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I. INTRODUCTION AND MOTIVATION

In this talk, we consider the asymptotic symmetry algebra (ASA) of conformal gravity (CG).

ASA is generally investigated for three main reasons. First one is to learn about the ASA itself, the

second one is to investigate the theory of gravity, and the third one is to learn about the charges

defined by the ASA which describe the field theory at the boundary. CG is a very interesting

theory of gravity that has recently received much attention. Compared to Einstein gravity, it has

an advantage that it is two loop renormalizable while Einstein gravity is not, however, it introduces

an issue common for higher derivative gravity theories. It contains ghosts.

It was studied from theoretical aspects by Maldacena, who simultaneously showed the impor-

tance of the boundary conditions obtaining Einstein gravity solutions from conformal gravity by

imposing appropriate boundary conditions [1]. Further motivation to study CG comes from the the

number of papers by ’t Hooft in which he considers CG and conformal symmetry, and speculates

that conformal symmetry could play a crucial role for the physics at the Planck energy scale [2–5].

CG arises from five dimensional Einstein gravity (EG) as a boundary counterterm and from the

twistor string theory [6]. The analysis of the holographic [7] and canonical [8] aspect of conformal

gravity, showed that consistent set of boundary conditions leads to well defined variational prin-

ciple and finite charges of the conformal gravity holography in four dimensions, while the charge

associated to Weyl transformations vanishes. On phenomenological grounds, it was mostly studied

by Manheim, in the explanation of the galactic rotation curves without the addition of dark matter

[9–11].

The aspect from which we are considering CG is the AdS/CFT correspondence that has been

demonstrated to work on number of examples such as AdS3/LCFT2 [12, 13], AdS/Ricci flat cor-

respondence and other examples of gauge/gravity correspondence.

Within this classification, beside ASAs of CG, we also obtain the asymptotic solutions that can

be uplifted to the global solutions. These solutions are pp waves or geons [14]. The classification

also contains the known CG solutions, such as Manheim–Kazanas–Riegert solution and rotating

black hole solutions [15].

II. CONFORMAL GRAVITY

Given a manifold M, conformal gravity action is described by the

S = α

∫
d4xCµνσρCµ

νσρ (1)



P
o
S
(
C
O
R
F
U
2
0
1
6
)
0
8
5

3

living on that manifold. In (1), α is dimensionless coupling constant responsible for the power

counting renormalizability of the action and Cµνσρ is Weyl tensor. The action is invariant under

Weyl rescalings of the metric

gµν → g̃µν = e2ωgµν (2)

for ω Weyl factor. Variation of the action leads to the CG equations of motion which require

vanishing of the Bach tensor (
∇ρ∇σ +

1

2
Rρσ

)
Cσµρν = 0. (3)

III. BOUNDARY CONDITIONS

The asymptotic (0 < ρ << `) line element is described with

ds2 =
`2

ρ2
(
−σdρ2 + γijdx

idxj
)

(4)

for ` AdS radius which we set to 1 for simplicity, ρ holographic component using which we approach

to the boundary ∂M, and σ = ±1 for (A)dS space. The metric on the boundary γij defines the

first part of the boundary conditions in terms of the generalised Fefferman-Graham expansion

γij = γ
(0)
ij + ργ

(1)
ij +

1

2
ρ2γ

(2)
ij + .... (5)

In addition, we take that variations of the first two terms in the expansion of the boundary metric

(5) are

δγ
(0)
ij = λγ

(0)
ij ,δγ

(1)
ij = 2λγ

(1)
ij . (6)

Since the metric gµν is invariant under small diffeomorphisms xµ → xµ + ξµ, its variation

δgµν =
(
e2ω − 1

)
gµν + £ξgµν (7)

consists of the part that appears due to invariance under these diffeomorphisms and the part that

appears due to invariance under Weyl rescalings. We expand the Weyl factor ω and the vector ξ

in the holographic coordinate ρ analogously to the expansion of the boundary metric γij (5) and

insert them in the Killing equation (7). This leads to equations that define the conditions on the

components in the metric expansion (5). Taking δgρρ = δgρi = 0, we obtain that ω(0) is zero and ij

component of (7) defines the leading and the subleading order of the Killing equation. The leading

order Killing equation

Diξ(0)j +Djξ(0)i =
2

3
γ
(0)
ij Dkξ

(0)k (8)
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defines the leading term in the expansion of the boundary metric, γ
(0)
ij , in the dependence on the

leading order term in the expansion of Killing vectors (KV) ξ. The choice of the Minkowski metric

for γ
(0)
ij = ηij = diag(−1, 1, 1) leads to vectors ξ which define the conformal algebra so(3, 2) at the

boundary. Conformal algebra is consisted of KVs of translations

ξ(0) = ∂t, ξ(1) = ∂x, ξ(2) = ∂y, (9)

Lorentz rotations

Lij = xi∂j − xj∂i (10)

which define ξ(3), ξ(4) and ξ(5) for i, j = t, x, y, the dilatation KV

ξ(6) = t∂t + x∂x + y∂y (11)

and special conformal transformations (SCTs)

ξ(7) = tx∂t +
t2 + x2 − y2

2
∂x + xy∂y (12)

ξ(8) = ty∂t + xy∂x +
t2 + y2 − x2

2
∂y (13)

ξ(9) =
t2 + x2 + y2

2
∂t + tx∂x + ty∂y. (14)

We denote ξt = {ξ(0), ξ(1), ξ(2)} as translations, ξ(6) = ξd as dilatation, and ξsct = {ξ(7), ξ(8), ξ(9)}

as SCT Killing vectors to define the so(3, 2)

[ξd, ξti ] = −ξti [ξd, ξscti ] = ξscti (15)

[ξtk, Lij ] = (ηkiξ
t
j − ηkjξti) [ξsctk , Lij ] = −(ηkiξ

sct
j − ηkjξscti ) (16)

[ξscti , ξtj ] = −(ηijξ
d − Lij) (17)

[Lij , Lkj ] = −Lik. (18)

Due to the boundary conditions the subleading order Killing equation

£ξ(0)γ
(1)
ij =

1

3
Dkξk(0)γ

(1)
ij (19)

consists of the Killing vectors ξ
(0)
i , leading term in the expansion of the boundary metric γ

(0)
ij , and

the subleading term in the expansion of the boundary metric γ
(1)
ij . From this equation we can
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proceed in the two possible directions. Since both ξ
(0)
i and γ

(1)
ij are undefined, we can choose the

condition on the γ
(1)
ij , and inserting it in (19) determine the set of KVs ξ

(0)
i which are conserved by

that γ
(1)
ij . That set of KVs should also form a closed algebra. From the other side, we can choose

the subalgebra of so(3, 2) defined by a set of ξ
(0)
i s and find the corresponding γ

(1)
ij .

In this talk we focus on the approach in which, using (19) we determine γ
(1)
ij for the chosen

subalgebra of so(3, 2). The γ
(1)
ij can depend on all the coordinates on the boundary, while the

simplest cases are of course those in which the components of the γ
(1)
ij are constant.

To be able to describe the required subalgebras, we will have to define the new KVs formed

from the linear combinations of the existing ones. The most general linear combination of the KVs

is

ξlinear combination = a0ξ
(0) + a1ξ

(1) + a2ξ
(2) + a3ξ

(3) + a4ξ
(4) + a5ξ

(5) + a6ξ
(6) + a7ξ

(7)

+ a8ξ
(8) + a9ξ

(9). (20)

In the following chapter we consider the largest subalgebras.

IV. ASYMPTOTIC SYMMETRY ALGEBRA OF CONFORMAL GRAVITY

The most interesting subalgebras of so(3, 2) for which we find γ
(1)
ij are the highest dimensional

subalgebras. They consist of five and four KVs. Here, we list first all the subalgebras of so(3, 2)

[16]

• similitude algebra, sim(2,1),

• optical algebra opt(2,1),

• maximal compact algebra o(3)⊗ o(2)

• o(2)⊗ o(2, 1)

• o(2,2)

• Lorentz algebra o(3, 1)

• irreducible subalgbra o(2, 1),

while below we demonstrate how to define these subalgebras in terms of our KVs.
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1. Similitude algebra sim(2, 1)

The number of KVs in this algebra is 7, and we can identify them with the KVs

P0 = ξ(0), P1 = ξ(1), P2 = ξ(2) F = ξ(6) (21)

K1 = ξ(3) K2 = ξ(4) L3 = ξ(5). (22)

They close into [
ξd, ξtj

]
= −ξtj (23)[

ξtl , Lij
]

= −
(
ηliξ

t
j − ηljξti

)
(24)

[Lij , Lmj ] = Lim. (25)

If we insert the corresponding KVs in the subleading order Killing equation (19), we do not get

a solution for γ
(1)
ij unless it is trivial. The subalgebra of sim(2, 1) which contains five KVs is the

highest dimensional one that leads to non-trivial γ
(1)
ij .

2. Optical algebra opt(2, 1)

as well consists of 7 KVs which do not lead to non-trivial γ
(1)
ij . The realised subalgebra of

opt(2, 1) is 5 dimensional. When we write its KVs in a form

W = −ξ
(6) + ξ(4)

2
K1 =

ξ(6) − ξ(4)

2
K2 =

1

2

[
ξ(0) − ξ(2) +

(ξ(8) − ξ(9))
2

]
(26)

Q =
ξ(5) − ξ(3)

2
√

2
M = −

√
2ξ(1) L3 =

1

2

[
ξ(0) − ξ(2) − (ξ(8) − ξ(9))

2

]
(27)

N = −(ξ(0) + ξ(2)) (28)

their algebra is defined with

[K1,K2] = −L3, [L3,K1] = K2, [L3,K2] = −K1, [M,Q] = −N, [K1,M ] = −1

2
M, (29)

[K1, Q] =
1

2
Q, [K1, N ] = 0, [K2,M ] =

1

2
Q, [K2, Q] =

1

2
M, [K2, N ] = 0 (30)

[L3,M ] = −1

2
Q, [L3, Q] =

1

2
M, [L3, N ] = 0 [W,M ] =

1

2
M, [W,Q] =

1

2
Q, (31)

[W,N ] =
1

2
N. (32)
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3. o(2, 2)

The algebra o(2, 2) is 6 dimensional while its highest realised subalgebra consists of 4 KVs.

Rewriting the KVs in the form,

A1 = −1

2

[
ξ(9) + ξ(8)

2
−
(
ξ(0)+

)]
, A2 =

1

2

(
ξ(6) + ξ(4)

)
, (33)

A3 =
1

2

[
−ξ

(9) + ξ(8)

2
−
(
ξ(0) + ξ(2)

)]
B1 = −1

2

[
−ξ(9) − ξ(8)

2
+
(
ξ(0) − ξ(2)

)]
(34)

B2 =
1

2

(
ξ(6) − ξ(4)

)
B3 =

1

2

[
ξ(9) − ξ(8)

2
+
(
ξ(0) − ξ(2)

)]
(35)

we can identify the algebra

[A1, A2] = −A3 [A3, A1] = A2 [A2, A3] = A1 (36)

[B1, B2] = −B3 [B3, B1] = B2 [B2, B3] = B1 (37)

(38)

which can be summarised into [Ai, Bk] = 0 for (i, k) = 1, 2, 3.

4. o(3, 1)

This algebra consists of 6 KVs, while the highest dimensional realised subalgebra is 4 dimen-

sional. If we define the KVs as

L1 = ξ(7) +
ξ(2)

2
L2 = ξ(5) L3 = ξ(8) +

1

2
ξ(1) (39)

K1 = ξ(8) − 1

2
ξ(1) K2 = ξ(6) K3 = −ξ(7) +

1

2
ξ(2) (40)

the algebra is

[Li, Lj ] = εijkLk, (41)

[Li,Kj ] = εijkKk, (42)

[Ki,Kj ] = −εijkLk. (43)

The subalgebras which have for the highest dimensional realised subalgebra, algebra with 4 KVs are

o(3)⊗o(2), o(2)⊗o(2, 1) and o(2, 1) and we will not consider their algebras and KVs explicitly here,

for more information see [14]. The explicit solutions defined by some of the algebras we mentioned

above are written in the table in the Appendix: ”Highest realised subalgebras of sim(2, 1)”, while

now we focus on the realised subalgbras that can be extended to global solutions.
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V. GLOBAL SOLUTION

To obtain the five dimensional subalgebra we consider the KVs of the similitude algebra which

form the subalgebra α5,4 (adopting the notation from [16]) and insert them in the equation (19).

The equation (19) is solvable when γ
(1)
ij is

γ
(1)
ij =


c c 0

c c 0

0 0 0

 , (44)

and the KVs that define α5,4 are KVs of translation and two new linearly combined KVs

χ(1)
new = ξ(6) − 1

2
ξ(3) χ(2)

new = ξ(5) − ξ(4). (45)

The solution (44) helps us to find the global soultion, because we can use it to write the ansatz

metric

ds2 = dr2 + (−1 + cf(r))dx2i + 2cf(r)dxidxj + (1 + cf(r))dx2j + dx2x (46)

for xi = {t, x, y}. The line element (46) gives global solution and solves Bach equation (3) for

f(r) = c1 + c2 + c3r
2 + c4r

3.

Interestingly, we can notice form the solution for f(r) that choosing the coefficients ci (i =

1, 2, 3, 4) we can decide whether we will have the corresponding charges. The AdS/CFT correspon-

dence tells us how to define the stress energy tensors at the boundary, and for conformal gravity

and this particular metric, stress energy tensors are partially massless response Pij in the sense of

Deser, Nepomechie, and Waldron [17, 18], and standard Brown-York stress energy tensor τij . We

obtain

τij =


−cc4 −cc4 0

−cc4 −cc4 0

0 0 0

 (47)

and

Pij =


cc3 cc3 0

cc3 cc3 0

0 0 0

 . (48)
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Using the analogous ansatz metric and γ
(1)
ij of the form

γij =


−cb(t− y) 0 cb(t− y)

0 0 0

cb(t− y) 0 −cb(t− y)

 . (49)

which conserve the KVs

ξ(n1) = −P0 + P2 ξ
(n2)
2 = P1 ξ(n3) = P1 ξ(n3) = L3 −K1 (50)

we as well obtain the global solution of the Bach equation (3).

The particularity of this metric is that b(t − y) is a function, which allows us to solve (19) for

the further conserved KV. We can obtain the forms of γ
(1)
ij for the corresponding KV written in

the table

4th KV b(t-y) 4th KV b(t− y)

F b
t−y F −K2

b
(t−y)3/2

F +K2 + ε(−P0 − P2) b · e
t−1
2ε K2

b
(t−y)2

P0 − P2 b(t-1) F + cK2 b · (t− y)
1−2c
−1+c .

VI. CONCLUSION AND OUTLOOK

Depending on the linear term in the FG expansion, we can impose a number of boundary

conditions in conformal gravity. These boundary conditions are classified according to subalgebras

of so(3, 2), and with the clever choice of an ansatz metric, using the realised γ
(1)
ij matrices, we

can obtain a global solution. Global solutions can therefore be classified according to the realised

subalgebras.

Largest asymptotic symmetry algebra we find is 5 dimensional, belongs to subalgbra of sim(2, 1)

and opt(2, 1) and defines pp wave or geon solution. o(2, 2) and o(3, 1) algebras define ASAs with

maximally 4 KVs. Each of these can also give pp wave global solution.

However, there are more global solutions. To find them using this approach, one has to care-

fully choose the ansatz metric and depending on the requirement of the global solutions, impose

additional conditions which may lead to easy or demanding task. Further research in this direction

include studying the black hole solutions, black branes and black strings.
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VIII. APPENDIX: HIGHEST REALISED SUBALGEBRAS OF sim(2, 1)

Here we write an example of the asymptotic solutions for γ
(1)
ij and their corresponding algebra.

The subalgebras of sim(2, 1) we denote with ”α” and adopt the notation of [16], while the generators

are identified with with P0 = −ξ(0), P1 = ξ(1), P2 = ξ(2), F = ξ(6),K1 = ξ(3),K2 = ξ(4), L3 = ξ(5).
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Realized subalgebras

Name Patera name generators γ
(1)
ij

αa5,4
F + 1

2K2,−K1 + L3,

P0, P1, P2

γ
(1)
ij =


−b 0 b

0 0 0

b 0 −b


α 6= 0,±1 α = 1

2

R⊕ o(3) α4,1 P1 ⊕ {K2, P0, P2}


b
2 0 0

0 b 0

0 0 − b
2



α4,2

P0 − P2⊕

{F −K2;P0 + P2, P1}


−b 0 0

0 b 0

0 0 −2b


MKR

R⊕ o(3)
α4,3 P0 ⊕ {L3, P1, P2}


2b 0 0

0 b 0

0 0 b



α4,4 F ⊕ {K1,K2, L3} γ
(1)
ij =


2f(t) 0 0

0 f(t) 0

0 0 f(t)



α4,5

F{K2;P0 − P2}⊕

{F −K2, P1}


0 b

t−y 0

b
t−y 0 b

y−t

0 b
y−t 0



α4,6

{F +K2, P0 − P2}⊕

{F −K2, P0 + P2}


b
x 0 0

0 2b
x 0

0 0 − b
x


α4,7

L3 −K1, P0 + P2;

P0 − P2, P1

gives 5 KV subalgebra for constant

components of γ
(1)
ij
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