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1. Introduction

The description of supersymmetric vacua is a problem of central importance in both string
phenomenology and the AdS/CFT correspondence (for a review see [1]). In the absence of fluxes
the internal geometry of a Minkowski background is forced to be a manifold with special holonomy,
such as the celebrated Calabi-Yau spaces [2]. These geometries have an integrable structure, which
is a key feature enabling the study of their properties such as their Ricci-flatness and their moduli
spaces. However, for geometries which include fluxes, this property is broken; the system can be
described as a G-structure with non-vanishing intrinsic torsion determined by the fluxes [3, 4, 5].
A further complication is that the structure group G is not determined purely by the number of
preserved supersymmetries. These issues make the general classification and analysis of such
geometries substantially more involved.

Generalised geometry [6, 7] provides a new approach to these problems. In [8] it was shown
that four-dimensional supersymmetric Minkowski backgrounds of type II theories correspond to
generalised Calabi-Yau manifolds. In particular, they are SU(3)×SU(3) structures on the O(6,6)
generalised tangent space T ⊕ T ∗ together with a geometrically natural notion of integrability.
This construction effectively includes the NS-NS flux into the geometry of the system, though the
integrability is again broken if there are also RR-fluxes. While this rewriting does not fully classify
such backgrounds, and does not formulate backgrounds with RR flux as integrable structures, it has
nonetheless been applied with great success to the study of supersymmetric solutions [9, 10, 11].

Later, exceptional generalised geometry was developed [12, 13] and it was shown that it is
possible to formulate the full internal sector of supergravity in generalised geometry language [14,
15, 16]. The exceptional geometry can include all the fields of M-theory and type II theories in
the geometric construction, and for the type II embedding it can be viewed as a direct extension of
the original construction of Hitchin and Gualiteri. For example, the generalised tangent space can
be viewed as an extension of the O(d,d) generalised tangent space (whose twisting encodes the
NS-NS flux) by O(d,d)×R+ generalised tensor bundles [17], with the extension controlled by the
remaining fluxes.

Given the earlier results relating supersymmetric backgrounds to integrable generalised struc-
tures, it is natural to wonder whether there is a notion of integrable generalised G-structure in
exceptional generalised geometry which captures the supersymmetry conditions including all pos-
sible fluxes. The motivation for this is clear; the generalised geometry formalism provides compact
expressions for complicated relations which are powerful tools for the study of general flux back-
grounds, and typically an integrable structure allows one to describe features such as the moduli
space of a geometry much more easily. Finding the moduli space of flux compactifications is an
important problem in string phenomenology and AdS/CFT and, while these questions are beyond
the scope of the present article, we remark that some significant steps in these directions have al-
ready been made in [18, 19, 20] using precisely the type of generalised geometry structures we
will describe here. It seems very likely that many more such applications will be developed in the
future.

The relevant notion of integrability for generalised G-structures was introduced in [21]. There,
the generalised intrinsic torsion was defined, and its vanishing provides the relevant definition of
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integrability. This was also called generalised special holonomy1 by analogy with the Riemannian
geometry case where vanishing intrinsic torsion corresponds to special holonomy, and we adopt
this language here. If one focuses on the structure defined by a single nowhere vanishing spinor, it
was shown in [21] that the integrability of the structure is equivalent to the Killing spinor equations
and thus preserved supersymmetry. It was remarked that, in four-dimensional counting, the same
derivation also worked for N = 2 supersymmetry (shown in detail in [18]), but not for N ≥ 3.

In this contribution we will describe recent work [24] showing that the same is true for any
number of preserved supersymmetries, as well as reviewing the generalised geometry formalism
and the generalised holonomy construction of [21]. We will focus on eleven-dimensional super-
gravity backgrounds for convenience of presentation, though exactly the same statements hold in
the corresponding formulations of type II theories. Our major conclusion is that supersymmetric
Minkowski backgrounds are exactly the internal spaces with generalised special holonomy in the
relevant stabiliser group. A notable improvement on previous studies is that this provides a single
treatment of backgrounds preserving any number N of supersymmetries.

In order to achieve such a uniform description, we will work largely with spinor quantities,
rather than defining the generalised structures in terms of spinor bilinear objects, as was the ap-
proach taken in other works in this area [8, 13, 25, 26, 18, 19, 27]. However, in the process, we
are drawn to consider also the generalised vectors which arise as bilinears of the Killing spinors.
These are seen to generate generalised isometries, and together with the Killing spinors they pro-
vide a kind of super-isometry algebra on the internal space. This algebra fixes the form of the
Killing superalgebra [28, 29] of the eleven-dimensional background, of which it forms the inter-
nal sector. In particular, the generalised holonomy construction provides a purely geometric proof
that the Killing superalgebra of warped Minkowski backgrounds is always the N -extended super-
Poincaré algebra.

Before we begin the exposition, let us remark that the formalism is capable of describing
also supersymmetric AdS flux backgrounds. The integrability condition is simply modified so that
a constant singlet intrinsic torsion is switched on, given by the (square root of the) cosmologi-
cal constant, and this is thought of as analogous to Sasaki-Einstein structures or weak holonomy.
In dimensions four and higher, this was shown in [30] for minimally supersymmetric AdS back-
grounds, and for AdS backgrounds with 8 supercharges in [19]. We hope to report results for AdS
backgrounds corresponding to those given below in future work [31].

2. Supersymmetric Minkowski backgrounds

The system of equations describing the supersymmetric backgrounds of interest here are de-
rived as follows. The eleven-dimensional metric is taken to have the standard warped-product form

ds2
10,1 = e2∆

ηµνdxµdxν +gmndymdyn, (2.1)

1Note that in [22, 23], the holonomy of the eleven-dimensional supercovariant connection was also referred to as
generalised holonomy and on imposing an algebraic constraint on the Killing spinor, the construction of [22, 23] gives
rise to the same holonomy groups we will derive here. However, the definition we discuss differs from this approach and
is exactly equivalent to preserving supersymmetry, while providing an integrable geometric structure.
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In order to maintain the Poincaré symmetry of the Minkowski factor, all fields are taken to depend
only on the internal coordinates ym and to be scalars with respect to this group. We are thus able
to keep the internal components of the three-form field A(3). which give an internal four-form
field strength F(4). Here, we will focus on the case of a four-dimensional Minkowski factor, for
convenience of presentation. In this case, one can also keep the four-form field strength on the
external space and dualise this to a seven-form field strength on the internal space, which can be
associated with a six-form potential via F̃(7) = dÃ(6)− 1

2 A(3)∧F(4). The last term originates from
the Chern-Simons coupling in eleven-dimensions.

The eleven-dimensional spinors are decomposed correspondingly as

ε11 = η
+⊗ ε̂ +η

−⊗ ε̂
∗, γ

(4)
η± =∓iη±, (2.2)

where η is a constant external Majorana spinor, and ε̂ is a complex spinor field on the internal
space. Requiring that the supersymmetry variation of the eleven-dimensional gravitino vanishes
for such a supersymmetry parameter is equivalent to the Killing spinor equations

Dmε̂i := ∇mε̂i +
1

288(γm
n1...n4−8δm

n1γ
n2n3n4)Fn1...n4 ε̂i− 1

12
1
6! F̃mn1...n6γ

n1...n6 ε̂ = 0,

D ε̂i := γ
m

∇mε̂i + γ
m(∂m∆)ε̂i− 1

96 γ
m1...m4Fm1...m4 ε̂i− 1

4
1
7! γ

m1...m7F̃m1...m7 ε̂ = 0.
(2.3)

We say that a background preserves N supersymmetries if there exist N independent complex
spinor fields ε̂i, i = 1, . . . ,N , which are non-vanishing at every point of the internal space, and
which solve the Killing spinor equations. This is because such a set of spinors minimally give us
N different ways to uplift the Killing spinors of Minkowski space to eleven-dimensional Killing
spinors. We should briefly note that several well-known no-go results exclude the possibility of
compact smooth solutions with non-zero fluxes [32, 33, 34]. For the remainder, we consider only
the local geometry of the system, and leave global issues such as these, and their possible resolution
by including other objects in string theory, for future consideration.

An immediate, but important, consequence of these equations is that the rescaled supersym-
metry parameter

ε = e−∆/2
ε̂, (2.4)

satisfies [35] (very similar manipulations were also performed in [22, 23])

∇̃mε = ∇mε− 1
4

1
3! Fmnpqγ

npq
ε− 1

4
1
6! F̃mn1...n6γ

n1...n6ε = 0, (2.5)

Here, ∇̃ is an SU(8) compatible connection on the spin bundle, as (γ(2),γ(3),γ(6)) give a basis
for the su(8) algebra inside Cliff(7,R). As the Killing spinors are parallel with respect to this
connection, all SU(8) invariant inner products of these spinors are constant. In particular, we can
find a unitary basis for the space of Killing spinor fields with ε

†
i ε j = δ i

j.
Another important consequence of the Killing spinor equations, is that the complex vector

space of Killing spinors forms a representation of the isometry group of the background, which we
define as the group of isometries of the internal metric which also preserve the background fields
∆, F(4) and F̃(7). Given a Killing vector v which preserves the background, it can easily be seen
that the spinorial Lie derivative along v commutes with the operators Dm and D appearing in the
Killing spinor equations (2.3). Thus, Lvεi is another Killing spinor, so there must exist a constant
matrix Xi

j with
Lvεi = Xi

j
ε j. (2.6)

3



P
o
S
(
C
O
R
F
U
2
0
1
6
)
0
8
8

Supersymmetric flux backgrounds and generalised special holonomy Charles Strickland-Constable

3. Exceptional generalised geometry for eleven dimensional supergravity

The internal sector of eleven-dimensional supergravity backgrounds of the type we are con-
sidering is described by E7(7)×R+ generalised geometry. This is the generalised geometry on the
extended tangent space [12, 13] of the seven-dimensional internal space M

E ∼= T M⊕Λ
2T ∗M⊕Λ

5T ∗M⊕ (T ∗M⊗Λ
7T ∗M),

V = v+ω +σ + τ,
(3.1)

A simple way to explain the appearance of such a geometry in supergravity is to consider the
bosonic symmetries of the theory. For our internal sector, these are the seven-dimensional diffeo-
morphisms of M, generated by vector fields, and the gauge transformations of the internal potentials

A′ = A+dΛ,

Ã′ = Ã+dΛ̃− 1
2 dΛ∧A,

(3.2)

which are generated by local two-forms Λ and five-forms Λ̃. The generators of these symmetries
are combined into the generalised vectors V . For the precise details, it is important to note that the
gauge potentials A, Ã and gauge parameters Λ, Λ̃ are defined only locally, while globally these will
be twisted by additional gauge transformations between patches of the space. Thus, the generators
of the symmetries become global sections of the twisted generalised tangent space, as described in
full detail in [13, 15].

Though strictly the structure group of E is the parabolic subgroup of E7(7)×R+ which includes
the positive roots for the gl(d,R) subalgebra, we think of E as being an E7(7)×R+ vector bundle.
Associated to this is an E7(7)×R+ principle bundle F of frames related by a local E7(7)×R+

transformation to the standard coordinate basis on a patch of the space.
The action of these infinitesimal symmetry transformations on generalised tensors (associated

to the principle bundle F ), is given by the Dorfman derivative, an analogue of the Lie derivative in
generalised geometry. Acting on a generalised vector, this can be written out in components as

LVV ′ = Lvv′+
(
Lvω

′− iv′dω
)
+
(
Lvσ

′− iv′dσ −ω
′∧dω

)
+
(
Lvτ

′− jσ ′∧dω− jω ′∧dσ
)
.

(3.3)

It can be thought of as the ordinary Lie derivative, generating the infinitesimal diffeomorphism,
together with the appropriate action of dω and dσ via the adjoint of E7(7)×R+. More abstractly,
the Dorfman derivative takes the form

LVV ′ = ∂VV ′− (∂ ×adF V ) ·V ′ (3.4)

Here the first term is the partial derivative along the vector part v, while second term is the derivative
of V projected onto the adjoint bundle associated to the frame bundle F . The projection notation
×(...) will be widely used in this contribution, and can be thought of simply as a covariant fibre-wise
projection onto the specified representation (here the adjoint of E7(7)×R+).

What we have said so far concerns the bosonic symmetries, we now turn to the bosonic fields
themselves. These are encoded as a generalised metric on the generalised tangent space, which
is a positive definite inner product, whose local stabiliser group is the maximal compact subgroup
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SU(8)/Z2 ⊂ E7(7)×R+. A neat way to construct this explicitly is to use the conformal split frame,
which is built from a vielbein for the conventional metric and the other supergravity fields as

Êa = e∆

(
êa + iêaA+ iêaÃ+ 1

2 A∧ iêaA

+ jA∧ iêaÃ+ 1
6 jA∧A∧ iêaA

)
,

Êab = e∆

(
eab +A∧ eab− jÃ∧ eab + 1

2 jA∧A∧ eab
)
,

Êa1...a5 = e∆ (ea1...a5 + jA∧ ea1...a5) ,

Êa,a1...a7 = e∆ea,a1...a7 .

(3.5)

This defines an untwisting of the twisted generalised tangent space E, since the components of a
generalised vector with respect to such a frame provide a globally well-defined vector and two-form
etc. The generalised metric can then be defined using the conformal split frame via

G−1 = Êa⊗ Êa + Êab⊗ Êab + Êa1...a5⊗ Êa1...a5 + Êa,a1...a7⊗ Êa,a1...a7 (3.6)

where we raise and lower the SO(d) frame indices with δab. This is clearly positive definite, and
thus stabilised by the maximal compact subgroup SU(8)/Z2 as required. In fact, the frames ÊA

satisfying (3.6) form an SU(8)/Z2 principal sub-bundle P of the frame bundle F , as they are
related by local SU(8)/Z2 transformations.

An important ingredient of the generalised geometry construction of supergravity, is the notion
of generalised connections. These are defined in exactly the same way as connections on ordinary
fibre bundles: they are linear differential operators

D : E −→ E∗⊗E

DÊA = Ω
B

A⊗ ÊB
(3.7)

where ΩA
B is a local section of E∗ valued in the adjoint of E7(7)×R+. Clearly, this can be extended

to act on arbitrary generalised tensors via the Leibnitz rule. Using the Dorfman derivative, one can
then define the torsion of a generalised connection analogously to the usual torsion of a tangent
bundle connection

T (V )·= L(D)
V −LV (3.8)

I.e. the torsion contracted with a generalised vector is the difference of the action of the Dorfman
derivative with the connection inserted and the usual Dorfman derivative. The torsion transforms
in the 56−1 + 912−1 representation of E7(7)×R+, which is the representation of the embedding
tensor [36, 37] of the external space maximal supergravity theory. The precise reasons for this
relation to the embedding tensor are given in [15, 38].

It is then natural to look for an analogue of the Levi-Civita connection, in generalised geom-
etry. One can indeed define generalised metric compatible connections to be those preserving the
generalised metric G and impose the generalised torsion-free condition. While this does fix some
components of the connection to be equal to the components of the ordinary Levi-Civita connection
and the supergravity fields strengths, it turns out not to fix the connection uniquely.

However, this apparent failure turns out to be irrelevant for describing supergravity. In every
case where one wishes to write a supergravity equation using a generalised Levi-Civita connection,
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it turns out that the relevant operation naturally projects out the undetermined components, leaving
a unique differential operator.

For an example, consider that one can promote ordinary spinor fields to become sections of the
vector bundles with fibres transforming in the 8 or 8̄ representations of SU(8), which are associated
to the SU(8) frame bundle2 P . In this way, the Killing spinor equations can be formulated as SU(8)
covariant projections of the generalised connection acting on the spinor

(D×J ε)[αβγ] = D[αβ
ε

γ] = 0,

(D×S ε)α =−Dαβ ε
β = 0.

(3.9)

Here, S and J denote the bundles transforming in the 8 and 56 of SU(8) (see [16] for precise details
of this construction). The operators here are precisely such that they are unique in the above sense;
they do not depend on the choice of generalised Levi-Civita connection used to evaluate them.

In [15, 16] it was shown that the generalised geometry summarised here is able to give a
completely natural formulation of the internal sector of eleven-dimensional supergravity. We refer
the reader to those papers for further details, and merely comment that the bosonic sector becomes
the analogue of Einstein gravity, with the dynamics governed by a generalised Ricci curvature
tensor, and the fermionic sector is written using natural SU(8) covariant operators such as those
in (3.9). One can perform exactly the same steps in other generalised geometries, leading to other
(subsectors of) supergravity theories (see e.g. [39]).

For our study of supersymmetric backgrounds below, it will also be very useful to examine
generalised Killing vectors (GKVs). These are generalised vector fields with LV G = 0, and thus
they generate generalised isometries, that is, combined diffeomorphisms and gauge transformations
which preserve the metric and the other bosonic supergravity fields. The diffeomorphisms of this
type were referred to as isometries of the background in section 2, and they are generated by the
vector components of GKVs. Considering this viewpoint, it is simple to show that the conditions
for this are that the components of the generalised vector satisfy

Lvg = Lv∆ = 0, LvA = dω, LvÃ = dσ + 1
2 A∧dω, (3.10)

Similarly to the condition ∇mvn = ∇[mvn] for an ordinary Killing vector, this can also be written in
terms of the generalised Levi-Civita connection as

(D×adF V ) = (D×adP V ). (3.11)

Thus, for a GKV the adjoint action appearing in the Dorfman derivative acts in the adjoint of the
SU(8) subgroup of E7(7)×R+.

It will be very useful to examine the component conditions (3.10) rewritten using the globally
defined components of V we obtained using the split frame construction above. However, we will
use instead the non-conformal split frame, which differs from (3.5) only by the exclusion of the
e∆ factors. This is more natural in this context, as the diffeomorphism generated by a generalised
vector acts as the Lie derivative by the vector part in the non-conformal split frame. Working in

2On a spin manifold one can always lift the maximal compact subgroup SU(8)/Z2 to its double cover SU(8).
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the non-conformal split frame is also sometimes referred to as working in the untwisted picture of
generalised geometry, as in [17]. With respect to this frame, the components will now satisfy

Lvg = Lv∆ = 0, dω = ivF, dσ = ivF̃−ω ∧F, (3.12)

and these relations imply that in this frame, the Dorfman derivative by a GKV reduces to the
ordinary Lie derivative by the vector part:

LVV ′ = LvV ′. (3.13)

Finally, the Kosmann-Dorfman derivative was introduced in [24]. This provides an analogue
of the spinorial Lie derivative (originally introduced by Kosmann [40]) and its action on a spinor ε

is defined using any generalised Levi-Civita connection D as

L
KD

V ε = DV ε− (D×adP V ) · ε. (3.14)

Extending by the Leibnitz rule, this can act on any SU(8) tensor. If V is a generalised Killing
vector, and we act on a sum of SU(8) objects which carry a natural action of the full E7(7)×R+,
then by (3.11) the Kosmann-Dorfman derivative will agree with the E7(7)×R+ Dorfman derivative.
Further, expressed in the non-conformal split frame one has for V a GKV

L
KD

V ε = Lvε, (3.15)

exactly as in (3.13), this time with the LHS given by the spinorial Lie derivative. This is a very
useful technical result, as it provides an immediate proof of many properties of the Kosmann-
Dorfman derivative. For example, for V,V ′ two GKVs, one can immediately see that the algebra
closes, i.e.

[L
KD

V ,L
KD

V ′ ]ε = L
KD

LVV ′ε, (3.16)

Following the last paragraph of section 2, one also has that, for V a GKV, the Kosmann-Dorfman
derivative preserves the operators (3.9)

L
KD

V (D×S⊕J ζ ) = D×S⊕J

(
L

KD

V ζ

)
. (3.17)

4. An algebra of Killing spinors and Killing spinor bilinears

We now return to the supersymmetric backgrounds of section 2, and review how the tools we
described in section 3 allow us to make some non-trivial general statements concerning generalised
isometries induced by the supersymmetry.

Firstly, note that we have already written the Killing spinor equations using generalised Levi-
Citiva connections in equation (3.9). Consider the complex generalised vectors Vi j and W i j built
from the Killing spinors via the SU(8) index expressions

(Vi j)
αβ = ε

[α
i ε

β ]
j , (Vi j)αβ = 0,

(W i j)αβ = 0, (W i j)αβ = ε̄
i
[α ε̄

j
β ].

(4.1)

7
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It is straightforward to use (3.9) to check that these satisfy (3.11) and thus they define complex
GKVs.

Now consider the Kosmann-Dorfman derivatives of the Killing spinors by these GKVs. An
explicit calculation, using (3.9) and ε

†
i ε j = δ i

j, reveals that one has

L
KD

Vi j
εk = 3DV[i j εk], L

KD

W i j εk = 0. (4.2)

Now, from (3.17), one has that there exist constants Xi jk
l as in (2.6) such that

L
KD

Vi j
εk = Xi jk

l
εl, (4.3)

and after some further manipulations, one deduces the simple result

L
KD

Vi j
εk = 0, L

KD

W i j εk = 0. (4.4)

This equation says that the generalised isometries generated by the supersymmetries of the back-
ground also preserve the Killing spinors. That we were able to prove this completely general result
so easily illustrates the power of working in the generalised geometry formalism.

These relations lead to a Lie algebra on the (commuting) internal Killing spinors εi and the
complex GKVs Vi j, which takes the form

[εi,ε j] =Vi j, [Vi j,εk] = L
KD

Vi j
εk = 0, [Vii′ ,Vj j′ ] = LVii′Vj j′ = 0, (4.5)

This can be extended by the complex conjugate relations involving ε̄ i and W i j, and cross-terms such
as [Vi j, ε̄

k] = L
KD

Vi j
ε̄k which all vanish. We will discuss the implications of this algebra in section 6.

5. Generalised intrinsic torsion and generalised special holonomy

Let us now turn to the mathematical characterisation of our supersymmetric backgrounds as
generalised structures. Recall that, in the absence of fluxes, the Killing spinor equations reduce
to the statement that the Killing spinor is parallel with respect to the Levi-Civita connection, and
thus the manifold has special Riemannian holonomy. However, the presence of fluxes breaks this
property and one is left instead with a G-structure on the tangent bundle of the space with a non-
vanishing intrinsic torsion. With this in mind, we begin by reviewing the analogue of such G-
structures and intrinsic torsion in generalised geometry, following [21, 24].

Firstly, it is clear that the Killing spinors define a GN = SU(8−N ) structure as the SU(8)
frames in which the components of εi are those of the i th standard basis vectors in C8 are related
by SU(8−N ) transformations. These frames define a principle sub-bundle PN of P . Note that
this is true regardless of the particular form the Killing spinors may take, in contrast to the situation
regarding their stabiliser inside Spin(7), for which there are many possible cases.

Next, the generalised intrinsic torsion is defined, exactly mirroring the ordinary definition. If
we let W be the bundle in which the generalised torsion transforms, and let KSU(8) = E∗⊗adP be
the bundle of differences of generalised connections, then there is a natural mapping

τ : KSU(8) −→W

δΩ 7−→ τ(δΩ) = T (D′)−T (D) ,
(5.1)

8
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where D and D′ are any two generalised connections with δΩ = D′−D. Now consider the sub-
bundle KN = E∗⊗ adPN It could be that the image of τ restricted to KN is not the whole of W
so, labelling WN = Imτ|KN , the bundle of the generalised intrinsic torsion is defined to be [21]

Wint =
W

WN
. (5.2)

The torsion of any GN compatible connection naturally projects onto a section of the bundle Wint.
This section is the generalised intrinsic torsion, and it is independent of the choice of GN compat-
ible connection by construction. The generalised intrinsic torsion can be defined similarly for any
generalised G-structure, though here we are concerned only with the structure groups GN .

This abstract notion can be realised concretely in the following way. Given a GN compatible
connection D̂, that is one with D̂εi = 0, we can write this as

D̂ = D+Σ, (5.3)

where D is a generalised Levi-Civita connection and Σ is a section of KSU(8). As D is torsion-free,
the torsion of D̂ is equal to τ(Σ). In fact, via a linear algebra calculation, one can show that the
intrinsic torsion is captured precisely by the components

(Σαγ
γ

i,Σ[αβ
i
γ],Σ[i j

a
k])+(c.c.), (5.4)

where we have split the SU(8) indices α,β = 1, . . . ,8 as α = (i,a) where the directions i, j =
1, . . . ,N run along the Killing spinors and a,b label the remaining directions.

Let us examine what the Killing spinor equations imply for the generalised intrinsic torsion.
Inserting (5.3) into (3.9), we can express the equations purely as constraints on the components of
τ(Σ)

D[αβ ε̄
i
γ] =−Σ[αβ

i
γ] = 0, Dαβ ε

β

i = Σαβ
β

i = 0. (5.5)

The Killing spinor equations thus set almost all of the generalised intrinsic torsion to zero. How-
ever, naively it appears that they do not constrain the last piece Σ[i j

a
k]. This piece can be non-zero

only for N ≥ 3, so for N ≤ 2 the Killing spinor equations do immediately imply that the gener-
alised intrinsic torsion vanishes [21, 18].

In Riemannian geometry, a G-structure on the tangent bundle (with G⊂ SO(d)) has vanishing
intrinsic torsion if and only if the Levi-Civita connection has special holonomy. By analogy with
this situation, generalised special holonomy is defined by the vanishing of the intrinsic torsion of
a G-structure on the generalised tangent bundle [21]. Thus, for N ≤ 2 the above already shows
that supersymmetric Minkowski backgrounds of eleven-dimensional supergravity have SU(8−N )

generalised special holonomy.
But what of the N ≥ 3 cases? It would be unsatisfactory to classify such backgrounds using

a mathematical notion which only applied to some cases. Let us reexamine equation (4.2), and
express those spinor trilinear quantities in terms of the components of τ(Σ). In particular, we find

(L
KD

Vi j
εk)

a = 3
32 Σ[i j

a
k], (5.6)

so that this captures precisely the components of the intrinsic torsion (5.4) which did not appear
directly in the Killing spinor equations. However, equation (4.4) already showed that this quantity
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vanishes for our supersymmetric backgrounds. Therefore, we find that the Killing spinor equations
do in fact imply that the full intrinsic torsion vanishes in all cases!

Thus, the conclusion is that warped supersymmetric Minkowski backgrounds of eleven-dimensional
supergravity are exactly the spaces with generalised special holonomy in the sense defined above.
This result can be shown to hold for all external dimensions dext ≥ 4, and the generalised holonomy
groups are uniquely fixed by the amount of preserved supersymmetry as listed in table 1. Further,
this also applies to the descriptions of type IIA and type IIB vacua in Ed(d)×R+ generalised geom-
etry language.

dext Ed(d) H̃d GN

4 E7(7) SU(8) SU(8−N )

5 E6(6) USp(8) USp(8−2N )

6 Spin(5,5) USp(4)×USp(4) USp(4−2N+)×USp(4−2N−)

7 SL(5,R) USp(4) USp(4−2N )

Table 1: Generalised structure groups GN for dext-dimensional Minkowski backgrounds of type II and
eleven-dimensional supergravity preserving N supersymmetries. When dext = 6 we can have two chiralities
of supersymmetry so N → (N+,N−).

6. Implications for the Killing superalgebra

The relations in (4.5) are highly reminiscent of those between the supercharges and the mo-
mentum in a Poincaré supersymmetry algebra. Below, we will explain how they are indeed closely
linked to the Killing superalgebra of the eleven-dimensional background, which we briefly review.

For a generic supersymmetric solution of eleven-dimensional supergravity, one can define a
superalgebra on the Killing spinors ε and Killing vectors v of the background via the following
bracket definitions [28, 29]

[ε1,ε2}= v(ε1,ε2),

[v,ε}= Lvε,

[v1,v2}= Lv1v2,

(6.1)

where Lv is the (spinorial) Lie derivative. It is a non-trivial task to check the super-Jacobi-identities
for these brackets, and for this derivation we refer to [28, 29].

Here, we merely wish to outline the implications of (4.5) for this algebra in eleven-dimensions.
To do this, we simply express the eleven-dimensional objects in terms of our internal objects, and
calculate the algebra. Thus, we choose a basis of constant external Weyl spinors {ηα} and define
the (complex) eleven-dimensional spinors

Qi,α = ηα ⊗ ε̂i, Q̄i
α̇ = η̄

α̇ ⊗ ε̂
c
i , (6.2)

The real and imaginary parts of these objects provide a basis for the eleven-dimensional Killing
spinors, but we leave them as the complex representation for notational convenience. We then
define the vectors zi j to be the vector parts of the generalised vectors Vi j, in the non-conformal split

10
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frame, pushed forward into the eleven-dimensional space. The internal algebra (4.5) can be seen to
imply that the brackets (6.1) become

[Qi,α , Q̄ j,β̇}= δi j(σ
µ)

αβ̇

∂

∂xµ ,

[Qi,α ,Q j,β}= εαβ zi j,

[Q̄i,α̇ , Q̄ j,β̇}= ε
α̇β̇

z̄i j,

(6.3)

with all other brackets vanishing. Thus, we have provided a geometric proof that the Killing su-
peralgebra of a generic four-dimensional Minkowski flux background is the corresponding N -
extended super-Poincaré algebra. The central charges become the (generalised) isometries associ-
ated to the GKVs Vi j, and crucially (4.5) shows that these are indeed central in the algebra.
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