5/6. This behaviour suggests a fractal geometry of the produced
clusters of baryons, with fractal dimension dF = 5

2 . This index is a measure of the critical fluctu-
ations developed at the critical point and it is directly linked to the isothermal critical exponent δ :
dF = δd

δ+1 [9]. In order these fluctuations to become accessible to experiment, a transformation of
the fractal geometry from configuration to momentum space is required. In a relativistic process
this can only be possible for the projection in transverse space where a Fourier transform is at work
[10]. In transverse configuration space, the fractal dimension of the projected structure is d(2)

F = 5
3

and in transverse momentum space, the Fourier transform gives d̂(2)
F = 1

3 . This geometry implies
density-density correlations of the form

〈nb(~k⊥)nb(~k′⊥)〉 ∼ |~k⊥−~k′⊥|−5/3 (2.3)

�
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Figure 2: 2d intermittency

revealing strong, local fluctuations of baryon den-
sity with a singular behaviour at small scales
(|δ~k⊥| → 0). These power law fluctuations give rise
to an intermittency phenomenon [11] detectable in
high-energy processes, in particular in nuclear col-
lisions where critical phenomena of strongly inter-
acting matter are expected to occur [12]. The ob-
servables related to correlations (2.3) are factorial
moments in 2d (Fig. 2) computed in small cells, in
the central region [13]. More precisely, the trans-
verse momentum space is partitioned into M2 cells
and the factorial moments F2(M) are calculated as a
function of cell size (or of the number of one dimen-
sional cells M). The phenomenon of intermittency
associated with the QCD critical point manifests it-
self as a power law of F2(M) for large M, as follows:

F2(M) =

∑
m
〈Nm(Nm−1)〉

∑
m
〈Nm〉2

; F2(M)∼ (M2)ϕ2 , M� 1 (2.4)

where ϕ2 =
5
6 . It is of interest to note that critical intermittency, as described above, is the analogue

of critical opalescence in conventional matter [13]. In practice, in order to eliminate the effect of
a strong background of uncorrelated baryons, the power law (2.4) must be applied to a properly
defined correlator:

∆F2(M) = Fdata
2 (M)−Fmix

2 (M) ; ∆F2 ∼
(
M2)5/6

(2.5)

where from the factorial moments Fdata
2 , computed using the events of actual data, we have sub-

tracted a term corresponding to mixed events. The method of critical intermittency was applied to
measurements of the experiment CERN-NA49 in a search for critical fluctuations of proton density
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Figure 3: The correlator ∆F2 for proton pairs in SPS processes.
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Figure 4: The correlator ∆F2 for proton pairs in
Si-data, compared to EPOS simulation.

in the processes C+C, Si+Si, Pb+Pb at the high-
est CERN-SPS energy of 160 AGeV [14]. The
results for the correlator ∆F2 are given in Fig. 3.
A clear effect is observed in Si+Si where the fit-
ted value of the exponent ϕ = 0.96+0.38

−0.25 is com-
patible with the Ising-QCD value ϕ

QCD
2 = 5

6 [13].
As a result, a strong indication was found for
the existence of the QCD CEP and its location
close to the freeze-out state in Si+Si collisions
at
√

sNN = 17.3 GeV: T ' 160 MeV, µb ' 260
MeV. No traces of critical fluctuations were found
in the freeze-out states of C+C and Pb+Pb, at the
same energy. A further support to these findings
comes from the comparison of measured correla-
tor in Si+Si (Fig. 4) with the output from EPOS
event generator. In this simulation, all conven-

tional final states are taken into account including energetic hadronic jets which could generate
spurious intermittency by non-critical protons. It was found that EPOS events [14] cannot account
for critical intermittency, leading to a correlator ∆F2 which, as a function of M, fluctuates around
zero (Fig. 4).

In conclusion, the investigation above suggests that a dedicated experimental program of high
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precision with nuclei of size close to Si (A ' 30) and colliding energies close to SPS (
√

sNN ' 17
GeV) may lead to the discovery of the QCD critical point. In fact, towards this line of research, the
NA61 experiment at CERN-SPS [15] and the Beam Energy Scan Program at BNL-RHIC [16] are
in progress.

3. Viscosity of baryon-number fluid near Tc

In the second part of this presentation (section 2) we have introduced the baryon number
density nb as a proper order parameter, compatible with the long-time scale of the QCD critical
phenomena [7]. As a consequence, the baryon-number fluid is appropriate to capture the dynamical
aspects of the QCD critical point, in particular the development of singular viscosity (shear and
bulk) near the critical temperature Tc. For the description of these phenomena we assume that, in
a process out of equilibrium, net baryons relax to a 3d Ising-like system in equilibrium. The basic
mechanism, in this process, consists of thermal diffusion and sound waves. In this framework,
one may consider the approximation in which, approaching the critical point during relaxation, the
following thermodynamic quantities prevail in the description of shear (η) and bulk (ζ ) viscosity:

η(T,vs,ξ ,
cP

cV
) ; ζ (ρ,vs,ξ ,

cP

cV
) (3.1)

where vs is the velocity of sound waves, ξ : the correlation length and ρ: the mass density of the
medium in the bulk. On the basis of dimensional considerations: [viscosity]=[energy density] ×
[time] one may obtain the following expressions in terms of singular quantities in the limit T → Tc,
µb = µc:

η

s
=

kBT v−1
s

sξ 2 F(s)
(

cP

cV

)
;

ζ

s
=

ρvsξ

s
F(b)

(
cP

cV

)
(3.2)

where we have introduced the entropy density (s) forming the dimensionless ratios (3.2) in the
system of units kB = c = h̄ = 1. The basic thermodynamics of the fluid is formulated as follows:

cP− cV = T kT

(
∂P
∂T

)2

V
,

cP

cV
=

kT

kS
, v2

s = (ρkS)
−1 , (3.3)

s =
ε +P

T
− µbnb

T
, ρ =

ε +P
c2

where kT , kS are the isothermal and adiabatic (isoentropic) compressibility, ε: the energy density,
P: the pressure and µb: the baryochemical potential [17].

The development of singular viscosity near the critical point describes the dynamical proper-
ties of the fluid [7] along the critical line (Fig. 1) whereas, in a distance from the critical temper-
ature, in the quark phase (T � Tc), we meet the equation of state of an ideal, massless, classical
system:

ε = 3P , P = nbT , h = 4nbT (h : enthalpy density) , cV = 3nb ,

cP = 4nb , vs =
1√
3

, kT = (nbT )−1 , s =
(

4− µb

T

)
nb (3.4)

An analytical solution for the viscosity of the baryon-number fluid is expected to provide us
with a smooth transition from the critical region of singular behaviour (T ≥ Tc) to the ideal system

6
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(3.4) at high temperatures (T � Tc). To this end we consider the power laws, valid in the limit
T → Tc, µb = µc:

cV = A±|t|−α , kT = Γ±|t|−γ , ξ = ξ±|t|−ν

(
t ≡ T −Tc

Tc

)
(3.5)

where the indices α , γ , ν are the 3d Ising-like critical exponents and the amplitudes A±, Γ±, ξ±
correspond to the limits t → 0+ and t → 0− respectively. The ratios of the amplitudes A+

A−
, Γ+

Γ−
, ξ+

ξ−
are also universal and are fixed within the universality class of the critical point [18].

In this context, a treatment of shear and bulk viscosity near the QCD critical point can be
performed on the basis of eqs. (3.2, 3.3, 3.5). For the functions F(i)

(
cP
cV

)
, i : (s,b) in eqs. (3.2) we

adopt a simple description inspired by a perturbative treatment of conventional fluids in the vicinity
of liquid-gas critical point [19]: F(i) = f (i) cP

cV
where f (i) are dimensionless, nonuniversal constants.

In order to specify the solution for (η , ζ ) the following constraints are in order:
(a) The ratios of the amplitudes are fixed by the 3d Ising universality class [20]: A+

A−
' 0.55, ξ+

ξ−
' 2,

Γ+

Γ−
' 4.5 and

(b) The solution for T > Tc meets the ideal system (3.4) at T = 2Tc where the sound velocity reaches
the value vs =

1√
3
. The boundary condition at this point gives A+ = 3nc and Γ+ = (2ncTc)

−1.
With these constraints, one obtains the following solution:(

η

s

)
±
= f (s)M±

(
1+Λ±|t|γ+3ν−2)1/2 |t|1−γ+ ν

2

(
ζ

s

)
±
= f (b)N±

(
1+Λ±|t|γ+3ν−2)3/2 |t|3−γ− 11

2 ν (3.6)

v2
s =

t2−3ν

4

(
2tγ+3ν−2

1+ t
+

1
3

)
; Tc ≤ T ≤ 2Tc , 〈v2

s 〉= 0.27

where:

M+ =
1√
3

ξ
−2
+ Tc

sc
, N+ =

1
3
√

3
ncξ+Tc

sc
, Λ+ = 6

M− =
4

7
√

3
ξ
−2
+ Tc

sc
, N− =

1
84
√

3
ncξ+Tc

sc
, Λ− = 60 (3.7)

In writing the exponents in eqs. (3.6) we have used the Josephson scaling law νd = 2−α [3]
restricting the number of critical exponents involved to a couple of independent indices (γ , ν).
From eqs. (3.6) the power laws in the limit T → Tc are for T > Tc:

η ∼ |t|1−γ+ ν

2 , ζ ∼ |t|3−γ− 11
2 ν (3.8)

The behaviour (3.8) we require to be in accordance with the dynamical aspects of the QCD critical
point and in particular with the prediction in reference [7] which is based on a RG treatment of an
appropriate Langevin equation linked to these phenomena: η ∼ t−0.053ν , ζ ∼ t−2.8ν . Comparing
this prediction with the behaviour (3.8) we find: γ = 1.34, ν = 0.61, a solution compatible with the
Ising universality class in 3d [18].

From eqs. (3.6, 3.7) we observe that the solution (3.6) depends on two collective parameters:

f (s) ξ
−2
+ Tc
sc

, f (b) ncξ+Tc
sc

. For a set of indicative critical values: Tc' 160 MeV, µc' 220 MeV, nc' 0.13

7
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Figure 5: Our solution for the shear viscosity
(blue line) compared with the findings of [25]
(empty orange triangles), [26] (solid circles, tri-
angles and squares).

fm−3 [21] and ξ+ ' 1 fm, we end up in a de-
scription with the dimensionless constants f (s),
f (b) which depend on the nature of the medium
(net-baryon fluid). To complete our treatment
and determine these parameters, we employ, as
a final guiding principle, the KSS bound [22]
which is assumed to be reacked by the minimum
of the ratio η

s , close to the critical temperature.
This constraint originates from a class of strong
coupling field theories (AdS/CFT limit) and it is
widely accepted that the formation of quark mat-
ter in high-energy nuclear collisions creates an
ideal environment to test its validity [23]. In the
same framework, a constraint on the bulk vis-
cosity is obtained if we use the parametrization,
ζ

s = 1
8π

(1
3 − v2

s
)
, introduced in reference [24] and

take, for our purpose, the average in the domain
Tc ≤ T ≤ 2Tc with the help of eqs. (3.6) in which
〈v2

s 〉 ' 0.27. Thus, we obtain the final constraints:(
η

s

)
min

=
1

4π
(t ' 0−) ;〈(

ζ

s

)
+

〉
' 0.030

4π
(3.9)

which lead to the estimate: f (s) ' 8.2×10−2 and f (b) ' 2.0×10−3.

0

10

20

30

40

4π
(ζ

/s
)

-0.1 0.0 0.1 0.2

t=(T-Tc)/Tc 

A.Monnai, et al.

KSS bound = 1

Bulk Viscosity

Figure 6: Our solution for the bulk viscosity (red line) compared
with the findings of [27] (green line).

In Fig. 5 the solution for the
shear viscosity of net-baryon mat-
ter is compared with other find-
ings. In the hadronic phase (T <

Tc) the solution gives 1 ≤ 4π
η

s ≤
4.3 for 0.5Tc ≤ T < Tc, deviating
from the behaviour of chiral mat-
ter [25]. For T > Tc (quark matter
phase) the result is 1.6 ≤ 4π

η

s ≤
3.7 for Tc < T ≤ 2Tc and a compar-
ison with recent findings of lattice
QCD [26] is illustrated. The weak-
ness of the singularity at T = Tc

leads to a structure of two local
minima, very close to the critical

temperature (Fig. 5). The absolute minimum reaches the KSS bound, in the hadronic phase. This
structure cannot be seen in the coarse data of the experiments and therefore is not expected to be
observable in high-energy nuclear collisions.
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In Fig. 6 the solution for the bulk viscosity, eq. (3.6), of net-baryon matter is presented. It
develops a strong divergent singularity at the critical point (ζ ∼ ξ 2.8) but it decreases rapidly and
stays to a constant value, smaller than the KSS bound, for t� 0.025. The result is compared with
the solution in reference [27] where a dynamical treatment of enhanced bulk viscosity near the
critical point is performed.

Concluding, in this last part of the presentation, we have described an analytical treatment of
viscosity of the net-baryon matter, near the QCD critical point [28]. The approach was based on
general issues, in particular on the aspects of the process of relaxation towards the critical state,
on universality linked to criticality, on dynamical aspects of critical singularities and also on a
constraint imposed by strong coupling theories (KSS bound).

In summary, we have discussed a number of distinct phenomena along the critical line, in the
QCD phase diagram:
(a) The crossover transition at zero baryochemical potential (µb = 0), an exact result of first prin-
ciple calculations in lattice QCD.
(b) The development of critical fluctuations, compatible with QCD-Ising universality class, ob-
served at SPS energies, in the freeze-out state of the process Si+Si at 158 AGeV, and
(c) The development of singular viscosity of net-baryon matter, near the critical temperature. The
size of shear viscosity, in the hadronic phase, was found in the domain 1 ≤ 4π

η

s ≤ 4.3, in the
temperature region 0.5Tc ≤ T ≤ Tc.

Together with the above results, a window of expectations is opened for the next few years. In
particular, we expect:
(1) Final lattice QCD calculations at nonzero baryon-number density (µb 6= 0) leading to the loca-
tion of the critical point (without ambiguities). Also, a calculation of transport coefficients (viscos-
ity) with fully dynamical, light quarks.
(2) Precision measurements (NA61 experiment) in a search for critical fluctuations in collisions
of light nuclei (Be+Be, Ar+S, Xe+La) at SPS energies. Also at RHIC in the Beam Energy Scan
Program (BES), and
(3) Precision measurements of shear viscosity in net-baryon systems (elliptic flow of net protons +
hydrodynamics) at SPS energies, close to the critical point.
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