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1. Introduction

There is a number of evidence suggesting that the mass content of the universe is dominated
by Dark Matter (DM). From CMB measurements, the DM seems to account for about 25% of the
total energy of the universe[1]. One of the most promising DM candidates is the so-called Weakly
Interacting Massive Particle (WIMP). The WIMP is assumed to be a massive electrically neutral
stable particle interacting weakly with the Standard Model (SM). Under these assumptions, the
mass of the WIMP seems to lie naturally at the electroweak scale, due to the so-called WIMP-
miracle [2]. This makes the WIMP accessible at LHC as well as direct detection experiments.

Here we present the work of [3], where the SM is extended by a pair of fermionic SU(2);-
doublets, which constitutes the Dark Sector (DS). Assuming that the SM and the DS do not mix,
due to a Z, parity, the complete set of d = 5 non-renormalizable operators is introduced. We show
that after electroweak (EW) symmetry breaking there is a stable neutral particle, which can act as
a WIMP. The EFT at hand generalises the discussion on the bi-doublet DM scenario. Among the
models incorporating a pair of fermion doublets in their low-energy spectrum, one finds the hig-
gsino DM case [4], some simplified models such as the doublet-triplet DM [5], non-supersymmetric
SO(10) GUTs [6] and its left-right symmetric subgroup [7].

Performing a phenomenological analysis, we show that a viable WIMP with a mass close to
the EW scale, i.e. suitable for LHC searches, acquires sizeable magnetic dipole moments with the
gauge bosons.

2. The EFT content

In the SM we add a pair of fermion SU(2).-doublets, D, with opposite hypercharges,
Y (D)= —Y(Dy) = —1. We impose a Z, parity which separates the DS from the SM and ensures
that the lightest neutral particle is stable and thus a WIMP candidate. Apart from the renormaliz-
able interactions, we also introduce the complete set of d = 5 non-renormalizable operators, which
are responsible for the dipole interactions between the DS fermions and the SM gauge bosons, the
Yukawa interactions and the mass splitting between the components of the doublets.

2.1 The Yukawa interactions

Since there are no renormalizable interactions between the Higgs boson and D », they appear

at the d = 5 level. The d = 5 Yukawa along with the mass terms are'

— Lnass+Yukawa O 2k (HTeDy) (HTeDy) + 32 (H'D,) (H'D») Q2.1)

+ 22 (HTeDy) (H'D,) + %2 (DTeD,)(H'H) +MpDTeD, + Hee.,

where A is the cut-off of the EFT and € is the SU(2), anti-symmetric tensor (in the fundamental
representation). Also, for simplicity we assume that the parameters are real numbers, while the
mass parameter Mp can be redefined to be positive. Finally, as it can be seen from eq.(2.1), there
are four independent operators with their respective Wilson coefficients y; » 12 and &j5.

I'The spinor and gauge indices are suppressed for simplicity.
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2.2 The dipole interactions

Apart from the operators of eq. 2.1, there are also interactions with the gauge bosons atd =5
level. These are

d B .
D%ipoles D XVD{ (oo €Dy B,y + dTW (D{ otV STDQ) Wy +
Y pT 61V eDy Byy + 2 (DT 6"V €% D,) - Wyy + Hec. (2.2)

By (Wuv) the U(1)y (SU(2)r) gauge boson, dy and dy are real numbers. Additionally, since we
are not concerned about CP violation, ey = ey = 0.

2.3 Symmetries of the Dark sector
The custodial symmetry

It is known [8] that, the SM Higgs sector is invariant under a global SU(2)g (custodial) sym-
metry. defining

_ 770% +
%:( B H ) 2.3)

the the SM Higgs sector is invariant under SU(2), x SU(2)g with the transformation rule /¢ —
Uy 7€ Ug. Tt turns out that in the EFT at hand the Yukawa sector exhibits the same symmetry, when

yi=Y2= =Y. (2.4)
This can be seen by defining y = —y;, and
DY Df
g="1"2], 2.5)
Dy D;
which transforms as & — Up Z2Upg. Then the equation 2.1 obtains the form:
— L D % [TH( D))" +Mpdet +H.c., (2.6)
which is clearly invariant under SU (2). x SU (2)g.

The charge conjugation symmetry
In addition to the custodial symmetry, there is also a charge conjugation (c.c.) symmetry,
which is a symmetry of the entire set of d = 5 operators. For y; =y, =y (and Vy»), the interac-
tions 2.1 and 2.2 are invariant under exchanging D; — D, according to?
C'Dy,C = €Dy, (2.7

This symmetry, basically, exchanges the columns of the matrix 2.5.

2In general the Higgs field is transformed as H — H, but in the Kibble parametrization H remains unaffected.
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Finally, we should point out that in our phenomenological analysis we are going to study two
Benchmark scenarios in the the c.c. symmetric limit i.e. y; = y,. These two case are:

(a) y12 = —y, (b) y12 =0. (2.8)

The first one is the SU(2)g symmetric limit, while the second violates the custodial symmetry, but
is employed since it gives us a distinct mass spectrum.

3. The physical states

3.1 Mass spectrum

After EW symmetry breaking, the Higgs field is shifted by its vacuum expectation value (vev),
v, resulting to mixing between the components of D1 ». After rotating to the mass basis, physical
states are

1 i
x"=iD}, X~ =iDy . G.1)

For these particles the mass terms become
1 2
LD —mpey x — 3 Y moxlx +He., (3.2)
i=1

where the masses are

my= =Mp + ¢ho,
Moy = my: + o(y—yn), 0=, (3.3)
My =My — o(y+yn).

As stated in the previous section, we consider the two Benchmark scenarios shown in 2.8. These
produce two distinct hierarchies for the masses m,+, Mg -
The hierarchies are shown in Fig. 1. We note that for y < 0 the lightest particle is always )(?,
while for y > 0, the lightest particle becomes )(g without changing the phenomenology. Therefore,
for the following analysis we are going to restrict y to be negative, which makes x? our WIMP
candidate. The masses of the particles for the two cases under study are:
(a) y = —y12 < 0. In this case, the heavy fermion is degenerate with the charged one, where the
various masses are given by

M0 = My, M

2 ?:m%i—ZwM.

X

(b) y <0, y;2 = 0. There is no degeneracy between the particles and the various masses are

myo = my= +20ly|, Moo = My —20ly|.

X
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Figure 1: The mass hierarchies for the two Benchmark scenarios under study.

3.2 Interactions

We calculate the Yukawa interactions for the rotated fields. The Lagrangian describing the
3-point DS-Higgs interactions? is
L _ 0,0
LIS S Y Ryt - LY R0 Y 34
with

Yr = 28,2,

yhox — @ (512 +y—yn2),
YMOH = 20 (£, _y_y,),
YR — . 3.5)

Interestingly, due to the c.c. symmetry, the interaction of the WIMP (x?) with the Higgs
follows Y"1 ~ &12 +y —y12. Thus current Direct Detection experimental constraints (discussed
later) can be avoided easily without the need for parameter fine tuning.

Since D  are charged under SU(2); x U(1)y, there are renormalizable interactions between
them and the corresponding gauge bosons. The neutral ones are given by

Ly O —(Fe) (xT) G T Ay — (—e) (x7) G x Ay +

neutral
2O et xt Zu - EOR () 6 Zu+
ZofF () et 1) 2y, (3.6)
where
1 i 01
/IL_ R _ 11 _A~2 ML . °
O-=0"= 2(1 25y ) and O 2(_1 0), 3.7

3The 4-point interactions are not shown for simplicity.
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with sy = sinBy and Oy being the weak mixing angle. Notably, the interaction )((% x&Z vanishes
due to the charge conjugation symmetry.

Furthermore, the non-renormalizable operators of eq. 2.2 also contribute to the neutral inter-
actions, where the 3-point ones are:

iﬂlg?rjlsa—poim D = (dysw + dw cw) Ogle X! Ouv X‘? F¥ -
VQz (dysw — dwew) X~ Ouv X quv +
G (dyew — dw sw) OfF 20 opv 1) Fy'¥ + (3.8)
9 (dyew + dw sw)x~ ouvx T FY + Hec,
where Fy and F7 are the field strength tensors of the photon and Z, respectively. Interestingly, the
dipole operators which arise at d = 5 level, generate interactions between the neutral dark particles

and the photon proportional to Cy = dy sy — dy cw. There are also other interactions between W=
and the Dark Sector. The renormalizable ones are:

"E/ﬂccglianrlg:eﬁ:a‘fpoint 2 gO{‘ (XIO)T 6# %Jr W;I _gO{e (%7)T 6# X,O Wl; +
gOM (xM)T M xX WS — g OF (1)1 6H = W, (3.9)

1( i 1( i
O = 3 (_1> Of =2 (_1> . (3.10)

From eq. 2.2, the 3-point interactions between W+ and the dark fermions become

with

x%lgg:ezl 3—point 2 721;22 dw Of* X Ouv xlo F#X +
28 dy OF x " ouy 20 FyY + Hec. (3.11)
Finally, we should point out that, due to an alignment of couplings in eqs. 3.6 and 3.9 with
the those in eqgs. 3.8 and 3.11, a “natural” cancellation of the d=4 and d = 5 contributions in the
annihilation cross-section x? x? — VV (with V being W and Z) can be achieved. This, as we shall

see later, will be important in obtaining the observed relic abundance for WIMP masses at the
electroweak scale.

4. “Earth constraints"’

In this section we study constraints, from WIMP( x?)—nucleon scattering experiments, searches
for heavy charged fermions at LEP and from the LHC data for the Higgs boson decay to two
photons. We collectively refer to these as “Earth constraints”.

Nucleon-WIMP direct detection bounds

For the Spin-Independent cross-section the current limit set by the LUX Collaboration [9, 10]
is 051 ~ {1 —3.5}10~* cm?, for mpy ~ {100 — 500}GeV. This translates to

YR < {0.04,0.06} . @.1)
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LEP bounds

We next examine constrains for heavy charged fermions from LEP. From Fig. 1 we observe
the next-to-lightest particle is the charged dark fermion, y*, with mass my+ = Mp + &> @ that is
assumed to be positive.

The bound on m,+ from such experiments is [11] m,= 2 100 GeV, which in terms of Eo, @
and Mp becomes &, > loofMD.

Bound from /4 — Yy measurements

. . . _ I'(h— . .
From the interactions 2.1 and 3.8, the ratio R,y = Wﬁg\d) is given by [5]
1 V2yhmex'y, 2

Asm My

where Agm ~ —6.5 for my, = 125 GeV, 1 = m%l /4m§i and Ay, is the well known function given
in Ref. [12]. The ratio R is currently under experimental scrutiny at LHC. The current value is
Ry_yyy = 1.15‘:8:%2 [13]. From eq. 3.5 we expect that £;, would be restricted to small values from
the loop induced 4 — Yy bound. This would also result to a lower bound on Mp at ~ 100 GeV.

Combined ‘“Earth constraints'

15

1.0

£12
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0.0

y

Figure 2: The allowed values of y—&;2, in order to satisfy the earth constraints, for A = 1 TeV and
Mp =300GeV.

A numerical example of the combination of the “Earth constraints" is shown in Fig. 2. Gen-
erally, combining all the aforementioned bounds, results to a lower allowed value for the doublet
mass parameter (Mp) at ~ 90GeV. Furthermore, & is restricted to (relatively) small values. Also
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the allowed Yukawa couplings follow the relation &, = —(2)y=+0.16, for yjo = 0 (y;2 = —y). This
relation, then, also restricts y to small values.

5. Cosmological and astrophysical constraints

Having examined the constraints imposed from earth-based experiments, we now can the cal-
culate the relic abundance of the lightest particle ( )(?) of this model and delineate the parameter
space in which QA? the observed one. After that, various others astrophysical constraints are going
to be considered.

The role of the dipoles

Before moving on, we should remind that the dipole operators (2.2) are essential in our study.
This is because dy acts as a regulator that minimizes the total annihilation cross-section as the
desired EW WIMP mass tends to amplify it*. Thus this minimization is vital for obtaining cosmo-

logically acceptable relic abundance for m o at the electroweak scale.

x

2
Voe=0

107k

10780
E —yz
o YY

10

1 . wwo

<O V> [GeV72]

10-11L

10-12L

Figure 3: The dependence of the cross section for the various annihilation channels on dy for
vanishing relative velocity, Mp = 400GeV, A = 1TeV,y = -y, = —%2 =—0.8and dy, = 0.

The behaviour of the annihilation cross sections of Fig. 3 shows that there are two minima
for the channels X?Z? — ZZ (ZZ—channel) WtW~ (WW —channel) and yZ (yZ—channel) and
one minimum for ¥y (yy—channel). The first minimum of the annihilations to ZZ and W W~
coincides with dy cy ~ dw sw (Cy ~ 0) which gives small cross-sections for the yy— and yZ—
channels. On the other hand, the second minimum of the ZZ— and WW — channels is in a region
where the annihilation to ¥y and yZ blows up. Furthermore, for negative dy, there are no minima
and every cross section becomes quite large. Therefore, if the minimization of the cross section is
indeed needed, we expect dy to be bounded to non-vanishing positive values close to Cy ~ 0.

4Generally the cross section scales as M b 2 at the renormalizable level.
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5.1 Relic abundance constraints

Since the role of the dipole operators is pointed out, we can calculate the relic abundance and
set further constraints on the parameter space. In Fig. 4 we show the dy — dy plane of the parameter

Y2=-y

0.2 0.3 0.4 0.5
dy

Figure 4: The plane dy — dy of the parameter space that gives the observable relic abundance, for
A =1TeV, yj2 = —y and allowing the other parameters to vary. Similar region holds for y;» = 0.

space that is compatible with the observed DM relic density, varying all the other parameters, while
keeping A = 1TeV and Mp < 500GeV. The parameter dy (dy) is bounded to be (mostly) positive
in order to explain the DM relic abundance for a WIMP mass at electroweak scale, as expected
from the minimization of the annihilation cross section discussed in the previous paragraph.

Yi2=y Y12:0
0.6 T T T T T T T T T
06 ) b
0.5 ]
05|
04t ] 04 F
4 03} ] < 03 L
0.2 1 02 kb
01| ] 01l
0 TN T T T Tl E R A | 0 IR T T PN FE S N A N |
200 250 300 350 400 450 500 200 250 300 350 400 450 500
Mp [GeV] Mp [GeV]

Figure 5: The acceptable values on the plane Mp — dy for the two cases (a) y;o = —y and (b)
yi2 =0, for A = 1TeV. Again we allow for the other parameters to vary.

From Fig. 5 we observe that Mp vastly affects the allowed values for dy for which we obtain
the observed relic abundance. This is mainly due to the dependence of the minimum of the total
annihilation cross section on Mp. Additionally, as Mp increases, dy moves to lower values, since
for larger WIMP masses the minimization of the cross section is less needed (we can obtain the
desired relic abundance at the renormalizable level). Also the allowed values of Mp — y are shown
in Fig. 6.
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Figure 6: The acceptable values on the plane Mp —y for the two cases (a) yj» = —y and (b) y;» =0,
for A = 1TeV. The other free parameters are allowed to vary.
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Figure 7: The allowed mass region for the case y;o = —y. A similar region is also allowed for

yi2=0.

Finally, the Yukawa couplings and the mass parameter Mp showed above, fix the masses and
their differences, as expected from eq. 3.3. These masses are shown in Fig. 7 for y;» = —y (similar
region holds also for y;» = 0). We observe that the WIMP can be at the EW scale and its mass, as
expected, is dominated by Mp.

5.2 Constraints from Gamma-ray monochromatic spectrum

In this paragraph, we calculate the cross-sections for processes that could give gamma-ray
lines from the Galactic Center (GC). As input, we use the parameter space that evade all the other,
previously examined, restrictions and use the results from Fermi-LAT [14] to set additional bounds
to the parameters of this model.

Fro observations of gamma-ray lines from the GC show that the annihilation cross-section
for x? x? — 7y cannot be above ~ 10728 ¢m3s~! for photon energy (Ey = mx?) at 200 GeV up to
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Figure 8: The allowed, region of the parameter space, in terms of the photon energy and the
coupling dw sw — dycw. The contours show the values of the cross-section of the channels x? X? —
Yy (a) and yZ (b) in ems~! for y12 = —y. Again yj» = 0 results in an almost identical plot.

~5x 10728 for E, ~ 500 GeV. For the photon production channel x? x? — YZ, we need to rescale
this bound by a factor of two. This process also results to different value for the photon energy
given by Ey =m0 (1— m%/4m§?).

The values of the relevant cross sections in the allowed region of the parameter space are shown
in Fig. 8. Applying the bounds discussed above, the parameter space remains virtually unaffected,
apart from the dy — dy plane shown in figure 4.

Yi2=-Yy

Figure 9: Allowed regions on the Mp — Cy, plane, consistent with “Earth" constraints, the observed
relic abundance and the bounds from gamma-ray monochromatic spectrum. Almost identical re-
gions are allowed for yjo = 0. The contour lines show the values of the x? xg—photon coupling
Cy.

The values of dy — dy, which respect the bounds discussed here are shown in Fig. 9 along with
Cy (contours). We observe that the allowed values of C, are concentrated around zero, which forces
dw and d to have the same sign. Thus the latter is restricted to positive values, while accepted range
of dy remains as in Fig. 4.

10
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6. LHC searches

Having found the viable area in the parameter space, in which the observed DM relic abun-

dance is obtained while avoiding all the other experimental and observational constraints, we move

on to discuss possible observational effects at the LHC.

Yi=-y
107'¢ 1
£
E 1072 1
gi\
e 1073 1
L §
5 104 \
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10—5 1 1 1 1 1
200 250 300 350 400 450 500
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Yi2==y
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= 107} 1
51077 1
&
5 1073 1
10_4 1 1 1 1 1
200 250 300 350 400 450
MD [GeV]
(b)

500

Figure 10: The cross-section for the mono-jet channel with (a) V/$=8TeV and (b) v/§ = 13TeV.
The areas are obtained from randomly selected values from the ones satisfying all the constraints

discussed in the previous sections.

In Fig. 10 we show the mono-jet channel cross section, which seems to be the most promising
one, at least for this model. The current bound [15] on pp — x? (xg — )(? + VV) + jet at center
of mass energy § =8 TeV is oy ;. < 6.1 fb. It is apparent that this bound is easily evaded in the

allowed parameter space. For LHC (RunlI) at v/§ = 13 TeV, the mono-jet channel can provide us

with a relatively large number of events. From Fig. 10b, we observe that the production of a jet

accompanied with missing E7, can reach cross sections up to ~ 2.5 fb. Therefore the number of

events that can, in principle, be observed is around 250 (750) for LHC expected luminosity reach
of 100(300) fb~1'.

7. Conclusions

We have extended the SM particle spectrum by a fermionic pair of doublets, D », with op-

posite hypercharges. In addition, we have assumed a discrete Z,-symmetry that distinguishes this

Dark Sector from the SM fields. At the renormalizable level there are a neutral, and a charged

Dirac, fermion. After EW symmetry breaking, due the presence of d = 5 operators, the neutral
Dirac fermion splits to two Majorana states. The lightest of them ()(?), which is the WIMP can-
didate and a heavier neutral state, xg. Moreover, the d = 5 operators include magnetic dipole

operators which are, in principle, generated by a UV-complete model, at the TeV scale. The ques-

tion we ask here is whether the WIMP, with a mass around the EW scale, is compatible to the

various experimental and observational data.

In order to reduce fine tuning and further simplify the parameter space, in section 2, we adopted

two scenarios based on a charge conjugation symmetric limit. Then, in section 3 we showed the

mass spectrum of the physical states.

11
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In section 4, we performed an analysis based a) on scattering WIMP-nucleus scattering exper-
iments, b) LEP searches for heavy charged fermions, as well as ¢) on LHC searches for the decay
h — vy. We found the collective bounds showed in Fig. 2.

In section 5 we calculated Qh? for our WIMP candidate. In the presence of non-vanishing
d =5 dipole interactions, the WIMP annihilation cross sections acquire minima, which allow for
the WIMP mass to be as low as 200GeV. Following this we also considered constraints based of
monochromatic gamma-ray spectrum observations from the Galactic Center. These set the final
restrictions on the parameter space, which confined the photon dipole coupling (Cy) to be ~ £0.1.

Since our main goal was to be able to produce a WIMP at the electroweak scale, in order to be
accessible at the LHC, in section 6 we estimated the cross section for producing x? in association
with a jet (monojet) with center of mass energy v/$ = 8, 13 TeV. Although current bounds are weak,
we found that the monojet channel, can produce few hundred of events at v/§ = 13 TeV and with
My = 200 — 350 GeV (see Fig. 10).
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