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1. Introduction

According to the Cosmic Censorship Conjecture (CCC) all singularities in physically
realistic spacetimes are hidden inside an event horizon [1]. CCC thus implies that no signal
from the singularity should be able to reach null infinity. The original argument of Penrose
did not specify or constraint the type of singularities that are the subject to CCC, and it
was in fact soon realized that several counterexamples to CCC can be easily constructed
depending on the details of the collapse. Leaving aside the possibility of defining the
precise set of initial conditions and matter field which do not lead to the presence of naked
singularities, one can argue that a consistent theory of quantum gravity can provide a
different solution to the problem of singularities in classical General Relativity.

In recent years it has been realized that a promising approach to quantum gravity
is the Asymptotic Safety scenario. The idea, as first proposed by Weinberg [2], is that
General Relativity can have a consistent and predictive ultraviolet completion around an
UV-attractive Non-Gaussian Fixed Point (NGFP) [3] which renders the theory finite (for
a recent review see [4]).

The aim of this work is to study the effects of quantum gravity on the nature of
the singularity arising from the gravitational collapse of a null fluid, complementing the
analysis in [5]. The idea is to perform a RG-improvement of the well known Vaidya-Kuroda-
Papapetrou (VKP) model [6–9] and follow the analysis in [10] to study the possibility to
extend the spacetime beyond the singular point. In particular we found that the usual
singularity arising from the gravitational collapse is replaced by an “integrable” singularity
[11], and that the Cosmic Censorship violation cannot be avoided even including quantum
gravity effects.

This work is organized as follows. In section 2 we shall begin by introducing the classi-
cal description of the gravitational collapse within the VKP model. The RG-improvement
procedure in the context of Asymptotically Safe gravity and the construction of the quan-
tum corrected metric are presented in section 3. In section 4 we discuss our findings on
the singularity nature in the RG-improved Vaidya spacetime, while section 5 is a short
summary of our results and their possible consequences and extensions.

2. Vaidya-Kuroda-Papapetrou spacetimes

As it is well known, the Schwarzschild vacuum solution of Einstein equations describes
the spacetime structure around a spherical massive object such as a star. This solution has
an unphysical singularity at the Schwarzschild radius rs = 2G0m, that is removable with
a change of coordinates. In this respect it is useful to introduce the ingoing Eddington-
Finkelstein coordinates, in which the time coordinate is replaced by the advanced time
parameter v = t+ r∗, with

r∗ ≡ r+ rs ln
∣∣∣∣ rrs −1

∣∣∣∣ . (2.1)

In particular, in order to describe dynamical spacetimes, e.g. the gravitational collapse, it
is reasonable to assume that the mass of the object is instead a mass function m(v) and
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thus the metric assumes the form

ds2 =−f(r,v)dv2 + 2dvdr+ r2 dΩ2 (2.2)

with the lapse function f(r,v) given by

f(r,v) = 1− 2G0m(v)
r

(2.3)

This solution, known as Vaidya spacetime [6], describes the spacetime around a spherically
symmetric object with variable mass m(v). The metric (2.2) is an exact solution of the
Einstein field equations in presence of a Type II fluid, and thus it is perfectly suited to
describe the gravitational collapse of a massive star. In particular, the collapse can be
modeled as the implosion of a series of radiation shells, represented by the world lines
v = cost. In the Vaidya-Kuroda-Papapetrou (VKP) model [8, 9] the mass function is
parametrized as follows

m(v) =


0 v < 0
λv 0≤ v < v̄

m̄ v ≥ v̄

(2.4)

For v < 0 the spacetime is flat and empty (Minkowski spacetime), then the collapse starts
and the radiation shells are injected and focused towards r= 0, causing the mass to grow as
m(v) = λv. As the null dust collapses into r = 0, the VKP spacetime develops a persistent
central singularity, and whether this singularity is covered or not by an event horizon
depends on the collapse dynamics. When the process ends, in v = v̄, the metric reduces to
the Schwarzschild static solution, with final mass m̄.

The outcome of the collapse can be studied by solving the geodesic equation for null
outgoing light rays, as it gives information on the causal structure of the spacetime. The
general solution of the geodesic equation can be written as [12–14]

|r(v)−µ−v|µ−

|r(v)−µ+v|µ+
= C̃ (2.5)

where C̃ is a complex constant and

µ± = 1±
√

1−16λG0
4 (2.6)

This solution is characterized by a critical value of the radiation rate, λc ≡ 1/16G0, below
which it is always possible to causally connect the central singularity r= 0 with an external
observer. Therefore if the initial conditions of the physical system entails λ≤ λc, the grav-
itational collapse will result in a naked singularity and thus the Cosmic Censor Conjecture
would be violated in its weak formulation.
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3. RG-improved VKP spacetimes

In this section we briefly review the main results obtained in [5]. The idea is to study
the leading quantum effects produced by a running Newton’s constant [15], by using the
“RG-improvement” procedure. The non-perturbative Renormalization Group techniques
allow in fact to compute the evolution of the effective average action Γk[gµν ] via the exact
functional equation [16]

k∂kΓk = 1
2 STr ∂kRk

Γ(2)
k +Rk

(3.1)

This equation describes the flow in energy of Γk through the theory space, and allows to
connect continuously the high energy regime, described by the classical action S = Γ∞, with
the infrared limit k→ 0, which is described by the usual effective action Γ0. Once an ansatz
for the gravitational part of the action is chosen, it is possible to project the flow on the
correspondent subspace and compute the flow equation for each coupling constant. Under
the Einstein-Hilbert approximation it was found in [15] that the scaling of the Newton’s
constant is approximately given by

G(k) = G0
1 +ωG0 k2 (3.2)

where ω = 1/g∗, being g∗ the value of the dimensionless Newton’s constant at the ultra-
violet NGFP [3], and k is the infrared cutoff scale appearing in eq. (3.1). As it will be
important for our discussion, we want to remark that the dimensionful Newton’s coupling
(3.2) vanishes in the ultraviolet limit k→∞.

In order to take into account the main quantum contributions in the description of the
gravitational collapse, the key idea is to use the classical VKP solution (2.2) and perform
the RG-improvement via the replacement

f(r,v) −→ fI(r,v) = 1− 2m(v)
r

G0
1 +ωG0 [k(r)]2 (3.3)

It is important to notice that in order to have a consistent description of the Vaidya
spacetime modified by a running Newton’s constant, the infrared cutoff must be associated
with a function k(r) relating the mathematical scaling of the Newton’s constant with the
actual collapse dynamics. In the case at hand the only reasonable energy scale involved,
characterizing the collapsing fluid and the singularity formation, is the radiation energy
density ρ(r). With a simple dimensional analysis argument one can argue that k(r) =
ξ 4
√
ρ(r), where ξ is a positive constant and ρ = ṁ(v)/4πr2. The improved lapse function

thus reads
fI(r,v) = 1− 2m(v)G0

r+α
√
λ

α= ξ2G0√
4πg∗

(3.4)

where m(v) is the mass function introduced in eq. (2.4). The metric defined by the RG-
improved lapse function (3.4) is part of a larger class of metrics, known as generalized
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Vaidya spacetimes, in which f(r,v) has the following form

f(r,v) = 1− 2M(r,v)
r

(3.5)

The generalized Vaidya spacetimes are thus characterized by a generalized mass function
M(r,v) that depends on both the advanced time and the radial coordinate. This family of
metrics, first introduced by Wang and Wu [17], corresponds to an exact solution of Einstein
field equations associated with a mixture of Type-I and Type-II fluids, whose stress-energy
tensor is

Tµν = ρlµlν︸ ︷︷ ︸
Type II

+(σ+p)(lµnν + lνnν) +pgµν︸ ︷︷ ︸
Type I

(3.6)

with nµlµ =−1, lµlν = 0 and

ρ(r,v) = 1
4πG0r2

∂M(r,v)
∂v

, (3.7)

σ(r,v) = 1
4πG0r2

∂M(r,v)
∂r

, p(r,v) =− 1
8πG0r

∂2M(r,v)
∂r2 (3.8)

In the classical VKP modelM(r,v) =G0m(v), so that the stress-energy tensor (3.6) reduces
to the pure Type II one, while the RG-improved counterpart hasM(r,v) =G(r)m(v), that
corresponds to a non-trivial fluids mixture [5].

The structure of the spacetime, the singularity formation and the validity of the Cosmic
Censorship Hypothesis can be studied, as in the classical case, by solving the geodesic
equation for an outgoing null observer. The RG-improved geodesic equation is

ṙ(v) = 1
2

(
1− 2m(v)G0

r(v) +α
√
λ

)
(3.9)

It differs from the classical equation only for a shift in the radial coordinate r(v). As it was
found in [5] this shift leads to an increase of the critical value λc, favoring the formation of
naked singularities. Furthermore, as it shown in Fig. 1, the event horizon forms well after
the formation of the singularity, thus allowing the singularity to be naked and persistent
along the advanced time v direction.

4. Singularity and integrability of the RG-improved VKP model

In the singularity theorems nothing is specified on the “nature” of the singularities.
The real problem caused by spacetime singularities is not the divergence of physical quan-
tities, but instead the impossibility to know the future evolution of geodesics beyond the
singularity (a radially infalling observer will suddenly disappear from the spacetime once
the singularity is reached). It is this feature that breaks the physical predictability, and
thus the validity of General Relativity as a classical deterministic theory.

As discussed in [10, 18], the physical relevance of a spacetime singularity is determined
by its strength. By following the Tipler classification [11] a singularity is called “strong”
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Figure 1: Global structure of the spacetime for λ≤ λc.

if any object sent into this spacetime point is destroyed by the (infinite) gravitational
tidal forces. A strong curvature singularity is the only physical relevant singularity: if the
singularity is instead “integrable” one can extend the spacetime beyond it, rendering every
non-spacelike geodesic well defined for all values of the affine parameter.

A way to determine the appearance of naked singularities and mathematically charac-
terize their strength was developed in [10]. In the generalized Vaidya spacetime the lapse
function f(r,v) is defined by eq. (3.5), and the corresponding geodesic equation for null
rays can be written in the form of a dynamical system in terms of an affine parameter t

dv(t)
dt = 2r

dr(t)
dt = r−2M(r,v)

(4.1)

The fixed point solution of the system is r = 0, with the additional constraint that the
generalized mass function vanishes on the hypersurface r= 0, M(0,v) = 0. This set of solu-
tions define the “points” where the spacetime is singular. The behavior of the trajectories
in the vicinity of the singularity is determined by the eigenvalues of the stability matrix
(Jacobian) evaluated at the fixed point (FP)

χ± = 1
2

(
TrJ ±

√
(TrJ)2−4detJ

)
, (4.2)

with TrJ = 1−2(∂rM)FP and detJ = 4(∂vM)FP, and the correspondent characteristic lines

r±(v) = rFP + χ±
2 (v−vFP) (4.3)

which define how radial null geodesics approach the fixed point. The central singularity is
locally naked if there exists at least one non-spacelike geodesic starting from the hypersur-
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face r = 0 with a well defined tangent, and reaching the future null infinity. In terms of
the dynamical system analysis this condition is verified if the fixed point FP is a repulsive
node. Furthermore, according to [10], the singularity strength can be characterized by the
parameter

S = X2
FP
2 (∂vM)FP , XFP ≡ lim

(r,v)→FP
v(r)
r (4.4)

The fixed point solution corresponds to a strong curvature singularity if S is positive, while
for S ≤ 0 the singularity is integrable.

In the RG-improved VKP model the generalized mass function is given by

M(r,v) =m(v)G(r) (4.5)

where the running Newton’s constant G(r) is obtained from eq. (3.2) by replacing k with
the infrared cutoff function

k(r) = ξ
4

√
ṁ(v)
4πr2 . (4.6)

Since the condition M(0,v) = 0 is verified for all values of the advanced time v, the fixed
point solution of the geodesic equation is the line r = 0. This circumstance is realized
because the determinant of the stability matrix is zero, and this latter condition is due to
the anti-screening behavior of the running Newton’s constant in the high energy regime

detJ ∝ (∂vM)FP ∝ lim
r→0

G(r) = 0 (4.7)

Furthermore, this feature implies a vanishing value of the strength parameter

S ∝ (∂vM)FP = 0 (4.8)

Thus the effect of a running Newton’s constant vanishing in the ultraviolet limit is to
turn the strong curvature singularity of the classical VKP model into a line of integrable
singularities.

The fixed points line is characterized by one marginal direction r = 0, along which the
fixed points are located, and by a family of non-marginal characteristic lines whose slope
depends on the precise location of the fixed point (0,v0)

v = v0 + 2r
χ+(v0) , χ+(v0)≡ TrJ = 1− 2λv0G0

α
√
λ

(4.9)

For a given fixed point P ≡ (0,v0), the curve in eq. (4.9) describes the tangent line to the
trajectory ending in P . Depending on v0 the slope of such lines can be either positive or
negative, and the value v̄0 at which the slope inverts its sign corresponds to the condition

rAH(v̄0) = 0 (4.10)

Moreover, since χ+(v0) ≡ TrJ , if the slope of (4.9) in P is positive (negative) the fixed
point P ≡ (0,v0) is repulsive (attractive) along the correspondent non-marginal character-
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Figure 2: Characteristic lines controlling the behavior of the system near the singular line, eq.
(4.9). The trajectories that start above (under) the apparent horizon (purple line) have negative
(positive) slope. The qualitative behavior of these characteristic directions does not depend on λ.

istic direction. The configuration of the characteristic lines is shown in fig. 2. Clearly
the characteristic curves cannot cross each other, and the appearance of intersections is an
artifact of the description used, which is based on the linearization of the geodesic equation
around r = 0. Far from the fixed points line the non-linearity effects of the original dy-
namical system must fold and join the characteristic lines so that different solutions never
intersect each other. It is interesting to notice that in this analysis the qualitative behavior
of the trajectories does not depend on the radiation rate λ. Every fixed point P along the
marginal direction r = 0 has a zero eigenvalue, χ− = 0, and therefore this continuous set of
fixed points forms a line of improper nodes for all values of λ. It follows that, according to
the definition, the singularity in the RG-improved model is not locally naked. This state-
ment seems to contradict the results in [5], in which it was found that there exists a critical
value λc below which the singularity is naked, whose value is greater than the classical one.
The apparent mismatch is related to the fact that the analytical solutions found in [5] are
obtained by solving the full geodesic equation, while the study of the singularity with the
approach of [10] is performed by linearizing the system around r = 0.

The critical value of the radiation rate is restored once the full RG-improved geodesic
equation is considered. In this case the family of characteristic curves in eq. (4.9) becomes
a continuum set of heteroclinic orbits between couple of attractive-repulsive fixed points,
as it is shown in fig. 3 for λ > λc. Moreover, the study of the full geodesic equation allows
to interpret the fixed points line and the correspondent v0-dependent characteristic curves
as result of a spiral node located in the unphysical part of the diagram (r < 0). In fact, the
RG-improved geodesic equation can be obtained from the classical one by shifting the radial
coordinate r(v)→ r(v)+α

√
λ, and since the classical VKP model presents a singularity in

P ≡ (0,0), which is a spiral node for λ > λc, this node has the effect of producing a line of
fixed points (r = 0) in the RG-improved (shifted) system.
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Figure 3: Solutions of the full RG-improved geodesic equation for λ > λc. Left panel: the non-
linearity effects fold and join the characteristic lines (black lines), resulting in a set of characteristic
curves (blue lines) linking couple of attractive-repulsive fixed points. Right panel: the line of fixed
points and the correspondent characteristic curves can also be understood in terms of the “shifted
classical solution”, as they are generated by the shifted spiral node characterizing the classical VKP
model for λ > λc.

5. Conclusions

In this communication an RG-improved Vaidya model of gravitational collapse has
been proposed. In particular it has been shown that the effect of a running Newton’s
constant, according to the AS scenario in Quantum Gravity, is to dramatically alter the
strength of the singularity at r = 0 of a non-rotating model, resulting in “whimper” type
of singularity. It would be important to extend our findings including the presence of
angular momentum and discuss possible astrophysical implications of our model. We hope
to address these issues in a future work.
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