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1. Introduction

Wilson loops are fundamental probes of QCD, which allows us to calculate many important
quantities, like the potential of interquark interaction, from its expectation values. At the same time,
expectation values of static Wilson loops are useful to characterize properties of the quark-gluon
plasma produced in heavy ion collisions. Owing to Wilson loops one can perform the analysis of
jet quenching, quarkonium suppression, etc.[1, 2]. The gauge/gravity duality provides a possibility
to consider observables, in particularly Wilson loops, of a gauge theory, dealing with its gravity
holographic dual.

In the recent paper [3], we studied Wilson loops in the backgrounds with spatial anisotropy
within the holographic framework. In particularly, the evolution of Wilson loops was considered
in the time-dependent case to investigate the thermalization process during heavy ion collisions.
There is an anisotropy related with the direction along the beam-line in heavy ion collisions. The
anisotropic black brane spacetimes and its generalization to the Vaidya solution, that, in our opin-
ion, can serve as the dual description of heavy-ions collision, were found in [4]. The metrics
have an anisotropy between spatial directions, which is controlled by the so-called critical expo-
nent. First attempts of using these backgrounds as holographic dual were presented in [5, 6]. The
main motivation for consideration of observables in these backgrounds comes from the fact, that
the holographic calculation of the total multiplicity of charged particles production in heavy ions
collision reproduces the correct experimental data [7]. At the same time the quark-gluon plasma
created in heavy-ion collisions is known to be anisotropic at its early stage of evolutions [8, 9]
and the holographic model in the anisotropic background is convenient to incorporate anisotropic
properties of the QGP.

In the present contribution we calculate holographically Wilson loops in black brane back-
grounds with spatial anisotropy [4]. We restrict ourselves by studies of static configurations located
on time-like, space-like and light-like contours with different orientations in the spacetime. The
time-like and space-like cases represent an extension of our work [3].

In section 2, we review the anisotropic black brane background and the notions of Wilson
loops in the standard and holographic prescriptions. In section 3, we consider holographic time-like
and space-like Wilson loops for different orientations of the orthogonal contours in the anisotropic
backgrounds and corresponding potentials and pseudopotentials of quark-antiquark interactions. In
section 4 we calculate Wilson loops for a light-like anisotropic contour in the gravity holographic
dual.

2. Set up

We start from the gravitational theory given by the action [4]

S =
∫

d5x
√
|g|
(

R[g]+Λ− 1
2
(∂φ)2− 1

4
eλφ F2

(2)

)
, (2.1)

where φ is the dilaton field, F(2) is U(1) gauge field, λ is a dilaton coupling constant, and Λ is the
negative cosmological constant. The corresponding Einstein equations of motion are

Rmn =−
Λ

3
gmn +

1
2
(∂mφ)(∂nφ)+

1
2

eλφ FmpF p
n −

1
12

eλφ F2
(2)gmn. (2.2)
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The scalar field equation and Maxwell’s equation read

�φ =
1
4

λeλφ F2
(2), with �φ =

1√
|g|

∂m(gmn
√
|g|∂nφ), (2.3)

Dm

(
eλφ Fmn

)
= 0. (2.4)

We will consider time-like Wilson loops in gravity backgrounds that are asymptotic to the 5d
Lifshitz-like geometries [5, 6]

ds2 = 2πα
′
(
−dt2 +dx2

1
z2 +

dx2
2 +dx2

3

z2/ν
+

dz2

z2

)
, (2.5)

where ν is the critical exponent 1. We note that the metric (2.5) has boost-invariance, which allows
us to construct a shock-wave solutions in [7]. The dilaton and gauge fields are given by

φ = φ(r), eλφ = µe4r, (2.6)

F(2) =
1
2

qdy1∧dy2, (2.7)

where q and µ are constants. One can see that the background (2.5) with ν = 1 comes to be the
5-dimensional AdS spacetime.

The direction x1 will be referred as a longitudinal one, while the x2 and x3 are the transverse
directions

x1 = x||, x2 = x3 = x⊥. (2.8)

The non-zero temperature generalization of (2.5) was found in [4] and can be represented in the
following form

ds2 = 2πα
′
(
− f (z)dt2 +dx2

1
z2 +

dx2
2 +dx2

3

z2/ν
+

dz2

f (z)z2

)
, (2.9)

with the blackening factor given by
f = 1−mz2+2/ν . (2.10)

One can see that for ν = 1 the background (2.9)-(2.10) is the metric of the black brane in the 5d
AdS spacetime. We note that the values of the parameters Λ, q, µ , λ are controlled by the critical
exponent. For example, for ν = 4 to satisfy the equations of motion, we have:

Λ = 90, µq2 = 240, λ =±2
3
. (2.11)

The background (2.9) describes holographically the anisotropic media on the boundary with
the temperature corresponding to the Hawking temperature of the black brane:

T =
1
π

ν +1
2ν

m
ν

2ν+2 . (2.12)

1Note, that in (2.5) to keep the standard dimension for the metric we put the factor 2πα ′ in front of the metric and
we assume that all lengths in different directions are dimensionless [`z] = [`x] = [`y1 ] = [`y2 ] = (α ′)0.
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In this work we focus on holographic rectangular Wilson loops. The basic formula for the
computation of the expectation value of the Wilson loop operator from holography [11, 12] (spec-
ified by the contour C) reads as:

W [C] = 〈TrF ei
∮

C dxµ Aµ 〉= e−Sstring[C], (2.13)

where Sstring[C] is the Nambu-Goto action which can be represented as

Sstring =
1

2πα ′

∫
dτdσ

√
−dethαβ , (2.14)

with the induced metric of the world-sheet

hαβ = gMN∂αXM
∂β XN , (2.15)

where α,β = 1,2.
The potential of the interquark interaction can be extracted from the rectangular time-like

Wilson loop of size T ×X , i.e. the loop in which one side is infinite along the time direction, and
the other is along the spatial one,

W (T,X) = 〈Trei
∮

T×X dxµ Aµ 〉 ∼ e−V (X)T . (2.16)

A similar operator to probe QCD, the spatial rectangular Wilson loop of size X×Y ,defines the
so called pseudopotential V , is given by

W (X ,Y ) = 〈Trei
∮

X×Y dxµ Aµ 〉= e−V (X)Y . (2.17)

The pseudopotential can be straightforwardly extracted from the string action as follows

V (X) =
Sstring

Y
. (2.18)

As it is known from the QCD lattice calculations the spatial Wilson loops obey the area law at
all temperature, i.e.

V (X)∼ σsX , (2.19)

where σs defines the spatial string tension

σs = lim
X→∞

V (X)

X
. (2.20)

The quantity σs differs from the usual string tension which is defined from time-like Wilson-
loops. By virtue to the non-Abelian Stokes formula equal time spatial Wilson loops [14] are related
with the spatial components of the energy-momentum tensor and by this reason σs is also called
the magnetic string tension.

3
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3. Holographic Wilson loops in spacetimes with spatial anisotropy

3.1 Holographic time-like Wilson loops

Here we consider two cases of the orientation of time-like Wilson loops. For both configu-
rations we suppose that the string is stretched in the radial direction, so z = z(σ), as well as we
assume that the strip is infinite along the time direction.

We start with the loop located on the tx||-plane. We take the parametrization τ = t, σ = x||.
Thus, the Nambo-Goto action (2.14) for this case reads

S =
1

2πα ′

∫
dσ

√
( f (z)+ z′2)

z2 . (3.1)

The equation of motion corresponding to (3.1) is given by

z′ =±

√
f (z)

(
f (z)

z4I 2 −1
)
, (3.2)

with the following integral

I =− f (z)

z2
√

f (z)+ z′2
. (3.3)

The length of the two endpoints of the string on the brane can be calculated from (3.2)

`= 2
∫ z∗

z0

dz

√
f (z∗)z4

f (z)(z4
∗ f (z)− f (z∗)z4)

, (3.4)

where the integral of motion is related to the turning point, for which z′ = 0, as follows

I 2 =
f (z∗)

z4
∗

. (3.5)

Performing the change of variables in (3.1) and taking into to the relation for z′ (3.2) one
obtains

Sx||,t(∞)
= T

∫
dz

√
f (z)z4

∗
z4 [ f (z)z4

∗− f (z∗)z4]
. (3.6)

Performing the renormalization by subtraction the mass of the two free quark [8, 12, 13] we get for
the energy of the string between two quarks stretched in the longitudinal direction

Ex||,t(∞),ren =
∫ z∗

0

dz
z2

[√
f (z)z4

∗
f (z)z4

∗− f (z∗)z4 −1

]
− 1

z ∗
+

1
zh
, (3.7)

taking into account that zh = 1

m
1

2+2/ν

, we get that the energy of two free quarks that has to be

subtracted is equal to m
1

2+2/ν .
In Fig.1 (a) we present the dependence of the energy (3.7) on the length (3.4). We observe

that the essential dependence on the anisotropic parameter ν appears with growing values of the
distance between the quark and the anti-quark. One should be noted that for enough small ` the

4
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Figure 1: (a).The string energy (3.7) as a function of the interquark distance (3.4) for ν = 1,2,3,4 (from top
to bottom, respectively). (b). The string energy (3.14) stretched in the transversal direction as a function of
the interquark distance (3.11) for ν = 1,2,3,4 (from left to right, respectively).

behaviour of the string energy extracted from (3.7) for all ν is close to the behaviour in the case
ν = 1 (the AdS case).

Now we turn to the configuration on the tx⊥-plane, so we take the parametrization σ = x⊥.
The Nambo-Goto action (2.14) for this case is

S =
1

2πα ′

∫
dσ

√
f (z)+ z2/ν−2z′2

z1+1/ν
. (3.8)

The equation of motion following from (3.8) reads

z′ =± 1
z1/ν−1

√
f (z)

(
f (z)

z2+2/νI 2 −1
)
, (3.9)

with the integral of motion is given by

I =
z−1−1/ν f (z)√
f (z)+ z2/ν−2z′2

. (3.10)

The distance between two quarks can be calculated from (3.9) as

`x⊥ = 2
∫ z∗

z0

dzz1−1/ν

√√√√ f (z∗)z2+2/ν

f (z)
(

z2+2/ν

∗ f (z)− f (z∗)z2+2/ν

) , (3.11)

the relation between the integral of motion I and the turning point corresponding to (3.10) is

I 2 =
f (z∗)

z2+2/ν

∗
. (3.12)

Plugging (3.10) into (3.8) and coming to the integration with respect to z-variable one gets

5
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St,x⊥ = T
∫ z∗

z0

dz
1
z2

√√√√ z2+2/ν

∗ f (z)

z2+2/ν

∗ f (z)− f (z∗)z2/ν+2
. (3.13)

Taking into account the relation for the blackening function and performing renormalization,
for the energy of the string between two quarks stretched in the transversal direction one obtains

Ex⊥t∞,ren =
∫ z∗

z0

dz
z2


√√√√ z2+2/ν

∗ f (z)

z2+2/ν

∗ f (z)− f (z∗)z2+2/ν
−1

− 1
z∗

+
1
zh
, (3.14)

where zh =
1

m2+2/ν
.

Fig.1 (b) we present the dependence of the string energy (3.14) on the length (3.11). One can
see that the dependence of Ex⊥t∞,ren on the critical exponent disappears at large ` and for all ν are
linear growing functions slightly deviating from the AdS case (ν = 1). We also see that the energy
is minimal (on the absolute value) for the isotropic configuration.

Comparing Fig.1 (a) and Fig.1 (b) one can say that the form of the string energy is similar to
the AdS case. This means that the dual gauge theory should be a continuous deformation of N = 4
sYM.

3.2 Holographic spatial Wilson loops

In this section we will consider spatial Wilson loops located in the planes x1x2 and x2x3.
Let us start with a rectangular Wilson loop in the x1x2 plane with a short side of the length ` in

the longitudinal x direction and a long side of the length Lx2 along the transversal x2 direction, so
that

x1 ∈ [0, ` < Lx1 ], x2 ∈ [0,Lx2 ]. (3.15)

We assume that the Wilson loop is invariant under the x2-direction. We parameterize the
world-sheet of the string in the following way σ1 = x1, σ2 = x2.

The Nambo-Goto action (2.14) takes the form

Sx1,x2(∞)
= Lx2

∫ z∗

z0

1
z1+1/ν

dz√
f (z)

(
1−
(

z
z∗

)2+2/ν
) , (3.16)

where z∗ is the turning point.
The distance between the quark and the anti-quark can be rewritten in terms of the dimension-

less variable w = z/z∗ as

`= 2z∗
∫ 1

z0/z∗

w1+1/ν dw√
f (z∗w)(1−w2+2/ν)

, (3.17)

while the renormalized Nambu-Goto action (3.16) in terms of w is represented as

Sx1,x2(∞),ren = Lx2

 1

z1/ν

∗

∫ 1

0

dw
w1+1/ν

 1√
f (z∗w)

(
1−w2+2/ν

) −1

− ν

z1/ν

∗

 . (3.18)

6
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Then pseudopotential Vx1,x2(∞)
is given by:

Vx1,x2(∞)
=

Sx1,x2(∞),ren

Lx2

. (3.19)

In Fig.2 (a) we present the dependence of the pseudopotential Vx1,x2(∞)
(3.19) on the length

(3.17). We observe that for small ` the pseudopotential has the Coulomb part deformed by the
critical exponent, thus

Vx1,x2(in f ty)(`,ν)∼−
C1(ν)

`1/ν
, `x1 → 0, (3.20)

with some constant C1 dependent on ν . For large ` the pseudopotential V behaves as a linearly
increasing function

Vx1,x2(in f ty)(`,ν)∼ σs,1(ν)`, `x1 → ∞. (3.21)

Now we come to a rectangular loop in the x1x2-plane with a short side of the length ` in the x2

direction and a long side of the length Lx1 along the x1-direction,

x1 ∈ [0,Lx1 ], x2 ∈ [0, ` < Lx2 ]. (3.22)

The distance between two quarks can be written down in terms of the w-variable

`= 2z1/ν

∗

∫ 1

0

w2/νdw√
f (z∗w)

(
1−w2+2/ν

) , (3.23)

where the z∗ is the turning point.
The renormalized Nambu-Goto action (3.23) reads

Sx2,x1,(∞),ren = Lx1

 1
z∗

∫ 1

z0/z∗

dw
w2

 1√
f (z∗w)

(
1−w2+2/ν

) −1

− 1
z∗

 , (3.24)

while the pseudopotential Vx2,x1,(∞)
related to (3.24) is:

Vx2,x1,(∞)
=

Sx2,x1,(∞),ren

Lx1

. (3.25)

In Fig. 2 (b) we show the dependence of the pseudopotential extracted from the action (3.24)
on the length ` for different values of the temperature and the dynamical exponent. The pseudopo-
tential has a power-law dependence on ν for small `x2 , so that

Vx2,x1,(∞)
∼−C2(ν)

`ν
x2

, `x2 → 0, (3.26)

with some constant C2 dependent on ν .
For large distances the pseudopotential represents a linear function of ` again

Vx2,x1(∞)
(`x2 ,ν)∼ σs,2(ν)`x2 , `x2 → ∞. (3.27)

7
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Finally, we turn to the Wilson loop located in the transversal x2x3-plane with a short side of the
length ` in one of transversal directions and a long side of the length Lx3 along the other transversal
direction, namely

x2 ∈ [0, ` < Lx2 ], x3 ∈ [0,Lx3 ]. (3.28)

We choose only transversal coordinates for the parameterization of the worldsheet σ1 = x2, σ2 =

x3.
The relation for the length in terms of the w-variable reads

`= z1/ν

∗

∫ dw

w1−3/ν

√
f (z∗w)

(
1−w4/ν

) , (3.29)

where z∗ is the turning point.
The renormalized Nambo-Goto action takes the form

Sx2,x3(∞),ren = Lx3

 1

z1/ν

∗

∫ 1

z0/z∗

dw
w1+1/ν

 1√
f (z∗w)

(
1−w4/ν

) −1

− ν

z1/ν

∗

 . (3.30)

The pseudopotential Vx2,x3(∞)
extracted from (3.30) can be represented as:

Vx2,x3(∞)
=

Sx2,x3(∞)

Lx3

. (3.31)

In Fig.2 (c) we display the behaviour of the pseudopotential (3.31) on the length (3.29).
One can see that the behavior of Vx2,x3(∞)

in Fig.2(c) is rather different from two previous cases.
We observe, that the dependence on ν is driven by some constant C3 relying on ν . It should be
noted that the pseudopotentials strongly deviate from the AdS case (ν = 1) both in the UV and the
IR regions of `. Thus, one can write for small `

Vx2,x3(∞)
(`x2 ,ν)∼−

C3(ν)

`x2

, `x2 → 0, (3.32)

with some constant C3 dependent on ν .
At the same time for large ` we have

Vx2,x3(∞)
(`x2 ,ν)∼ σs,3(ν)`x2 , `x2 → ∞. (3.33)

4. Holographic light-like Wilson loops

It is well known that light-like Wilson loops are related with jet quenching parameter, that
described by a ratio of mean transverse momentum obtained by the parton moving through the
plasma over the travelled distance. Its holographic calculation in different backgrounds has been
considered in [15]-[21].

8
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Figure 2: (a),(b),(c):The behaviours of the pseudopotentials Vx1,x2(∞)
, Vx2,x1,(∞)

, Vx2,x3(∞)
, correspondingly,

for ν = 1,2,3,4 (from top to down) as functions of the distance between the quarks ` at T = 0.2.

To calculate the holographic light-like Wilson loop we perform the coordinate transformation
x± = t±x1√

2
, then the metric in light-cone coordinates takes the form

ds2 =−(1+ f (z))
z2 dx+x−+

1− f (z)
2z2

[
dx+2 +dx−2]+ dx2

2

z2/ν
+

dx2
3

z2/ν
+

dz2
2

z2 . (4.1)

We choose the ansatz for the string configuration

σ
1 = x−, σ

2 = x+, z = z(σ2). (4.2)

We suppose that the string worldsheet has translational invariance along x1. The Nambo-Goto
action then reads

Sx−x1 =
L−
√

m√
2πα ′

∫ `/2

0
dx1

√
1+

z′2

z2−2/ν f
. (4.3)

with z′ = dz/dx1. The integral of motion corresponding to (4.3) reads

I =
1√

1+ z′2
z2−2/ν f

. (4.4)

The equation of motion reads

z′ =

√
1−I 2

I
z1−1/ν

√
1−mz2+2/ν . (4.5)

Plugging (4.5) into (4.3) we have

Sx−x1 =
√

m
L−

I
√

2πα ′
`, (4.6)

while the length of the string reads

`=
I√

1−I 2

∫ z∗

0

dz

z1−1/ν

√
1−mz2+2/ν

. (4.7)

We consider the situation when the turning point z∗ = zh = m−
1

2+2/ν . Then one obtains

`=− I√
1−I 2

m−
1

2(ν+1)

√
πΓ( 1

2+2ν
)

Γ(− ν

2+2ν
)
, (4.8)

9
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or

`=−aν(m)
I√

1−I 2
, with aν(m) = m−

1
2(ν+1)

√
πΓ( 1

2+2ν
)

Γ(− ν

2+2ν
)
. (4.9)

Taking into account (2.12) we can write

aν(m) =−T−1/νaT,ν , with aT,ν =

(
2πν

ν +1

)−1/ν
√

πΓ( 1
2+2ν

)

Γ(− ν

2+2ν
)
, T =

1
π

(ν +1)
2ν

m
ν

2ν+2 .

(4.10)
Owing to (4.10) the string action with subtracted the divergences reads

∆Sx−x1 =

(
2πν

ν +1

)1+1/ν L−TaT,ν√
2πα ′

[√
1+

T 2/ν`2

a2
T,ν
−1

]
. (4.11)

5. Conclusions

In this short contributions we have considered Wilson loops in an anisotropic holographic
gravity dual. The black brane background has a spatial anisotropy and motivated by the possibility
to reproduce the dependence of the multiplicity of particles created in heavy-ion collisions on the
energy using the holographic duality. We have discussed static configurations located on time-like,
space-like and light-like rectangular contours with different orientation in the spacetime.

We observe that the behavior of the potential of an interquark interaction as a function of the
distance between two quarks is similar to the isotropic case. So the dual gauge theory is supposed
to be a deformation of N = 4 SYM theory. From the form of the potential one can also conclude
that there is no confinement in the holographic model. However, looking at the behavior of the
pseudopotential corresponding to the configuration on the transversal plane one can see that it
has the screened Cornell form. We have also calculated the light-like Wilson loop and derive the
analytic expression for the Nambo-Goto action for an arbitrary value of the critical exponent.

A possible extension of this work is to more detailed study the jet quenching. It will also be
interesting to deal with metrics providing the confinement, compare [22], and to perform full study
of the observables using the holographic approach.
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