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1. Introduction

Einstein’s theory of General Relativity (GR) has been extremely successful in its predictions
from solar system tests to galactic scales [1], and now with the direct detection of gravitational
waves [2]. However, at short distances and at small time scales the theory suffers from ultraviolet
(UV) catastrophe [3]. There are classical singularities such as blackhole singularity and cosmolog-
ical singularity [4]. Furthermore, at a quantum level pure gravity at one loop is renormalizable, but
at higher loops it is not [3]. Many attempts have been made to understand the UV aspects of grav-
ity in the context of perturbative quantum gravity [5, 6, 7], asymptotic safety [8], non-perturbative
approaches [9], loop quantum gravity [10], and string theory [11]. All these approaches are promis-
ing, and in particular there may be some underlying connection between all these approaches. One
common thread is non-local interactions, which is prevalent in many of these approaches - such as
non-perturbative approaches to quantum gravity and string theory. Here, I will show that non-local
interactions in gravity is inevitable, because of covariant derivative interactions. Any corrections to
Einstein-Hilbert action would comprise of higher covariant derivatives for a massless graviton. But,
just brining higher covariant derivative contributions in metric does not stop the agony for gravi-
tational interactions. In fact, it deteriorates the situation, for any spin higher derivatives harbinger
classical and quantum instability. At a classical level, the Hamiltonian density can be unbounded
from below due to Oströgradsky theorem [12]. At a quantum level, the new dynamical degrees of
freedom will be ghost [13]. The presence of ghost makes the vacuum unstable. One may hope that
such a massive ghost may be superheavy compared to the scale of an effective field theory, and
so at energies below the cut-off the ghost states do not meddle with the predictions of low energy
theory. However, this is indeed an opportunistic view point, and it does not help addressing some
of the thorny UV issues pertaining to classical singularities.

A very well-known example in this context is the quadratic curvature gravity [14], pure gravity
in this context is power-counting renormalizable as shown by Stelle, but carries massive spin-2
ghost [14]. Furthermore, the quadratic curvature gravity does not resolve the classical singularities,
such as cosmological or blackhole singularities. Recently, there has been some interesting progress
been made in all these frontiers. One of the issues of resolving the perturbative ghost problem
has been addressed in the context of infinite derivative theory of gravity (IDG), see [15, 16], and
[17, 18], which I will review briefly and then discuss how such IDG can also address classical
singularities.

2. Infinite Derivative Gravity (IDG)

The main motivation for an IDG is to address the perturbative ghost, which plagues higher
derivative theories in general 1. The issue of ghost cannot be addressed order by order in higher
derivatives. Just to given an example, let us consider a higher derivative massive (non-tachyonic)

1The issue of ghost is not just pertaining to gravity. The discussion applies to any higher derivative spin-theory,
such as spin-0, spin-1/2 and spin-1, spin-3/2, etc.
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scalar field theory 2

S =
∫

d4xφ�(�+m2)φ , ⇒�(�+m2)φ = 0, ⇒Π(p2) =
1

p2(p2−m2)
∼ 1

p2 −
1

p2−m2 , (2.1)

where �= ∇µ∇µ is the d’Alembertian operator, and µ = 0, 1, 2, 3. Note that the propagator, Π,
here can be decomposed in such a way that there is a −ve residue, which marks the presence of a
massive ghost. One can go for higher orders in derivatives and the problem will persist. Imagine if
I had an action, which would yield the equations of motion and the propagator, such that:

S =
∫

d4xφe
− �

M2
s (�+m2)φ , ⇒ e

−�
M2

s (�+m2)φ = 0, ⇒Π(p2)∼ e
−p2

M2
s

p2−m2 , (2.2)

then the propagator is suppressed by exponential of an entire function. Since exponential of an
entire function does not introduce any pole in the complex plane, besides the original pole mass
m, there is no question of new dynamical degrees of freedom arising in the spectrum. This is
the key observation, which tells us that infinite derivatives do not generate ghost for a massless
theory, i.e. m = 0, case 3. The results can be verified by using the Hamiltonian approach, following
Oströgradsky’s prescription. It has recently been demonstrated that Hamiltonian density based
on infinite derivatives, i.e. recast as Gaussian kinetic term, can be solely determined by finite
number of dynamical degrees of freedom and without any instability [16, 18]. Now based on
similar prescription, I will show the results from IDG.

The most general covariant action of higher derivative gravity in 4 dimensions can be recast
as [18]:

S =
∫

d4x
√
−g

[
M2

p

2
R+RµνλσOµνλσ

αβγδ
Rαβσδ

]
, (2.3)

where Mp = 1/
√

8πG and Oµνλσ

αβγδ
contains actually infinite covariant operators made up of �, �2, �3,

· · ·, and Rµνλσ is the Riemann tensor, which could be replaced by Weyl tensor as well. Note that
around Minkowski background the above action gives rise to O(h2) action 4, because each Rie-
mann contributes to O(h) contribution. Starting from the above action, one can then reduce the
above action to 5 [18, 20]:

S =
∫

d4x
√
−g

[
M2

p

2
R+RF1(�̄)R+RµνF2(�̄)Rµν +RµνλσF3(�̄)Rµνλσ

]
, (2.4)

with the help of total derivative, Bianchi identities and cyclic properties of Riemann tensor, see for
the full prescription of obtaining the action in any constant curvature backgrounds [21, 22]. Note,

2Metric signature here is mostly plus, −, +, +, +.
3Note that according to the Weierstrass theorem any entire function is written as e−γ(�), where γ(�) is an analytic

function. For a polynomial γ(�) it is now easy to see that if γ > 0 as �→ ∞, the propagator is even more convergent
than the exponential case leading to non-singular UV behaviour.

4gµν = ηµν +hµν , where ηµν is the Minkowski metric and hµν is the perturbation.
5In fact one can reduce the above action around a constant curvature backgrounds such as deSitter and anti deSitter

backgrounds as well. The only difference will be and addition contribution from cosmological constant ±Λ. One can
also recast the action in terms of Sµν = Rµν − (1/4)gµν R and the Weyl Cµνλσ instead of Rµνλσ , see [19].
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in all these cases the boundary terms have been neglected, if one wishes to take Gibbons-Hawking-
York [23, 24] boundary action for IDG, see [25]. Also note that �̄=�/M2

s , where Ms is the scale
of new physics below Mp = 2.4×1018 GeV. In 4 dimensions, Ms could be treated as a string scale
for instance, or scale of non-locality. The latter will become clear later on.

Some properties of the above IDG action are:

1. 3 form factors: The Fi’s act like form factors, similar to pion form factors in QCD. Is there
anyway to constrain them? It has been shown in [18, 19] that these form factors are not all
independent. In particular, in a Minkowski background one can show that to preserve general
covariance, and the massless nature of a graviton would require [18, 20]:

2F1(�̄)+F2(�̄)+2F3(�̄) = 0 . (2.5)

Furthermore, for a homogeneous and isotropic background, the Weyl term vanishes, so one
can consider F3(�̄)= 0 without loss of generality. In fact, one of Fi(�̄) can be set to be zero
without loss of any generality. For instance, let us consider F2(�̄) = 0, then I am left with
F1(�̄) and F3(�̄). However, for a cosmological background, which is homogeneous one
can even set Weyl/Riemann term to be zero, so the only non-trivial modification arises from
S ∼ R+RF1(�̄)R contribution. In fact, this contribution will be sufficient to show that the
Universe can have a nontrivial evolution, a non-singular bouncing cosmology [17]. If I wish
to seek a metric potential for a point particle, around Minkowski background, then the Weyl
term/Riemann term can be set to zero, therefore we are left with F1(�̄) and F2(�̄), such
as S ∼ R+RF1(�̄)R+RµνF2(�̄)Rµν , this action is precisely used to study non-singular
blackhole metric.

2. UV limit: The above action, Eq. (2.4), can be imagined to be a UV complete action. At
a classical level it has been shown that the solution of Eq. (2.4) can resolve cosmological
singularity for Friedmann-Lemaitre-Roberston-Walker metric [18] 6. At a quantum level,
one can show that a choice for F1(�̄), and F2(�̄) are determined by making sure that the
propagator for Eq.(2.4) does not have any pole, i.e. the graviton remains massless, general
covariance remains intact [16, 17, 18]. I will discuss this issue again in the next subsection.

3. IR limit: The IR limit is taken by Ms→∞, or �̄→ 0. In this limit, the above action Eq. (2.4)
reduces to pure GR, i.e. the Einstein-Hilbert action. Therefore, in the IR the predictions for
the action reduces to that of GR’s success story.

2.1 Graviton Propagator & Ghost Free Action

The physical graviton propagator for Eq. (2.4) has been found in Refs. [], which is typically
sandwiched between two conserved vertices, i.e. V µνΠ

αβ

µν Vαβ , where V ’s are the conserved ver-
tices. Here, I summarise the results for the propagator Π without the spacetime indices, which can
be expressed in terms of the Fourier space, by [18, 20, 26]

Π(−k2) =
P(2)

a(−k̄2)k2
+

P(0)

(a(−k̄2)−3c(−k̄2))k2
, (2.6)

6There is some progress to show that even Kasner type metric can be made singularity free, although the full
analytical result is still pending.
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where P(2) and P(0) are the spin-projection operators for spin-2 and 0 components, and k̄ = k/Ms,
and furthermore [18, 20]:

a(−k̄2) = 1+
1
2
F2(−k̄2)(k/Mp)

2 +2F3(−k̄2)(k/Mp)
2, (2.7)

c(−k̄2) = 1−2F1(−k̄2)(k/Mp)
2− 1

2
F2(−k̄2)(k/Mp)

2 . (2.8)

Note that there is no vector component, i.e. P(1), is never part of a dynamical degree of freedom in
gravity. It decouples from the graviton propagator. Two important observations are:

1. No massive scalar degree of freedom: In order to make sure that the true dynamical de-
grees of freedom are just massless, transverse and traceless degrees for graviton, I require
a(−k̄2) = c(−k̄2). This will also ensure that the form of the graviton propagator will look
similar to the 4 dimensional GR propagator for Einstein-Hilbert action, but with an interest-
ing modification 7 [18, 20]:

Π(−k2) =
1

a(−k̄2)

[
P(2)

k2 −
P(0)

2k2

]
, (2.9)

such that all the information about the infinite derivatives are contained in just one function
a(−k̄2). Note that all the quantities inside the [· · ·] do not introduce any new pole other than
the massless, transeverse traceless graviton. The new poles may only come from a(−k̄2).
However, for

a(−k̄2) = e−γ(k2/M2
s ) , (2.10)

there will be no poles, and therefore the graviton for Eq. (2.4) remains massless all the way
from IR- to- UV. For Ms→ ∞, the propagator Eq. (2.9) along with Eq. (2.10) indeed reduces
to that of GR, Einstein-Hilbert propagator in 4 dimensions.

This is a strong hint that IDG can indeed provide us an unique way to resolve the ghost
problem of Stelle’s quadratic curvature gravity. Quantum-loop corrections will not ruin this
property due to diffeomorphism invariance 8. This analysis has been extended to arbitrary d
spacetime dimensions [26], and also around dS and AdS backgrounds [21, 22]. Note that the
exponentially suppressed

2. The constraint:
a(−k̄2) = c(−k̄2) , (2.11)

suggests that the three form factors, i.e. Fi’s, are not independent: 9 see Eq. (2.5). However,
this provides us some freedom, if I select F3(�̄) = 0, then: 2F1(�̄)+F2(�̄) = 0. A very
similar constraint would be derived if in the original action Eq. (2.4) were written in terms
of Weyl instead of Riemann. See footnote 8.

7The GR propagator has the following form in 4 dimensions: Π(−k2) = P(2)

k2 − P(0)

2k2 . [13].
8This point has been stressed repeatedly by Tomboulis [16, 27], and also by Biswas [28].
9If I were working with Weyl term instead of Riemann, the constraint a(−k̄2) = c(−k̄2) would lead to following

constraint: 6F1(�̄)+3F2(�̄)+2F3(�̄) = 0, see [19].
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Now, along with Eqs. (2.7, 2.10) and the above constraint, the IDG action can be written
as [18, 19]:

S =
∫

d4x
√
−g

[
M2

p

2
R+M2

pR

(
e−γ(�̄)−1

�

)
R−2M2

pRµν

(
e−γ(�̄)−1

�

)
Rµν

]
(2.12)

Now, one can select a specific form of γ(�̄). The simplest choice will be

γ(�̄) = �̄=�/M2
s , (2.13)

In fact, one can select a wider range of entire function. The most general case can be ex-
pressed in terms of polynomials, and these issues have been discussed in Refs. [29].

Now, with the above construction of IDG action, Eq. (2.12), I can explore various cosmolog-
ical, astrophysical and field theory applications. The complete equations of motion for Eq. (2.4)
have been obtained in [19], and indeed Eq. (2.12) will be a particular case.

3. Classical Singularities

Let us first explore some classical singularities, and demonstrate how IDG can ameliorate
classical singularity problems persisting in GR. In GR a point like source generates a metric which
leads to a singular Schwarzschild metric. At r→ 0 the metric potential blows up to infinity, and
also the Kretschmann scalar. One of the outcome of this metric is the presence of an event horizon
at r = 2GM, where G is the Newton’s constant, and M is the mass of a point source. At the event
horizon the light-cone gets stretched. The metric potential, Φ = GM/r, becomes large for r < GM,
and for r > GM, the metric potential is always less than unity. An IR observer always sees only the
perturbed Newtonian potential Φ ≤ 1, until the observer reaches very close to the event horizon.
At r = 0, there is indeed a curvature singularity, the Kretschmann scalar blows up at r→ 0. Could
IDG with an action Eq. (2.12) resolve such a singularity? - the answer is yes! 10

3.1 Non-singular blackhole solution

Let us consider a simple static metric where the metric potentials: 2Φ, 2Ψ� 1

ds2 =−(1−2Φ)dt2 +(1+2Ψ)dr2 , (3.1)

for a point source, say M. The potentials Φ, Ψ can be solved analytically for Eq. (2.12) [18] 11

Φ(r) = Ψ(r) =− M
M2

pr

√
π

2
erf
(

Msr
2

)
(3.2)

10In this regard, ghost free IDG action Eq. (2.12) reminds us of Born-Infeld [30] extension of Maxwell’s electromag-
netism. In Maxwell’s theory also there exists a singular Coulomb potential for a point-charge particle. The self energy
of an electron for instance blows up. However, Born-Infeld action is a non-linear extension of Maxwell’s linear theory,
where there is a parameter very similar to Ms, below which the theory behaves as that of Maxwell’s. In Born-Infeld the-
ory the self energy of an electron is finite and it does not blow up. A similar challenge arises for Einstein-Hilbert’s action,
the question is - could we then find an analogue of Born-Infeld gravity? IDG provides an answer to this fundamental
quantion, as I will demonstrate below.

11IDG kind of action will avoid blackhole singularity has also been discussed before in the context of α ′ corrections
in string theory [31, 32].
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This potential is finite near r→ 0, and decays as 1/r at distances r� M−1
s . The table-top tests

of 1/r fall of Newtonian gravity has been tested in the laboratory up to 5.6× 10−5 m [33], which
implies that Ms > 0.004 eV. One can also test other examples of γ(�̄), and place similar constraints
on Ms [29]. One can further compute Kretschmann scalar for the above metric potentials and it is
indeed finite.

By observing Eq. (3.2), and for r < M−1
s , the potential becomes constant, because erf grows

linearly in argument, i.e. erf(Msr/2) ∼ rMs/2, therefore it cancels 1/r factor in the potential. A
constant Newtonian potential would lead to a vanishing gravitational force: Fg→ 0. Classically the
action Eq. (2.12) becomes asymptotically free, for γ(�̄) =�/M2

s , similar in spirit as QCD. Where
above the energies of de-confining phase both quarks and gluons become free! Indeed, one has to
show what happens at the quantum level.

So far, I have discussed a static scenario for a metric potential. However, in reality the dy-
namics of a collapse of matter becomes an important issue. Frolov and Zelnikov [34, 35, 36, 37]
have studied the dynamical problem of colliding two ultra-relativistic wavefronts to see whether
apparent horizon forms for the IDG action Eq. (2.12) with Eq. (2.13). What the authors have found
is very interesting - the ultra-relativistic collision does not lead to formation of a singularity or the
event horizon. The latter can be understood easily, note that both the metric potentials in Eq. (3.1)
are bounded by unity, 2Φ = 2Ψ≤ 1, so effectively there is no event horizon for such a system.

Since, Ms is very large, if it is typically of the order of GUT scale or close to Planck scale, it
is interesting to seek the validity of the linear approximation, i.e. the metric potentials are bounded
by unity? There are couple of lessons to be learnt here.

1. Validity of the non-singular solution: Indeed mass of a blackhole Mbh, cannot be arbitrary
large for 2Φ = 2Ψ≤ 1. In fact, the assumption is valid only up to [18]:

Mbh ≤ O(1)
M2

p

Ms
. (3.3)

Indeed this places a limit on Mbh, if Ms ∼Mp then the allowed mass range for Mbh ≤Mp ∼
10−5 grams. For such a small point source, indeed this theory has no singularity. The con-
straints from a current table top limit on Ms ≥ 10−2 eV, then yields a non-singular blackhole
(or non-singular compact object (NSCO) ) mass constraint around Mbh ≤ 1025 grams. This
is an interesting number, because for this range of blackhole/NSCO mass can be probed by
many astrophysical means, and such objects, at least in the context of GR can be produced
in the early Universe via phase transition [38]. In GR indeed such massive blackholes are
stable under Hawking radiation, and can play a significant role in structure formation and
history of the Universe as a dark matter candidate.

In IDG for Eqs. (2.12,2.13, 3.1), such massive objects, i.e. M ≤ 1025 grams with Ms ≥
10−2 eV will never form a singular system with event horizon. Such NSCO may gravita-
tionally bound - very weakly, and may not act as a dark matter candidate. The reason is that
these NSCO can be probed by high energy photons, and lack of singularity means that very
ultra high energy photons can indeed probe inner structure of the system.

Indeed, for such NSCO there will be no information loss paradox ever, since there is no
formation of event horizon. One can still discuss gravitational entropy of the system, and it

6
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has been shown to be following the Area-Law with minor correction. This computation has
been performed in Ref. [39].

2. Fate of supermassive astrophysical blackholes: In Einstein’s GR one can expect super-
massive blackholes residing in the centre of our galaxy, roughly with mass ≥ 1033 grams.
This number is more than 8-orders of magnitude bigger than one would expect from NSCO
from IDG with Ms ≥ 10−2 eV. The obvious question is - do astrophysical blackholes have
singularity and the event horizon within IDG?

Of course, at this moment there is no full nonlinear solution for the metric Eq. (3.1) for
Eq. (2.12, 2.13). Nevertheless, one can still conclude very interesting consequences. If
in the process of collapse, the metric potential remains weak, i.e. 2Φ, 2Ψ ≤ 1, the linear
approximations will always be valid. Furthermore, if the gravitational interaction becomes
weak at short distances, it can avoid forming a singularity, or avoid forming a trapped surface
by defocusing the null or time-like rays. This will also mean that the formation of apparent
horizon can be avoided, at least in the context of non-rotating scenario. Note that in a static
and spherically symmetric metric, the apparent horizon and the event horizon match. If the
event horizon can be avoided this means that irrespective of the mass of a supermassive
blackhole, the two metric potentials, 2Φ, 2ψ ≤ 1, will always be less than 1 through out the
inside of the radius rg = 2GM. There are some smoking gun hints which suggest that gravity
becomes weak in the UV in IDG and never allow the metric potentials to exceed beyond 1. I
will discuss this case very briefly.

3.2 Non-singular cosmological solution

In Einstein’s GR, cosmological Big Bang singularity is inevitable as t → 0 12, where the en-
ergy density of the Universe blows up. There have been many attempts to resolve cosmological
singularity within GR, plus matter source, but all these attempts inevitably violate either one or all
of the matter energy conditions, i.e. strong, weak, or null energy conditions 13. The aim is to obtain
a non-singular cosmology without violating any of the energy conditions in the matter sector or in
the gravitational sector. In the latter case, for instance action, S ∼M2

pR−R2 will also resolve the
singularity problem, but at the cost of a ghost, i.e. -ve kintic term for R2.

The IDG provides a very intriguing solution, gravity at small time scales becomes so weak
that Universe could bounce back - resolving the cosmological singularity problem in an elegant
fashion. In fact, the above action Eq. (2.12) with Eq. (2.13) gave rise to a non-singular bouncing

12Here I am mostly talking about a flat spatial background. This is the most challenging case along with +ve spatial
curvature. The -ve spatial curvature is rather easy to resolve the singularity problem even within GR. It is believed that
inflation might delay the cosmological singularity, and it is true, it pushes back the singularity in time, but it fails to
address cosmological singularity [40].

13Loop quantum cosmology attempts to address the singularity problem, but in a mini-superspace where the bouncing
solution is constructed without studying the entire phase space [10]. In principle, one should study the problem beyond
mini-superspace approximation and show whether singularity can be resolved or not. While string theory does not
directly shed light on extremely high curvature regimes in time dependent background, also one would expect string
field theory to play a certain role, in particular closed string field theory. In this regard IDG captures certain aspects of
string field theory, higher derivatives are akin to α ′ corrections [31, 32].
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cosmology in a linear regime with an oscillating solution around Minkowski background [18]:

ds2 =−dt2 +(1+Asin(λ t))(dx2 +dy2 +dz2) , A� 1 , (3.4)

where A is constant amplitude of the oscillations. This is an analogue of a gravitational soliton.
Such a solution is not possible within GR. Even to obtain this solution, it was realised that one
requires an additional condition on gravitational degrees of freedom [18].

1. An additional ghost free spin-0 degree of freedom: Besides massless graviton, an addi-
tional degree of freedom is required. In order to resolve the cosmological singularity, one
requires [18, 41]

a(−k̄2) 6= c(k̄2) , (3.5)

which means that there is an additional pole in the spin-0 component. In fact this pole is
harmless, what it means is that there is an additional scalar degree of freedom which is
required to resolve the cosmological singularity. In fact, any f (R) theory does have a Brans-
Dicke scalar mode [42]. But, not any kind of f (R) gravity would give rise to a non-singular
cosmology.

For instance, action: S ∼M2
pR+R2 theory does not give rise to a non-singular bounce, but

S∼M2
pR−R2 theory does give rise to a bouncing cosmology [43], but at the cost of a ghost

degree of freedom. Therefore the right question to ask - what should be the form of c(�̄) or
c(−k̄2), such that there is just an additional pole, and it is ghost free?

In order to accommodate one extra pole in the spin-0 component of the propagator, an ap-
propriate condition will be then [18, 41]:

c(�̄) =
a(�̄)

3

[
1+2

(
1− �

m2

)
ã(�̄)

]
, (3.6)

and the corresponding propagator becomes [18, 41] (also see the thesis [44]):

Π(−k2) =
1

a(−k̄2)

[
P(2)

k2 −
1

ã(−k̄2)

(
p(0)

k2 −
p(0)

k2 +m2

)]
. (3.7)

It is evident that there is an additional scalar pole with mass m. This will serve as an effective
mass for the Brans-Dicke scalar. Now, what should be the corresponding IDG action which
would give rise to a new propagator Eq. (3.7)? I will discuss this below.

2. The IDG action which resolves cosmological singularity: We have already discussed
that the 3 form factors of the original IDG action, Eq. (2.4), are not all independent, see
Eq. (2.5). There is a bit of a freedom which one can exploit. For instance in a homoge-
neous and isotropic background, it is sufficient to study an IDG action which contains S ∼
M2

pR+RF1(�̄)R. The reason is very simple, I can set F2 = 0, leaving behind F1, F3 6= 0.
However, for a homogeneous and isotropic background the Weyl term can be set zero at the
background level, so the IDG action can be recast completely by [17]:

S =
∫

d4x
√
−g

[
M2

p

2
R+M2

pR

(
e−�/M2

s −1
�

)
R

]
. (3.8)
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The equations of motion for this action has been studied in [17, 45]. The equations of motion
satisfy an interesting recursive solution for 2 constants, c1, c2:

�R = c1R+ c2 , (3.9)

which solves the full non-linear equations of motion of the above action Eq. (3.8), and yields
a very interesting solution in presence of a +ve cosmological constant: Λ [17, 45]:

ds2 =−dt2 +a0 cosh2 (λ t) [dx2 +dy2 +dz2] , λ =

√
Λ

3M2
p
, Λ∼M4

s . (3.10)

The scale factor is given by cosh(λ t), which has both positive and negative branches, means
that the solution is time symmetric. The solution indeed replaces the singularity present
in homogeneous and isotropic Universe in GR by a non-singular bouncing Universe. The
bounce solution is robust under perturbations, for both sub-Hubble and super-Hubble pertur-
bations, see [46, 47].

3. Defocusing of null rays and Raychoudhuri equation: Avoidance of cosmological singu-
larity has now been tested by studying null/time-like geodesics, and how they get defocused
for the above action Eq. (3.8) for normal matter, which does not violate any of the energy
conditions, i.e. strong, weak, null energy conditions [41, 48]. This is due to the fact that IDG
modifies the Raychoudhuri’s equation, compared to that in the GR case, in such a way that
the expansion parameter θ = ∇µkµ , where kµ is the null ray, follows:

dθ

dτ
+

1
2

θ
2 ≥ 0 , (3.11)

where τ is the affine parameter. The expansion parameter defocuses in presence of IDG,
which shows the matter never gets trapped in a finite region of spacetime, and the manifold
remains smooth. As such the defocusing theorem of null rays does not shed light on space-
time singularity, but it ensures that the space-time manifold is regular and null geodesics are
past-complete.

Furthermore, the above action Eq. (3.8) is a UV complete action for a quadratic curvature
inflation, as pointed out in Refs. [49]. This action has very intriguing B-mode prediction, which
can produce a range of tensor-to-scalar ratio 0.001≤ r ≤ 0.6 [50].

4. Quantum UV finiteness

IDG provides an intriguing quantum feature; being an infinite derivative theory of gravity,
and with an exponentially suppressed propagator Eq. (2.9, 2.10), at higher loops one would ex-
pect gravity should be finite. In fact, gravity should become asymptotically free in the UV. Since
the propagator is exponentially suppressed, in the context of gravity, which has only derivative
interactions, the vertex operator for 3 incoming momenta will be schematically given by [51]:

V (k̄i)∼C(k̄2
i ) f (ek̄2

i ) , (4.1)
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where i = 1, 2, 3 and C(k̄2
i ) is a polynomial function of k1, k2, k3, and f (k̄2

i ) is an exponential
function of some linear combination of k̄2

i . In the UV limit, certainly f (k̄2
i ) will dominates over

the polynomial, therefore, the counting of superficial degree of divergence will depend solely on
exponentially suppressed propagator and exponentially enhanced vertices in the UV. Couple of
crucial points to note here:

1. Non-local interactions: An important point to note here is that the vertex operator is spread
over a region of space time, which yields non-local interactions, i.e. ek̄2

, essentially in the UV
k�Ms, or within space-time M−1

s . While in the IR, for k�M or space-time region�M−1
s

the interactions become local. In the decoupling limit when Ms→∞, the gravitational action
reduces to that of a pure GR action, see Eq. (2.12). A further point to note here is that the
free theory is always local, and non-locality arises only in interactions.

2. Renormalizability: A detailed power counting argument shows that the degree of diver-
gence is given by 14 [15, 51, 52]:

D = 1−L , (4.2)

where L stands for loops. For L = 1, the action Eq. (2.12) gives rise to divergence, which is
similar to that of GR at L = 1. One requires counter term to absorb the divergence. However,
for L > 1, the superficial degree of divergence is negative, suggests that the theory in UV
should be finite, and power counting renormalizable. This means that higher loops, L > 1,
gives rise to a finite result without any divergences with respect to internal-loop momentum
and external-loop momenta. If this is the case, then the theory becomes asymptotically free,
where gravitational interactions become weaker in the UV. A glimpse of this has already been
seen at a classical level for Eq. (2.13), the metric potential Eq. (3.2) gave rise to a constant
potential for r < M−1

s , and net force between two masses vanish, i.e. Fg→ 0.

Indeed, this conclusion is extremely interesting and bears some resemblance to Weinberg’s
idea of asymptotic safety []. nevertheless, its worth spending more time in understanding the
subtle issues and show rigorously by doing some explicit computations.

In this review, I will not discuss any further the gravitational interaction, instead just to build
an intuition - I will briefly discuss the case of a scalar toy model which will resemble gravity to a
large extent with non-local interactions. Inspired by this infinite-derivative gravitational action, see
Eq. (2.4), we have formulated a scalar toy model in Ref. [51] that captures the essential features of
the UV behaviour of the IDG action, Eq. (2.4). The scalar toy model action is given by

Sscalar = Sfree +Sint , (4.3)

where 15

Sfree =
1
2

∫
d4x

(
φ�a(�̄)φ

)
(4.4)

14From the power counting argument, the superficial degree of divergence in GR is: D = 2L+2, so at higher loops
L > 1, the superficial degree of divergence keeps increasing. At one-loop, 2 derivative GR has divergences, but it can be
absorbed by local counter-terms. At a quadratic order in gravity, the action considered by Stelle in [14] is indeed power
counting renormalizable.

15One way to obtain the scalar toy model is to exploit the symmetry of GR, a global scaling symmetry, gµν → λgµν ,
and around the Minkowski background, gµν = ηµν +hµν , the scaling symmetry translates to hµν → (1+ε)hµν +εηµν .

10
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and

Sint =
1

MP

∫
d4x

(
1
4

φ∂µφ∂
µ

φ +
1
4

φ�φa(�̄)φ − 1
4

φ∂µφa(�̄)∂ µ
φ

)
; (4.5)

we have a(�̄) = e−�̄ ≡ e−�/M2
. The equation of motion for the action given by Eq. 4.3 satisfies

the shift-scaling symmetry φ → (1+ ε)φ + ε , where ε is infinitesimal.
Many interesting properties of Eq. (4.3) can be established, which I summarise below:

1. Global symmetry as opposed to local symmetry: The above symmetry φ → (1+ ε)φ + ε

is a global symmetry as opposed to a diffeomorphism symmetry, which is local. As a result,
the scalar-toy model will have issues such as generating effective mass at one-loop, which
will never occur in the case of gravity, diffeomorphism invariance will protect the massless
ness of a graviton. See for details [51].

2. One-loop divergence and local counter term: There exists a divergence with respect to
internal- loop momentum form 1-loop 2-point function. This can be cured by adding a
counter term which is local, containing no infinite derivative terms, i.e. a(�̄). In this respect
Eq. (4.3) can be made one loop renormalizable.

3. Higher loops and UV finite: In Ref. [51] it was established that the dressed propagator
is more exponentially suppressed than the bare propagator, and the dressed vertices behave
as exponentials of external momenta when the external momenta are large. By employing
dressed propagators and vertices, n-loop, 2- & 3-point diagrams constructed out of lower-
loop, 2- & 3-point diagrams become finite in the UV with respect to internal loop momentum,
and no UV divergences arise and no new counterterm is required.

Similarly, by employing dressed vertices and propagators, n-loop, N-point diagrams con-
structed out of lower-loop 2- & 3-point diagrams are also UV finite with respect to internal
loop momentum. Also, the external momentum dependences of n-loop, N-point diagrams
constructed out of lower-loop 2- & 3-point diagrams decrease as the loop-order increases
and the external momentum divergences are eliminated at sufficiently high loop-order [51].

4. Scattering amplitude and astrophysical blackhole: In Ref. [53] the UV behaviour of scat-
tering diagrams were investigated for Eq. (4.3), and it was established that the external mo-
mentum dependence of the scattering diagrams is convergent for large external momenta.
The results were obtained by dressing the bare vertices of the scattering diagrams by con-
sidering renormalised propagator and vertex loop corrections to the bare vertices. With an
increasing loop order, the exponents in the dressed vertices become negative at sufficiently
high loop-order, and the corresponding amplitude decreases exponentially. All these results
show that trans-Planckian scattering is not a problem for infinite derivative theories. The
decrease in scattering amplitude suggests that these theories behave better in the UV, similar
conclusions were also obtained in Ref. [28], where it was assumed that the scalar field φ

could take the role of a Standard Model Higgs, and also in thermal field theory [54], which
has been helpful to understand Hagedorn phase transition.

For multi-particle scatterings, the amplitude scales as ∼ e−
√

np2/M2
s , where n is the number

of external legs, assuming that all the momenta are the same, i.e. p. This may have a
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profound conseqence for astrophysical blackholes. What it means is that any astrophysical
blackhole which is typically constructed out of n quanta, in this particular case n-bosonic
states. However, as we bring these states closer to each other - they are bound to interact
and scatter, but their scattering amplitude decreases exponentially with the number of states.
This will then give rise to an effective scale of non-locality to be:

Me f f ∼
Ms√

n
, (4.6)

larger than the original Ms. For instance, although the scale of non-locality is M−1
s , but its

effect can be enlarged in presence of multiple scattering states by a larger region of space-
time, i.e.

√
nM−1

s . This argument might prevent a complete collapse of matter under gravity,
and prevent forming a blackhole alltogether. In reality, one can imagine now φ being replaced
by hµν , and imagining that the end stage of a blackhole is constituted by graviton.

5. conclusion

I have summarised here some interseting results emerging from infinite derivative field theories
and gravity. In particular, I have discussed how to constrain an IDG action from diffeomorphism
invariance, causality, and stability arguments, such as ghost free consideration. I have explored im-
portant properties of IDG at a classical level, in particular resolving singularity in mini-blackholes,
and cosmological Big Bang singularity problems. At a quantum level, I have discussed power
counting argument to show that a class of theory in gravity can be made UV finite, or asymptoti-
cally free. I have discussed a scalar-toy model which captures essence of IDG, and in this context
I have argued how such infinite derivative scalar field theory can be made UV finite [51].

There are also very important challenges ahead - such as the fate of astrophysical blackholes,
existence of singularity, and presence/absence of event horizon. At a quantum front, indeed one
would like to show that Eq. (2.12) is indeed UV finite, and a viable theory of quantum gravity.
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