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1. Introduction and discussion

Supersymmetry and supergravity are highly motivated for the study of physics beyond the
Standard Model. Since we do not observe the supersymmetric partners of the Standard Model par-
ticles, the breaking of supersymmetry is in the core of any realistic model building scenario. The
scale of the supersymmetry breaking remains unknown, but even if it were known, an effective
description of the theory in the broken phase would be welcome. Non-linear realizations of su-
persymmetric theories are addressing exactly this: how to construct effective theories for systems
where supersymmetry is spontaneously broken.

In general when considering a field theory with a spontaneously broken symmetry, non-linear
realizations can emerge in different manners. As a consequence of the symmetry breaking, in the
spectrum there are going to be heavy fields characterized by a mass M. One can decouple then
these fields by taking the formal limit of infinite M. This decoupling is going to implement the
non-linear realization on the fields appearing in the low energy theory. Alternatively, in an energy
regime much below the aforementioned mass scale M, the system can be effectively described with
a non-linear realization of the broken symmetry. In this case the fields with masses of order M or
larger are eliminated from the spectrum.

Superfield methods [1–3] are especially suited for the study of non-linear realizations because
they are immediately compatible with the formalism that has been developed explicitly for the
study of supersymmetry and supergravity. An approach that has gained particular attention is the
method of constrained superfields, which is the main topic of this article. Within this setup there
exists a nilpotent chiral superfield X , which satisfies the constraint [4–6]

X2 = 0 . (1.1)

This constraint has a non-trivial solution whenever the fermion in X contributes to the goldstino
direction. In other words, when the auxiliary field of X , FX , sources the supersymmetry breaking
or at least contributes to it. When global supersymmetry is spontaneously broken by an F-term or
a D-term potential, it has been shown that the superfield X always exists [7].

Matter fields in supersymmetric theories reside inside supermultiplets and in superspace they
are described by superfields. When supersymmetry is unbroken, these superfields will contain
component fields with degenerate masses. Once supersymmetry is broken some component fields
will be heavy and will decouple from the system if their mass is much larger that the energy scales
one is probing. The way to describe this decoupling is by imposing constraints of the form [8]

XX Q = 0 . (1.2)

These kind of constraints will eliminate the lowest component field of Q from the spectrum and
it can be shown that this corresponds to the formal decoupling of the eliminated fields [8]. By
combining various constraints of the form (1.2) one can eliminate any heavy component field from
the theory. This method in fact reproduces all previously known constraints on superfields [9, 10].
These constraints can be generically imposed with the use of Lagrange multipliers [11] and their
study requires the use of Lagrangians before integrating out auxiliary fields, which can be found
for example in [1–3] or [12, 13].
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Constrained superfields and non-linear realizations have various applications: For example the
Supersymmetric Standard Model [14–16], the current de Sitter phase of our universe [17–27], or
the inflationary phase [28–39]. The String/Brane origin of constrained superfields is also under
study [40–51].

In this article we present some technical details of the constrained superfields approach, we
illustrate the relation to other methods and then we turn to inflationary model building in super-
gravity. We use the conventions of [2].

2. Nonlinear realizations of supersymmetry

2.1 Goldstino sector

When supersymmetry is spontaneously broken, there will always exist a fermionic goldstone
field: the goldstino. The description of this fermion and its coupling to matter are expected to have
universal properties. The first effective description for this fermion was provided by Volkov and
Akulov in [52]. In that approach the fermion transforms under supersymmetry as

δλα = ξα − i
(

λσ
m

ξ −ξ σ
m

λ

)
∂mλα . (2.1)

The goldstino fermion can be embedded in a spinor superfield Λα (λα = Λα |), which can be used
to describe its couplings to matter superfields [53, 54]. The superfield Λα satisfies the constraints

Dβ Λα = εαβ + iσm
ββ̇

Λ
β̇

∂mΛα ,

D
β̇

Λα =−iΛ
β

σ
m
ββ̇

∂mΛα ,
(2.2)

and the only independent component inside it is the fermion λα . A simple redefinition, relates
the superfield Λα to an alternative version, which is the superfield Γα , and this one satisfies the
constraints

DαΓβ = εβα ,

Dβ̇
Γ

α = 2i (σm
Γ)β̇

∂mΓ
α .

(2.3)

The only independent component field in Γα is the fermion γα (γα = Γα |), which transforms under
supersymmetry as

δγα = ξα +2iξ σ
m

γ ∂mγα . (2.4)

The redefinitions relating λα to γα can be already found in [54]. The superspace relation is

Γα =−2
DαD2

(
Λ2Λ

2
)

D2D2
(

Λ2Λ
2
) . (2.5)

As we noted in the introduction, an alternative description for the embedding of the goldstino
into a superfield is provided by a constrained chiral superfield X which satisfies the constraint (1.1).
The superspace expansion of X will then be [6]

X =
G2

2FX +
√

2θG+θ
2FX . (2.6)
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The goldstino resides in the fermion component field of X , Gα , and this formulation is consistent
only if the vacuum expectation value of the auxiliary field of the X superfield is non-vanishing:
〈FX〉 6= 0. The Γα and X formalisms can be related via [55]

Γα =−2
DαX
D2X

. (2.7)

The equivalence of these formulations for the free theories was shown in component form in [56]
and later in full superspace in [55]. In [7] it has been shown that the equivalence holds also for mat-
ter couplings. Therefore, any Lagrangian which would contain γα can be written as a Lagrangian
of X , by replacing in the matter couplings

γα =
Gα√
2FX

(2.8)

and introducing the appropriate X sector as has been shown in [7].
Supersymmetric Lagrangians with chiral superfields are usually constructed in superspace as

L =
∫

d4
θ K +

(
f
∫

d2
θ W + c.c.

)
, (2.9)

where K is the Kähler potential, which is a hermitian function of the chiral superfields, and W the
superpotential, which is a holomorphic function of the chiral superfields. The simplest Lagrangian
we can construct with the constrained superfield X has

K = XX , W = f X . (2.10)

This Lagrangian in component form gives (after we integrate out FX )

L =− f 2 + i∂mGσ
mG+

1
4 f 2 G2

∂
2G2− 1

16 f 6 G2G2
∂

2G2
∂

2G2
. (2.11)

The supersymmetry transformation of the goldstino will read

δGα =− f ξα − (i/2 f )σm
αα̇ξ

α̇

∂mG2 + · · · (2.12)

The equivalence of the Lagrangian (2.11) to the Volkov–Akulov model can been proved in various
ways [55, 56]. Notice that this theory contains higher derivatives due to the non-linear realization
of supersymmetry and that the number of fermions and bosons is manifestly not the same.

In [7] it has been shown that when supersymmetry is spontaneously broken either from an
F-term or a D-term (or both), then the low energy theory will be always described by the nilpotent
chiral superfield X and the leading terms of the goldstino sector will have the form (2.11).

Supersymmetry can be broken also from complex linear multiplets [57–60]. These theories
generically reproduce the Lagrangian (2.11) for the goldstino sector.

2.2 Matter sector

To describe the matter sector we use superfields. When we discuss an effective theory where
supersymmetry is spontaneously broken, some component fields will have masses much larger than
the energy scales we are probing and therefore may be eliminated from the spectrum. The way to
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eliminate them is by imposing constraints of the form (1.2) on the matter superfields. A complete
discussion of the properties of these constraints can be found in [8]. Here we will just treat a few
simple examples.

Assume we have a low energy theory where, on top of the superfield X , we have the chiral
superfield Y with superspace expansion

Y = y+
√

2θ χ
Y +θ

2FY . (2.13)

If the scalar in Y is heavy we can eliminate it from the spectrum and, by using the prescription
of [8], we can impose the constraint

XX Y = 0 . (2.14)

The solution to the superspace constraint (2.14) will then simply be

y =
GχY

FX −
G2

2F2 FY . (2.15)

This constrained superfield was originally studied in the simpler (but equivalent) form XY = 0
in [9, 10].

One can also construct matter supermultiplets which contain only a single independent com-
ponent field [10]. Consider a chiral superfield A , with superspace expansion

A = ϕ + ib+
√

2θ χ
A +θ

2FA , (2.16)

and let us show how to keep only the real scalar ϕ in the theory. To this end we impose a series of
constraints

|X |2
(
A −A

)
= 0 ,

|X |2 DαA = 0 ,

|X |2 D2A = 0 .

(2.17)

Once we solve these constraints all the component fields of A are eliminated and only ϕ remains
as independent. This is evident from the fact that the constraint XXQ = 0 eliminates the component
field Q|. The complete solution is

χ
A = iσm

(
G
F

)
∂m(ϕ + ib) ,

FA =

(
G2

2F2 ∂
2(ϕ + ib)−∂n

(
G
F

)
σ

m
σ

n G
F

∂m(ϕ + ib)

)
,

(2.18)

where

b =
1
2

(
G
F

σ
m G

F

)
∂mϕ−

(
i
8

G2

F2 ∂n

(
G
F

)
σ

m
σ

n G
F

∂mϕ + c.c.
)

− G2G2

32FF
∂n

(
G
F

)
(σ p

σ
n
σ

m +σ
n
σ

m
σ

p)∂m

(
G
F

)
∂pϕ .

(2.19)
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This constrained superfield has been first studied in the form XA = XA in [10]. It has been shown
in [8] that imposing the constraints (2.17) is equivalent to imposing XA = XA .

We should warn the reader that when imposing constraints of the form (1.2) inconsistencies
might arise if the component field to be eliminated satisfies some sort of Bianchi identities. For
example the constraint (1.2) cannot be used to eliminate directly a field strength Fmn, because the
solution might violate the algebraic condition ∂[kFmn] = 0. The consistent way to eliminate gauge
fields has been outlined in [8]. Essentially one has to include the degrees of freedom that make the
gauge field massive and then decouple it. This is in accordance with the fact that these constraints
are equivalent to the decoupling of the heavy massive fields.

It is instructive at this point to study the relation between the various formulations for de-
scribing matter. When the goldstino resides in the superfield Λα , which is defined by (2.2), it is
known how multiplets with a single independent component field can be built [2]. The method is
the following: Start from an unconstrained superfield P , and impose the constraints

DαP = iσm
αα̇Λ

α̇
∂mP ,

Dα̇P =−iΛα
σ

m
αα̇∂mP .

(2.20)

Then the only independent component in P will be p = P|. The other component fields in P

will be functions of λα and p. Now notice that the constraints (2.20) also imply

Λ
2
Λ

2
Dβ P = 0 , Λ

2
Λ

2
D

β̇
P = 0 , Λ

2
Λ

2
D2P = 0 , · · · (2.21)

where the dots stand for the rest of the constraints arising from (2.20) which are all of the form

Λ
2
Λ

2
Q = 0 . (2.22)

Relating now Λα to X via (2.7) we have

Λ
2
Λ

2 ∼ Γ
2
Γ

2 ∼ XX , (2.23)

which eventually links (2.22) to (1.2). In this way we see exactly how the two formalisms are
related.

3. Nonlinear realizations of local supersymmetry

In this section we discuss non-linear realizations of supersymmetry in supergravity. We will fo-
cus on the method of constrained superfields, but will comment on the relation to other formalisms
when it is instructive. Finally we will discuss applications to inflation.

We will not review supergravity here, but we can remind the reader that the generic coupling
of chiral superfields to the old-minimal supergravity is constructed with the superspace Lagrangian

L =
∫

d2
Θ2E

[
3
8

(
D

2−8R
)

e−K/3 +W
]
+ c.c. , (3.1)

where we set MP = 1, and the chiral density 2E has superspace expansion

2E = e
{

1+ iΘσ
a
ψa−Θ

2
(

M+ψaσ
ab

ψb

)}
. (3.2)
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The Ricci superfield R is a chiral superfield D α̇R = 0, whose lowest component is the auxiliary
field M of the old-minimal supergravity multiplet

R|=−1
6

M . (3.3)

The fermionic component of R is

DαR|=−1
6
(σa

σ
b
ψab + iba

ψa− iσa
ψaM)α , (3.4)

where ψα
m is the gravitino, the superpartner of the gravitational field ea

m, and ψα
mn is its field strength.

The highest component of R is

D2R|=− 1
3

R+
4
9

MM+
2
9

baba−
2i
3

e m
a Dmba +

1
3

ψψM− 1
3

ψmσ
m

ψnbn

+
2i
3

ψ
m

σ
n
ψmn +

1
12

ε
klmn[ψkσ lψmn +ψkσlψmn] .

(3.5)

The real vector ba is an auxiliary field of the old-minimal supergravity multiplet.

3.1 Constrained superfields in supergravity

If superymmerty is broken by a chiral superfield X , then even in supergravity we can impose
the constraint (1.1) and the superfield X becomes

X =
G2

2FX +
√

2ΘG+Θ
2FX . (3.6)

Moreover, because the goldstino is a goldstone mode, when supersymmetry is broken it will be
absorbed by the gravitino which will become massive. This means that since the goldstino is a
pure gauge degree of freedom, and since the Gα fermion by assumption always contributes to the
goldstino, we can always fix it to

Gα = 0 , (3.7)

in the final Lagrangian. We will use the gauge (3.7) for the rest of the article when we write down
Lagrangians in component form. Note that the gauge choice (3.7) might not be always the unitary
gauge.

The simplest model which breaks supersymmetry in supergravity has a flat Kähler potential

K = XX , (3.8)

and a superpotential

W = f X +W0 . (3.9)

Here f and W0 are complex constants. Once we insert (3.8) and (3.9) into (3.1), the Lagrangian of
supergravity coupled to X takes the component form [17–19]

e−1L =− 1
2

R+
1
2

ε
klmn(ψkσ lDmψn−ψkσlDmψn)

−W0 ψaσ
ab

ψb−W0 ψaσ
ab

ψb−Λ .

(3.10)

6
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In (3.10) supersymmetry is spontaneously broken on a vacuum that can be Minkowski, de Sitter
or anti-de Sitter according to the value of the f and W0 constants, which govern the cosmological
constant

Λ = | f |2−3|W0|2 . (3.11)

The description of matter constrained superfields works in the same way as in supersymmetry.
One can use the generic constraint

XXQ = 0 , (3.12)

to eliminate the heavy component fields from any given superfield. The proof that this procedure
is equivalent to the standard component form procedure for local supersymmetry can be found
in [25].

We can also follow the approach where the goldstino resides into the spinor superfield Γα . In
local supersymmetry we have

DαΓβ = εβα

(
1−2Γ

2R
)
,

D
β̇

Γ
α = 2i (σa

Γ)β̇ DaΓ
α +

1
2

Γ
2Bβ̇α .

(3.13)

Here Ba is a superfield which has lowest component Ba|=−ba/3. The relation between Γα and X
is given again by (2.7), but now the superspace derivatives become covariant [26]

Γα =−2
DαX
D2X

. (3.14)

In terms of Γα the pure goldstino sector is1

L =− 1
16κ2

∫
d4

θ E Γ
2
Γ

2
, (3.15)

where κ−1/2 is a scale which will enter the goldstino interactions once it is coupled to matter.
We would like to bring to the reader’s attention that a local formulation of the geometric

Volkov–Akulov approach is provided by the goldstino brane [23, 26]. The free goldstino sector in
this setup, when coupled to supergravity, reproduces (3.10).

3.2 Constrained supergravity

Constraints can be also imposed on the auxiliary fields of the gravity multiplet. For example
one can simply impose a constraint of the form [25]

XX
(
R+

c
6

)
= 0 , (3.16)

where c is a complex constant. We will refer here to the supergravity theory satisfying (3.16) as
constrained supergravity. Solving the constraint (3.16) delivers

M = c+O(G,G) . (3.17)

1We use
∫

d4θ E U =− 1
8
∫

d2Θ2E
[(

D
2−8R

)
U
]
+ c.c. for a hermitian superfield U .

7
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To build a minimal theory within this setup, consider the Lagrangian

L =
∫

d2
Θ2E

[
3
8

(
D

2−8R
)

e−|X |
2/3 +( f X +W0)

]
+ c.c. , (3.18)

and by imposing the constraint (3.16) one finds the Lagrangian (3.10) with a cosmological constant
given by

Λ =
1
3
|c|2 + | f |2 +m3/2c+m3/2c = ΛS−3|m3/2|2 . (3.19)

Notice that here the supersymmetry breaking contribution to the vacuum energy is

ΛS = | f |2 +
∣∣∣∣ c√

3
+
√

3m3/2

∣∣∣∣2 . (3.20)

The interested reader can find more details in [25], where the properties of these theories are studied
in superspace. Similar models can be found in [61] constructed with the standard component form
procedure.

We would like here to study the relation of these theories to standard supergravity. To this end
we impose the constraint (3.16) with a chiral superfield Lagrange multiplier M and then study the
dual theory. To impose the constraint we introduce the term

Lc =
∫

d2
Θ2E M X

(
R+

c
6

)
+ c.c. (3.21)

If we vary the chiral superfield M we get the constraint on the supergravity multiplet (3.16). To
find the dual theory we first rewrite (3.21) as

Lc =−
1
8

∫
d2

Θ2E
(
D

2−8R
)[

M X +M X
]
+

1
6

(∫
d2

Θ2E cM X + c.c.
)
. (3.22)

If we now add (3.22) to the standard goldstino sector, we have in total

L =
∫

d2
Θ2E

[
3
8

(
D

2−8R
)

e−|X |
2/3 +( f X +W0)

]
+ c.c.

− 1
8

∫
d2

Θ2E
(
D

2−8R
)[

M X +M X
]
+

1
6

(∫
d2

Θ2E cM X + c.c.
)
.

(3.23)

Notice that we have found standard supergravity coupled to

K =−3ln
(

1− XX
3
−M X

6
−M X

6

)
,

W =W0 + f X +
c
6
M X ,

(3.24)

which after a Kähler transformation can be rewritten as standard supergravity coupled to

K =−3ln
(

1− XX
3

[
1+

MM

12

])
,

W =W0 + f X +

(
W0

2
+

c
6

)
M X .

(3.25)

8
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Now we vary the supergravity theory coupled to (3.25) with respect to M , and we find

− 1
4

(
D

2−8R
)

XX
M

12
=−X

(
W0

2
+

c
6

)
, (3.26)

which also gives

1
12

XX MM = 12|X |2 16
|D2X |2

∣∣∣W0

2
+

c
6

∣∣∣2. (3.27)

Since M represents only auxiliary degrees of freedom it can be consistently integrated out from
the Lagrangian - it is after all a Lagrange multiplier. Indeed, using equations (3.26) and (3.27) we
find that the total Lagrangian becomes

L =
∫

d4
θE
(
−3+XX−12|X |2 16

|D2X |2
∣∣∣W0

2
+

c
6

∣∣∣2)+

(∫
d2

Θ2E (W0 + f X)+ c.c.
)
.(3.28)

We thus find that the minimal Lagrangian of constrained supergravity coupled to X is on-shell
equivalent to the Lagrangian (3.28), which does not have the form of standard supergravity since it
contains superspace higher derivatives. We stress here that we only proved an on-shell equivalence
for the free theories, therefore other properties, as for example matter couplings, will in principle
be different.

The superspace higher derivative term in the Lagrangian (3.28) contributes to the vacuum
energy and to the goldstino kinetic term. To see how this happens, we will bring the Lagrangian
(3.28) to an (on-shell) equivalent form where there are no higher derivative terms. In this way we
can also uncover exactly how the unitarity bound on the gravitino mass is related to the parameters
of the theory. To do so we have to integrate out the auxiliary field FX , so that the two terms
containing |X |2 in (3.28) get the same form. This can be done by varying X but multiplying the
equation with |X |2. This procedure gives

16 |X |2

|D2X |2
=
|X |2

| f |2
. (3.29)

Now the goldstino superfield X satisfies both constraints (1.1) and (3.29). The X2 = 0 constraint
eliminates the lowest scalar component of X and the new constraint (3.29) eliminates the auxiliary
field of X , FX . These constraints were originally studied in [5]. Due to these constraints on X the
Lagrangian takes a simpler form

L =
∫

d4
θE
(
−3−XX

[
1+
∣∣∣√3W0 +

c√
3

∣∣∣2/ | f |2])+

(∫
d2

Θ2E W0 + c.c.
)
. (3.30)

We now identify ΛS from (3.20), and the Lagrangian becomes

L =
∫

d4
θE
(
−3− ΛS

| f |2
XX
)
+

(∫
d2

Θ2E W0 + c.c.
)
. (3.31)

Finally, since we are interested in an on-shell equivalence we can relax the constraint (3.29) on
the auxiliary field FX , and the Lagrangian takes the form of standard supergravity coupled to the
nilpotent X superfield

L =
∫

d4
θE
(
−3+

| f |2

ΛS
XX
)
+

(∫
d2

Θ2E (W0 + f X)+ c.c.
)

, X2 = 0 . (3.32)
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The goldstino kinetic term has the canonical sign when

ΛS > 0 . (3.33)

The parameter region (3.33) is exactly the one where the massive gravitino is unitary. Indeed, the
vacuum energy here is

Λ = ΛS−3|W0|2 , (3.34)

and the gravitino mass is

m3/2 =W0 . (3.35)

Notice that the bound (3.33) is automatically satisfied in the models of [25] due to (3.20).
Let us close this part with a comment on the gravitino mass. We see that in both the models

of [25] and of [61], the relation of the gravitino mass to the vacuum energy is not as transparent as
in standard supergravity. We would like to stress that the first time models with this property were
constructed in superspace was in [26], in the context of the goldstino brane, where an independent
gravitino mass term was introduced.

3.3 Effective supergravity models for inflation

The inflationary paradigm postulates that the early universe underwent a period of accelerated
expansion. The simplest realization of the inflationary paradigm in a field theory setup is single
field inflation, where the potential energy of ϕ (the inflaton) dominates the energy density of our
universe. The coupling of the inflaton to gravity is

e−1L =−1
2

M2
P R− 1

2
∂ϕ∂ϕ−V (ϕ) , (3.36)

and inflation takes place when

ε =
1
2

M2
P

(
V ′

V

)2

� 1 , |η |= M2
P

∣∣∣V ′′
V

∣∣∣� 1.

The parameters ε and η are referred to as slow-roll parameters. The current constraints on single
field inflation from the Planck collaboration give roughly

6ε−2η ∼ 0.032 , 16ε < 0.12 ,

where the slow-roll parameters are to be evaluated at 50 to 60 e-foldings from the end of inflation.
The scale of inflation is roughly at the GUT scale or a few orders of magnitude lower.

If supergravity is relevant at the energy scales in which inflation takes place, then it has to be
used for the description of the inflationary phase of our universe. We will give a simple example
of how the embedding of inflation in supergravity can be achieved with the use of constrained
superfields. The interested reader can find a recent review of the topic in [62].

Following [32–35] we introduce a chiral superfield

A = ϕ + ib+
√

2Θ
α

ψ
A
α +Θ

2FA , (3.37)
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and couple it to the nilpotent goldstino superfield X , requiring that [10]

XA −XA = 0. (3.38)

The most general coupling of A with the nilpotent superfield X in supergravity has been studied
in [33–35]. Supersymmetry is essentially broken by 〈FX〉 6= 0 and we can use the Gα = 0 gauge,
such that

X |G=0 = Θ
2FX , A |G=0 = ϕ . (3.39)

To give a simple example we choose a Kähler potential and superpotential of the form

K =XX− 1
4
(A −A )2 ,

W =g(A )+X f (A ) ,
(3.40)

where f (z) = f (z) and g(z) = g(z). The complete theory in the Gα = 0 gauge is described by
[32–35]

e−1L =− 1
2

R+
1
2

ε
klmn(ψkσ lDmψn−ψkσlDmψn)

− 1
2

∂
m

ϕ ∂mϕ−g(ϕ)(ψaσ
ab

ψb +ψaσ
ab

ψb)−V (ϕ) ,

(3.41)

where the scalar potential is
V (ϕ) = f 2(ϕ)−3g2(ϕ). (3.42)

The scalar potential can be arbitrarily fixed in terms of the two functions f and g, to drive inflation
and to give the desired vacuum energy at the end of inflation, though one should carefully choose
them in order for the effective theory to remain valid in the large range of scales touched during
inflation and its exit period. Finally we stress that this description is only valid when

〈FX〉 6= 0 , (3.43)

which here translates to

〈 f (ϕ)〉 6= 0 . (3.44)

Let us close this part by reporting a very recent development in the field. It has been shown
in [39] that, unless the function g entering the superpotential is very tuned, the models (3.41) might
suffer from an explosive gravitino production after inflation.
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