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On scattering amplitudes in higher spin theories Arkady Tseytlin

1. Introduction

There is a long history of theoretical studies of higher spin theories. Massive HS fields appear
in string theory and may become massless in a certain “tensionless" limit (not well defined in flat
space). Massless HS theories are known to exist in AdS space and play a natural role in vectorial
AdS/CFT duality. Theories dual to free adjoint U(N) CFT’s contain both massless tower of states
plus infinite set of massive fields in AdS. There is also closely associated theory of conformal
higher spins (with non-unitary higher derivative kinetic terms) that admits a consistent in flat-
space expansion. Hypothetic theory of massless HS fields in flat space that should have infinite
dimensional gauge and global symmetries should have “trivial" S-matrix to comply with analogs
of Coleman-Mandula theorem and Weinberg soft theorem.

Below we shall review some recent results of the study of quantum corrections in theories
containing infinite number of massless or conformal higher spin states [1, 2, 3, 4, 5, 6, 7].

Theories of infinite number of fields require specific definition at quantum level that should be
consistent with their symmetries and provide a prescription of how to sum over all spins. Similar
ambiguities in string field theory are fixed by the existence of world-sheet prescription for com-
putation of observables, but in the case of HS theories such a “first-quantized" formulation is not
know. To make first steps towards understanding these issues one would like to compute some
simple partition functions and scattering amplitudes with higher spin exchanges in massless higher
spin (MHS) theory and conformal higher spin (CHS) theory.

In the context of vectorial AdSd+1/CFTd duality one starts with a free complex scalar in fun-
damental representation of U(N), i.e.

∫
ddx∂mΦ∗i ∂mΦi (i = 1, ...,N) with a tower of on-shell

conserved higher spin currents Js ∼ Φ∗i ∂(m1 ...∂ms)Φi + ... (s = 1,2, ...) which are U(N) invariant
CFT primaries of dimension ∆ = s+d−2 which are dual to massless HS fields φs field in AdSd+1.
J0 = Φ∗i Φi with ∆ = d− 2 is dual to massive scalar with ∆(∆− d) = m2 = −2. This is the same
spectrum as in Vasiliev’s massless HS theory in AdSd+1. This MHS theory in AdS “summarizes"
correlators of U(N) singlet primaries Js in free CFT: they are reproduced by HS interactions in
AdSd+1 with coupling ∼ 1/N, i.e. the classical action for Fronsdal fields φs in AdS should be

S = N
∫

dd+1x
[
∑

s
φs(−∇

2 +m2
s )φs +∑Cs1s2s3(∇)φs1φs2φs3 + ...

]
≡ NS̄ (1.1)

Quantum corrections are described by an effective action Γ = NS̄+Γ1 +N−1Γ2 + .... On the CFT
side we may consider the generating functional for correlators of currents Js(Φ)=Φ∗i Js Φi , Js∼
∂ s introducing source fields hs. These will have the interpretation of conformal higher spin (CHS)
fields that are gauge fields for the infinite dimensional algebra of symmetries of the free scalar
theory. Their linearized gauge transformations δhm1···ms = ∂(m1εm2···ms)+η(m1m2 αm3···ms) are given
by linearized differential and algebraic symmetries that generalize diffeomorphism and Weyl sym-
metry of the conformal C2 gravity. Then the generating functional for connected correlators of
currents is found by integrating over free fields Φi

Γ[h] = N logdet
(
−∂ 2 +∑s hs Js

)
(1.2)

From the AdS/CFT point of view Γ[h] should follow from the massless HS theory in AdSd+1 upon
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integrating over AdSd+1 fields φs with Dirichlet b.c.

e−Γ[h] =
∫

φs |
∂AdS=hs

[dφs]exp
(
−NS̄[φ ]

)
(1.3)

This matching suggests that all quantum corrections to AdS effective action Γ−NS̄=Γ1+N−1Γ2+

... should vanish, i.e. the quantum MHS theory in AdS should be defined so that to satisfy this.
Summing up infinite sets of (integrated) correlators suggests also further conjecture: partition func-
tion of the CFT on a non-trivial background should match the MHS partition function in (asymp-
totically) AdS with the corresponding boundary. Then all quantum corrections (N0,N−1, ...) to the
AdS partition function should vanish to all orders. In particular, matching at 1-loop order requires
Γ1 = 0.

This suggests that massless HS theories should have hidden simplicity due to large under-
lying symmetry (i.e. in a sense are similar to “topological" or “integrable" models). Below we
shall discuss some examples of quantum computations in massless and conformal HS theories that
demonstrate this.

2. Free massless HS theory in flat space and in AdS

One may consider a collection of free massless HS s = 0,1,2,3, ...,∞ fields with gauge-
invariance δφm1...ms = ∂(m1εm2...ms) that are described by the Fronsdal action S=

∫
d4x ∂ nφ m1...ms∂nφm1...ms +

.... Like massless vector, graviton, etc. for s > 0 they have 2 dynamical d.o.f. in 4d. One then ob-
serves a curious fact: the total number of of d.o.f. is zero if each spin enters once and te sum is
defined using zeta-function regularization: 1+∑

∞
s=1 2 = 1+ 2ζ (0) = 0. Equivalent statement is

true for free partition function. For each spin s we have

ZMHS,s =
[det∆s−1⊥

det∆s⊥

]1/2
=
[ (det∆s−1)

2

det∆s det∆s−2

]1/2
=
( 1√

det(−∂ 2)

)2 (2.1)

where ∆s = −∂ 2 defined on symmetric rank s traceless tensor. Then the total partition function is
[3]

ZMHS =
∞

∏
s=0

ZMHS,s =
[ 1

det∆0

]1/2[ det∆0

det∆1⊥

]1/2[det∆1⊥
det∆2⊥

]1/2[det∆2⊥
det∆3⊥

]1/2
...= 1 (2.2)

Here we see cancellation between the physical spin s determinant and the ghost determinant for
spin s+1 giving the total Z = 1. This is similar to what happens in a supersymmetric or topologi-
cal theory. Here this cancellation reflects the large gauge symmetry of the theory. The cancellation
of an infinite number of factors is of course a priori ambiguous: it assumes a particular regular-
ization that should be consistent with the underlying symmetry. The formal cancellation of factors
we assumed is, in fact, consistent with the above zeta-function prescription for count of d.o.f:
Ztot = (Z0)

νtot , νtot = 1+∑
∞
s=1 2 = 0. This zeta-function prescription is similar to the one used

in computation of vacuum energy in bosonic string theory which is consistent with target space
symmetries of the theory (the massless vector in d = 26, etc.). Equivalent to zeta-function is the
prescription where one introduces a particular exponential cutoff in the sum over spins and then
drops all singular terms. In general dimension d this reads

νtot = 1+
∞

∑
s=1

νs e−ε[s+ 1
2 (d−4)]

∣∣∣
ε→0, fin.

= 0 (2.3)
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where in d = 4 we have νs = 2.
The fact of triviality of the partition function applies also to the MHS theory in AdSd dual to

a free scalar CFT in d dimensions (d = d +1), i.e. Z = 1 holds in AdS vacuum of Vasiliev theory.
The 1-loop partition function is given by the product of the contributions of spin s Fronsdal fields
in AdS

ZMHS =
∞

∏
s=0

ZMHS,s , ZMHS,s = Zs,s−1 =
[det∆s−1⊥(M2

s−1,s)

det∆s⊥(M2
s,s−1)

]1/2
, (2.4)

∆s(M2
s,k)≡−∇

2
s +M2

s,k , M2
s,k =−s+(k−1)(k+d−2) , k = 0,1, ....,s−1 . (2.5)

One may define the determinants using spectral zeta-function so that (Λ=UV cutoff, r=AdS radius)

lndet∆s =−ζ∆s(0) ln(Λ2r2)−ζ
′
∆s
(0) (2.6)

The natural prescription where one first sums over s for finite argument z of the zeta-function and
then takes z→ 0 appears to be consistent with HS symmetries and one finds [8, 3]

ζtot(z) =
∞

∑
s=0

ζ∆s(z) , ζtot(z→ 0) = 0+0× z+O(z2) , ZMHS(AdSd) = 1 (2.7)

An equivalent regularization prescription is same as in (2.3)

lnZMHS(AdSd) =
∞

∑
s=0

lnZMHS,s e−ε[s+ 1
2 (d−4)]

∣∣∣
ε→0, fin.

= 0 (2.8)

A natural conjecture is that the same triviality applies to all all-loop vacuum partition function:
ZMHS(AdSd) = 1: this is required for consistency with the vectorial AdS/CFT duality to free U(N)

scalar theory at the boundary.

3. Conformal higher spin theory

Conformal higher spins generalize Maxwell (s = 1) and Weyl (s = 2) theories and describe
pure spin s states off shell – they have maximal gauge symmettry consistent with locality. That
requires higher-derivative kinetic terms. The 4d CHS theory being a consistent local gauge theory
with infinite dimensional higher spin symmetry which is closely associated to massless HS theory
in AdS5 is of interest as a model regardless the issue of its apparent non-unitarity. Free CHS field
in flat 4d has the action Ss =

∫
d4x hsPs∂

2shs where Ps is projector to transverse traceless totally
symmetric rank s field. The CHS field hs thus has dimension 2− s which is the same as of sources
or “shadow" operators for spin s conserved currents Js(Φ) that have dimension 2+ s. hs also play
the role of boundary values for the MHS fields in AdSd+1 dual to Js.

The interacting CHS theory may be defined as “induced" one starting with I =
∫

d4x
[
∂Φ∗∂Φ+

∑s Φ∗JsΦhs
]

and keeping the local log UV divergent part of the generating functional in (1.2)

SCHS = logdet(−∂
2 +∑

s
Jshs)

∣∣∣
log Λ

(3.1)
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The corresponding partition function in flat d = 4 space counting effective d.o.f. is given by

ZCHS,s = (Z0)
νs = (det∆0)

−νs/2 , νs = s(s+1) = 2,6, ... (3.2)

ZCHS =
∞

∏
s=0

(Z0)
νs = (Z0)

νtot , νtot =
∞

∑
s=0

νs (3.3)

Using again the same regularization

∞

∑
s=0

F(s) →
∞

∑
s=0

F(s) e−ε(s+ d−3
2 )
∣∣∣
ε→0, fin.

= 0 (3.4)

we find νtot = 0 and thus ZCHS = 1. This regularization is the same as implied by the relation of
MHS theory in AdSd+1 and CHS theory at the boundary. In fact, the 1-loop ZCHS(S4) in same
regularization is again found to be equal to 1. This is consistent with the relation to the ratio of
MHS partition functions in AdS5 with two choices (D/N) of boundary conditions [5]

ZCHS,s(S4) =
Z−MHS,s(AdS5)

Z+
MHS,s(AdS5)

(3.5)

Then ZCHS(S4) = 1 is directly related to Z±MHS(AdS5)tot = 1. This regularization is consistent with
symmetries of the CHS theory: it leads also to the vanishing of conformal anomaly after summa-
tion over all spins [7]. For each spin s field one finds

T m
m =−aR∗R∗+cC2 , as =

1
720 ν2

s (14νs+3) , cs−as =
1

720 νs(15ν2
s −45νs+4) , νs = s(s+1)

(3.6)
and then using the same regularization (3.4) one gets

∞

∑
s=1

(cs− as) = 0 ,
∞

∑
s=1

as = 0 (3.7)

Thus the total conformal anomaly vanishes providing a check of 1-loop quantum consistency of
the CHS theory (where Weyl symmetry is one of the gauge symmetries). The summation over
infinite set of spins spins using this particular prescription provides a novel mechanism of getting
UV finiteness in a bosonic theory (not completely dissimilar to the one in string theory).

4. Scalar scattering via conformal higher spin exchange

The issue of regularization of the sum over spins appears again in the context of S-matrix. One
example is the scattering of external conformal scalars interacting through exchange of higher spin
particles (here conformal, compared to massive tower in string theory). One may start with

S[Φ,h] =
∫

d4x
[
∂Φ
∗
∂Φ+∑

s
hs Js(Φ)

]
+S[h] , S[h] = κ ∑

s

∫
hs Ps∂

2s hs +O(h3) (4.1)

Then four-scalar tree-level scattering amplitude is found to be [2]

A(t)
s (s, t,u) = Ps(

s−u
s+u) (4.2)
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where s, t,u are Mandelstam variables: s+ t+u= 0 and Ps(x) is the Legendre polynomial (which

is replaced by the Gegenbauer polynomial C( d−3
2 )

s in d dimensions). The amplitude is manifestly
scale-invariant. Summed over spins the t-channel amplitude is

A(t)(s, t,u) = κ−1 F4
(
− s−u

s+u

)
, F4(z) =

∞

∑
s=0

(s+αd)Ps(z) , αd ≡ d−3
2 = 1

2 (4.3)

For generic z the sum over spins diverges and requires a regularization. The same regularization
as in (3.4) gives a delta-function: F reg

4 (z) = δ (z− 1) . Then the total amplitude for ΦΦ → ΦΦ

scattering given by the sum of t-channel plus u-channel contributions) is

AΦΦ→ΦΦ = κ−1
[

δ ( st )+δ ( su) .
]

(4.4)

It actually vanishes for physical momenta: in c.o.m. frame ~p1 +~p2 = 0 = ~p3 +~p4 where in terms
of the scattering angle s

t =−(sin2 θ

2 )
−1, s

u =−(cos2 θ

2 )
−1 the arguments of delta-functions never

vanish for real θ , i.e. AΦΦ→ΦΦ = 0. Similarly,

AΦΦ∗→ΦΦ∗ =
κ−1

2

[
δ (ut )+δ (us )

]
= κ−1

2

[
δ (cot2 θ

2 )−δ (cos2 θ

2 )
]

(4.5)

so here the t-channel and s-channel contributions cancel each other and again AΦΦ∗→ΦΦ∗ = 0 .
Thus while the individual spin s exchange contributions are nontrivial the total amplitude vanishes
in particular summation prescription.

The reason is in the large underlying global HS symmetry that constrains the S-matrix (like
in the case of hidden conserved charges in 2d theories). The global part of the CHS symme-
try contains the conformal generators plus other higher spin generators, e.g., “hyper-translations"
δΦ = εµ1....µr ∂µ1 ...∂µr Φ , For example, this fixes the AΦΦ→ΦΦ amplitude to be AΦΦ→ΦΦ(s, t,u) =

k1(t,u)δ (s) + k2(s,u)δ (t) + k3(t,s)δ (u) In addition, the invariance under dilatations p → λ p
AΦΦ→ΦΦ(λ

2 s,λ 2 t,λ 2 u) = AΦΦ→ΦΦ(s, t,u) then implies that the only solution consistent with
crossing and scaling symmetry is

AΦΦ→ΦΦ(s, t,u) = 0 . (4.6)

We conclude that the regularization in which the tree-level scalar amplitude vanishes is thus consis-
tent with the CHS symmetry. This conclusion generalizes also to scattering amplitudes involving
CHS fields on external lines [11].

5. Scalar scattering in massless HS theory in flat space

Massless 2-derivative higher spins define a unitary free theory (
∫

d4x ∂φs∂φs, δφs = ∂εs−1)
but it is an open question if there is a consistent interacting theory also in flat space. Such theory
may be of interest if there is a flat space limit of the consistent MHS theory in AdS (given by
Vasiliev’s equations); it might be related to a tensionless limit of string theory, if such limit can be
properly defined in flat space. It is not clear (in contrast to CHS case) which could be the underlying
HS symmetry but one expects again an infinite tower of HS conserved charges. These should then
constrain the S-matrix. To explore such theory one may use the known cubic couplings to compute
some simple scattering amplitudes.
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Despite various s > 2 “no-go theorems" prohibiting, in particular, minimal interactions (i.e.
higher spin long-range forces) one may look for a consistent theory that contains (i) infinite tower
of all spins s = 0,1,2,3, ...,∞; (ii) higher derivative (non-minimal) cubic interactions ∂ nφs1φs2φs3 ,
s2 + s3− s1 ≤ n ≤ s2 + s3 + s1 (s1 ≤ s2 ≤ s3) (see a review in [1]). Using Noether procedure
one may then deform the transformations δφs = ∂εs−1 + ..., and attempt to determine the 4-point
and higher interaction vertices. This should fix 3-point coupling constants like was done in the l.c.
gauge in [9] gs1s2s3 = g `s1+s2+s3−1

(s1+s2+s3−1)! The resulting theory should have two parameters: g=
dimensionless and `= length

S =
1
g2

∫
d4x

[
∑

s
∂φs∂φs +∑`n−1

∂
n
φs1φs2φs3 +∑`k−2

∂
k
φ

4 + ...
]

(5.1)

where φ 3 terms contain two covariant structures ∂ s1+s2+s3 and ∂ s2+s3−s1 . Whether there exists a
consistent and local φ 4 vertex remains an open question. The theory is in any case effectively non-
local: the number of derivatives grows with s and with number of fields n in φ n vertex. It may still
have hidden simplicity under a particular summation over spins prescription.

It is useful to describe symmetric higher spin tensors by φs(x,u) = φ a1...as(x)ua1 . . .uas where
ua is a constant vector. Then the free Fronsdal action is

S(2)[φs] =
∫

ddx [φs(x,∂u)K φs(x,u)]u=0 , (5.2)

K = (1− 1
4 u2∂ 2

u )
[
∂ 2

x − (u ·∂x)(∂x ·∂u)− 1
2(u ·∂x)∂

2
u
]

(5.3)

The off-shell field φs double-traceless (∂ 2
u )

2φs(x,u) = 0 and linearized gauge transformations are
δ
(0)
s φs(x,u) = (u · ∂x)εs−1(x,u). In de Donder gauge ∂ a1φa1...as + ... = 0 the equations of motion

become �φs(x,u) = 0.
To discuss scattering of spin 0 particles: we need cubic interaction vertex with (s1 = 0,s2,s3)

which reads (∂xi j ≡ ∂xi−∂x j )

S(3)[φ0,φs2 ,φs3 ] = g0s2s3

∫
ddx
[
(∂u2 ·∂x31)

s2(∂u3 ·∂x12)
s3φ0(x1)φs2(x2,u2)φs3(x3,u3)

]
ui=0, xi=x

(5.4)

The spin s propagator is in d = 4

Ds(u,u′; p) =− i
p2 Ps(u,u′) , Ps(u,u′) = 1

(s!)2

(√
u2u′2

)s
Ts
( u·u′√

u2u′2

)
, (5.5)

Ts(z)≡ s
2 ∑

[s/2]
k=0

(−1)k(s−k−1)!
k!(s−2k)! (2z)s−2k = 1

2

[(
z+
√

z2−1
)s
+
(
z−
√

z2−1
)s
]

(5.6)

where Ts is the Chebyshev polynomial of first kind. Following [10] we may then compute the
scattering of spin 0 fields via echange of the tower of massless HS fields with the above cubic
interactions and making a conjecture about possible quartic coupling. One finds in s-channel [1]

Aexch(s, t,u) =
∞

∑
s=0,2,4,...

A s
exch(s, t) , A s

exch(s, t,u) =−
ig2

00s
s (t+u)s Ts

( t−u
t+u

)
, (5.7)

Aexch(s, t,u) =−
i
s

[
F
(√

s+ t+
√

t
)
+F

(√
s+ t−

√
t
)]

, (5.8)
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F(z)≡
∞

∑
s=0,2,4,...

g2
00s (

z2

4 )
s = 1

8 g2 (`z)2
[
I0(`z)− J0(`z)

]
, (5.9)

with the total result being

ˆAexch(s, t,u) = Aexch(s, t,u)+Aexch(t,s,u)+Aexch(u, t,s) . (5.10)

The sum over spins here is convergent giving Bessel functions with non-trivial dependence on the
Mandelstam variables and the scale `. In the Regge limit t→ ∞, s=fixed

ˆAexch(s, t,u)∼−
ig2

s
`2t I0(`

√
8t)∼− ig2

s
(`2t)3/4 e`

√
8t (5.11)

while in the fixed angle UV limit when s, t,u→ ∞, t
s =−sin2 θ

2 ,
u
s =−cos2 θ

2 we get

ˆAexch(s, t,u)∼ ig2|s|3/4 e`
√
|s| f (θ)→ ∞ , f (θ)> 0 (5.12)

This amplitude has exponential UV growth. This may be compared to soft UV limit of the Shapiro-
Virasoro amplitude in string theory:

A4 = g2 Γ(−1− 1
4 α ′s)Γ(−1− 1

4 α ′s)Γ(−1− 1
4 α ′s)

Γ(2+ 1
4 α ′s)Γ(2+ 1

4 α ′s)Γ(2+ 1
4 α ′s)

(5.13)

A4→ g2|s|−6(sinθ)−6e−α ′|s|h(θ)→ 0 , h(θ) =−1
4

(
sin2 θ

2 logsin2 θ

2 −cos2 θ

2 logcos2 θ

2

)
> 0

(5.14)
To get the full 4-point amplitude we need to add the contribution of 0-0-0-0 vertex. It is expected
to be effectively “non-local" with infinite series in ∂ n; this may “soften" the UV behaviour of the
exchange contribution. One may try to guess the 4-scalar vertex in flat-space HS action from its
form in AdS action reconstructed using AdS/CFT in [12]. This leads to

S(4)[φ0] = g2
∫

d4x
[ ∞

∑
s=0

f2s
(
∆x34

)(
∂x12 ·∂x34

)2s
φ0(x1)φ0(x2)φ0(x3)φ0(x4)

]
xi=x

(5.15)

where ∆x34 ≡ (∂x3 +∂x4)
2, ∂x12 ≡ ∂x1−∂x2 and f2s(z) is an infinite series in z, regular at z = 0:

z→ ∞ : f2s(z)→ c2s
`4s−2

z , c2s =
1

[(2s−1)!]2 (5.16)

Then the asymptotic contribution to the 4-scalar amplitude is

∞

∑
s=0

f2s(s)(t−u)2s = 2t+s
2s

[
I0
(
2`
√

2t+ s
)
− J0

(
2`
√

2t+ s
)]

(5.17)

This is similar to the above exchange contribution so some cancellation between the two remains
a possibility. Constraints of gauge invariance on other amplitudes with HS particles on external
lines suggest that quartic vertices should be non-local [13]. Assuming the existence of a consistent
gauge-invariant action for massless HS theory in flat space it may then turn out that the resulting
S-matrix will be nearly trivial due to the cancellation between the exchange and 4-vertex contribu-
tions.
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To conclude, we are beginning to learn how to do quantum computations in theories with
infinite number of massless higher spin fields. This brings up the importance of proper definition
of quantum theory (sum over spins, UV regularization) consistent with symmetries of the theory.
The remarkable large symmetry of higher spin theories implies various simplifications (1-loop
Z = 1, zero effective number of d.o.f.) and simplification of S-matrix (at least in conformal HS
theory).

This work was supported by the ERC Advanced grant No.290456 and by the Russian Science
Foundation grant 14-42-00047 associated with Lebedev Institute.
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