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1. Introduction

The theory of quantum information and measurement [1] has been a key ingredient in the
understanding of the underlying quantum structure of the universe. Therefore for the last two
decades significant efforts have been put to realise the connection of quantum information theory
to other branches of theoretical physics. In string theory the first realisation of such connection
was through the quest of understanding black hole entropy through the counting of black hole
microstates [2].

Such connections were put in an even stronger footing with the advent of AdS/CFT correspon-
dence [3]. One of the most important and crucial steps forward in this direction was the holographic
realisation of entanglement entropy [4, 5]. The proposal was to holographically compute entangle-
ment entropy for an entangling region in a conformal field theory living on the boundary of an
asymptotically AdS spacetime. The area of a minimal area codimension-two hypersurface, namely
Ryu-Takayanagi (RT) surface, homologous to the said boundary region gives the corresponding
boundary entanglement entropy. Interestingly, this holographic computation of boundary entan-
glement entropy matches exactly with the direct computation in two dimensional conformal field
theory by replica trick [6]. Later on, a direct holographic justification of the RT formula was pro-
vided in [7]. On a different note, such a holographic realisation of quantum entanglement was
shown to be extremely useful in understanding the structure of the dual bulk spacetime. For eternal
black holes [8], quantum entanglement was found to have direct bulk interpretation in terms of reg-
ularity of the horizon [9] which turned out to be an extremely useful input in understanding black
hole information paradox.

Another quantum information theory concept that has been recently studied in the context of
holography is quantum complexity. In general, for a qubit systems, one way to define complexity
is the number of quantum gates involved to go from a simple reference state to a complex one in
a quantum circuit [1]. It is sometimes difficult to define quantum complexity precisely in math-
ematical terms. Within holography, this quantum complexity was first discussed in [10] where it
was proposed that for thermo-field double geometries, this quantity is given by the volume of max-
imal volume Einstein Rosen bridge. This proposal was extended for more general mixed states in
[11]. However, there is one more alternative holographic proposal for complexity given by action
defined on Wheeler-de Witt patch for certain geometries [12]. Both the proposals share some com-
mon physical features such as monotonically increasing nature of complexity, though each of them
has some shortcomings. While the volume proposal suffers from the fact that it introduces one
new length scale, the action proposal is extremely hard to implement technically in a generic bulk
space-time with null boundary surface. Recently these two concurrent proposals were reviewed
and compared in more details in [13] where it was first shown that it is indeed possible to write
down the action for the null boundary surface and furthermore the two definitions of complexity
match up to a multiplicative constant factor dependent on the dimension of space-time.

A further concept from quantum information theory recently studied in the context of holog-
raphy is the distance between two quantum states. There exist two well-accepted ways to define
distance between two generic quantum states, namely (i) the Fisher information metric and (ii) the
Bures metric or fidelity susceptibility [1, 14].

Our proposal in this work consists of two parts - first, we will propose a holographic dual to
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Fisher information metric corresponding to a spherical subregion, R in the holographic CFT with
R corresponding to a decomposition of the full Hilbert space Hfull = HR⊗HR(c) . In this context,
we discuss a close variant of holographic complexity first introduced by [11]. We will show that
a natural holographic dual of Fisher information for this mixed state is a particular regularized
volume enclosed by the RT surface in the perturbed bulk spacetime.

The second part of our proposal concerns quantum corrections to Fisher information metric
as defined above. Our starting point are the results of [15, 16], according to which the quantum
corrections at order 1/N to boundary entanglement entropy are equivalent to the bulk entanglement
entropy. In the present paper, we propose that quantum corrections to Fisher information metric
coincide with quantum corrections to the boundary entanglement entropy, the latter having an ex-
tensive volume-like behavior for particular examples as discussed in [15]. For this purpose, we
argue that the reduced Fisher information is related to canonical energy (as defined in [17]), and
the connection between canonical energy to the bulk modular Hamiltonian [16] is what enables us
to establish this part of our proposal.

Our paper is organised as follows. In section 2, as a basis for further discussion we collect
the definitions involved both on the quantum information and on the gravity dual side. In section
3, we state in detail the two proposals put forward in this paper. We devote sections 4 and section
5 to establish these two proposals respectively. Finally we conclude in section 6 and discuss an
interesting consequence and a physical consistency check of our proposal, namely the parallel
between the monotonically increasing nature of holographic complexity and the classical canonical
energy. We also discuss some possible questions for future work.

2. Review of definitions

We begin by reviewing the definitions involved in our proposals. Let us start with a pure state
|ψλi〉 of a quantum mechanical system characterised by the parameters, λi. Let us now perturb the
parameters, λi by λi→ λi+δλi. The resulting state is denoted by |χ (pert)

λi
〉 ≡ |ψλi+δλi〉. Now, given

the two states, one can define associated density matrices defined respectively as σi j = |ψλi〉〈ψλ j |
and ρi j = |χ (pert)

λi
〉〈χ (pert)

λ j
|.

Given these two states are related by infinitesimal change in the parameter space, one can
define a “distance” between the two states which takes the form [18]1

F = |〈ψλ (x)|ψλ+δλ (x)〉|= 1−Gλiλ j(δλ )i(δλ ) j + . . . (2.1)

The left hand side of (2.1) is also called quantum fidelity, which we will denote by F in what
follows. Also note that the x dependence is absent in (2.1), when taking the inner product.

On the other hand, an equally important measure of the above-mentioned ‘distance’ is the
quantity GF,λiλ j which is also known as the Fisher information metric or information metric [1, 19].
It can be defined as

GF,λiλ j(λ ) =
∫

x
p(x,λ )

∂

∂λi
log p(x,λ )

∂

∂λ j
log p(x,λ )dx. (2.2)

1Note that it can very well happen that two states, which although are very close to each other are completely
orthonormal. We are of course not considering such pairs. Also, the states that we consider in field theory, has a bulk
gravity dual.
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Here λ = {λ1, · · ·λn} can be directly identified with the perturbative parameters discussed before.
The λi’s characterize the quantum state of the system. n denotes the dimension of the statistical
manifold and the p(x,λ ) are the probability functions which consist a map from a measure space
x to the real line. For a given pure state as above, we can identify these p(x,λ )’s as the pure state
density matrices.

For physical quantum many body systems the Fisher information metric can be understood in
the following way. Let us consider a generic density matrix, σ and perturb it by some parameter
λ which parametrizes the quantum state. Here for simplicity we assume a one-parameter family
of states which however can be generalized for arbitrary number of parameters. If ρ is the new
density matrix corresponding to the fluctuation λ → λ + δλ , then for nearby states, the density
matrix ρ can be expanded as

ρ = σ +(δλ )ρ1 +
1
2
(δλ )2

ρ2 + · · · , (2.3)

where for simplicity we have chosen the parametrization in a way such that the initial state σ

coincides with λ = 0. ρ1 and ρ2 are respective first and second order in δρ , which is a small
deviation from the reference state σ . In this case, the Fisher information metric may be defined by

GF,λλ = 〈δρδρ〉(σ)
λλ

=
1
2

tr
(

δρ
d

dλ
(σ +δλδρ) |δλ=0

)
. (2.4)

The notion of quantum fidelity can be extended to include mixed states as well. In terms of
two density matrices σ and ρ , one can rewrite the fidelity F as [14]

F = Tr
√√

σλ ρλ+δλ

√
σλ . (2.5)

Here σ and ρ are the density matrices associated with the parameters λ and λ + δλ respectively.
This formula for fidelity, expressed in terms of density matrices holds true even if σ and ρ are not
pure state density matrices. For pure states, the above expression becomes identical to the inner
product of states as in the left hand side of (2.1). Motivated by this, we may go one step further to
define a similar quantity for reduced density matrices.

As mentioned before, for a bipartite system living in a pure state |ψλ1〉, one can define the
reduced density matrix for a given subregion R by partially tracing over its complement region.
That is, for a pure state

|ψλ1〉 ∈ H f ull = HR⊗HR(c) ,

we can compute a reduced density matrix

σR,λ1 = ∑
j
〈 j|Rc(|ψλ1〉〈ψλ1 |)| j〉Rc

where | j〉Rc denotes a complete set of states in the Hilbert space HR(c) . On the other hand, we can
act a unitary operator on the initial state |ψλ1〉 to get to a new pure state, |ψλ2〉. We may then
compute the corresponding reduced density matrix ρR,λ2 in the new state, for the same subregion
R. With these two reduced density matrices, we define the reduced fidelity [14, 20, 11]

FR = Tr
√√

σR,λ1 ρR,λ2

√
σR,λ1 . (2.6)
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If, however, the two states are related by an infinitesimal change in the parameter, namely
λ2 = λ1 +δλ , (2.6) yields a perturbative expansion in δλ as in the right hand side of (2.1). In this
case we may identify the Bures metric as

GR,λiλ j = ∂λi∂λ j FR. (2.7)

This is also known as reduced fidelity susceptibility.
In the light of AdSd+1/CFTd correspondence, the gravity dual for fidelity susceptibility (as in

(2.1)) was proposed in [21]. The authors considered the CFT vacuum state |ψλ 〉 dual to pure AdS
and deformed it by an exactly marginal perturbation parametrized by a single parameter, λ to get
to the state |ψλ+δλ 〉. In the dual gravity picture this then corresponds to a Janus solution, where
the pure AdS is deformed by a dilaton, with δλ having the interpretation of such deformation [22].

In particular, in [21] it was shown that, for a holographic CFTd on Rd , with marginal defor-
mation of dimension ∆ = d +1,

Gλλ =
nd

G
Vol(Vd−1)

εd−1 . (2.8)

Here Gλλ is the fidelity susceptibility or information metric2, Vd−1 is the ‘spatial’ (d− 1) dimen-
sional volume at the boundary, G is Newton’s constant and nd an O(1) dimensionful constant so
that the fidelity susceptibility is dimensionless. From the field theory point of view, nd/G is simply
proportional to the central charge CT of the CFT in question.3 ε denotes the UV cut-off for the
CFT.

So long as the reduced density matrices in the vacuum and in the excited state are commuting
i.e. simultaneously diagonalizable, (2.7) is the same as the Fisher information metric corresponding
to those reduced density matrices. This is automatically true for when we deal with classical states.
Hence our proposal also serves as holographic dual to reduced fidelity susceptibility for these
restricted class of states.

In the notation of [21], the factor of Newton’s constant is hidden in the factor nd , but we have
written it explicitly here. In the boundary field theory computation, it comes from the leading order
term of the boundary two-point function (in 1/N expansion of a large N CFT). The matching of
bulk and boundary computations of fidelity susceptibility in [21] thus only involves leading order
expansion in Newton’s constant in both sides. In other words, the Fisher metric computed here in
terms of dual gravity quantities is only the leading order semiclassical term of the full boundary
Fisher information.

One can therefore naively expect an order by order expansion of Gλλ in Newton’s constant
coming from the sub-leading terms of the expansion of the two point function, as described above.
We will develop this intuition in subsequent sections of this work and will eventually make use of
such an expansion to relate them to corresponding parts of bulk entanglement entropy.

2[21] considered one parameter family of states so that the information metric is one- dimensional. For simplicity,
we will also consider one parameter family of states.

3In fact, this order one constant nd is also important as this fixes the normalization of the two point function, while
calculating Gλλ in field theory [21]. This is important for the equality as on the left hand side, generally Gλλ will
depend on the reparametrization of λ coordinates, whereas the volume is invariant. But essentially choosing a particular
normalization of the two point function, we are fixing the reparametrization of the metric.
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In [21] it was further shown that the correspondence also works for the thermofield double
state (TFD) [23, 8], which describes an eternal black hole in AdS in terms of two independent
CFT’s living on its boundary. In what follows, we will mostly focus on pure AdS state.

More recently [11] proposed a quantity called “holographic complexity” Ch which is simply
defined as

Ch =
Vol(γ)

8πRAdSG
=

Rd−1
AdS

8(d−1)πG
Vol(R)
εd−1 ∝ CT

Vol(R)
εd−1 , (2.9)

where RAdS is the AdS radius, CT is the central charge as discussed before, γ is the codimension-2
Ryu-Takayanagi (RT) surface [4] and G, the Newton’s constant. So, Vol(γ) denotes the volume
under the RT surface.4 ε again denotes a necessary UV cut-off in field theory. On the other hand,
Vol(R) denotes the volume of the boundary spacelike subregion R which goes as Rd−1.

However, as we mentioned earlier, in this paper we consider a differential notion of holo-
graphic complexity which we call holographic complexity of formation following the idea of “com-
plexity of formation” first discussed in [13]. One of the first problems of the proposal of [11] is that
it is UV divergent and there is no reason to expect a divergent contribution to the fidelity suscep-
tibility for a mixed state which was claimed to be the field theory dual of holographic complexity.
Furthermore, the form of the divergent term is quite different from that of the fidelity susceptibility
(same as Fisher information for a restricted class of states) which is known from other bulk compu-
tations and also from field theory computation in certain cases. On the contrary, as we will show,
our proposal to define Fisher information and reduced fidelity susceptibility through a well defined
notion of subtracted volume under RT surface will overcome both the obstacles.

It is also worth noting at this point that, as in [10, 24, 25, 12], the holographic complexity in
(2.9) has been defined with a factor of Newton’s constant in the denominator suggesting the fact
that it is only a leading order or semiclassical contribution to the full (holographic) complexity for
a subregion R.

3. A proposal

Based on these definitions, we now state the proposal which is the main message of this paper.
Our proposal consists of two parts.

A. We propose an equivalence between the Fisher information metric GF,λλ defined in (2.2) and
a variant of the holographic complexity Ch defined in (2.9). In the previous sections, we have
already mentioned our arguments behind such a connection. In the subsequent section 4, we
provide quantitative justifications for the proposed equivalence.

B. The second part of the conjecture involves a relation between the next-order 1/N quantum
corrections to the Fisher information metric (or for the special set of states mentioned above,

4The RT surface is essential in computing the boundary entanglement entropy of a subregion R from a holographic
perspective. According to [4], the bulk counterpart of the semiclassical entanglement entropy is given by

SEE =
Area(γ)

4G
(2.10)

where e.g. for static geometries, γ is the minimal area surface homologous to the region R.
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with the reduced fidelity susceptibility (2.7)) and the quantum corrections to the boundary
entanglement entropy (2.10). Part A of our proposal implies that the quantum corrections to
the reduced fidelity susceptibility also coincide with those to this new version of holographic
complexity. Usually, the boundary entanglement entropy is defined only at the leading order
in 1/N expansion [4]. Here, however, we shall see that the quantum corrections to this
entanglement entropy maps order by order to the quantum corrected fidelity susceptibility or
quantum corrected holographic complexity. The two main properties of all of these quantities
that we will focus on, are their scalings with the subregion size R and their contribution at a
given order in the Newton’s constant G.

This correspondence is developed step-by-step in section 5 along with some necessary re-
views of the related materials in subsection 5.1. After motivating the conjecture in the begin-
ning of the section, in the subsequent subsections, we will justify the same first by relating
the quantum correction of Fisher information to the quantum part of canonical energy (as
defined in subsection 4.3) and then to the quantum part of bulk modular Hamiltonian (sub-
section 5.2).

4. Proposing a holographic dual for Fisher information metric

As mentioned above, in this section we will propose a candidate bulk dual for the Fisher
information metric as a regularized volume enclosed by RT surface in the bulk. For the holographic
dual picture, we consider asymptotically AdS spacetime in Fefferman-Graham coordinates. This
amounts to considering states in the boundary CFT whose density matrix deviates perturbatively
from that of the vacuum state with the change in boundary stress energy tensor playing the role
of the perturbation parameter. In this excited state one can compute the volume under the RT
surface corresponding to spherical entangling region in the boundary. This volume is generally UV
divergent. However, subtracting the RT volume for the same spherical subregion in the vacuum
state yields a finite, regularized result. The second order variation of this regularized volume with
respect to the perturbation parameter is what we propose as the Fisher information metric. In what
follows we will consider d > 2.5

To elaborate, let us consider a perturbation of AdSd+1 given in Fefferman-Graham coordinates
of the form

ds2 =
L2

z2

[
f (z)dz2 +

1
f (z)

dt2 +dρ
2 +ρ

2dΩ
2
d−2

]
, (4.1)

where

f (z) = 1+mzd .

L is the radius of the AdS space-time.
In order to find the minimal RT surface in this perturbed AdS spacetime corresponding to a

ball-shaped entangling region of radius R at the boundary, we proceed by parametrizing the RT

5The d = 2 case is a bit pathological in the sense that the perturbative expansion of the regularized volume does not
contain a quadratic term. The reason is, for d = 2, h2(z) in (4.3) vanishes identically and there is no contribution towards
the minimal area surface in the second order in mRd .
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surface as ρ = h(r). Then, on the t = 0 slice the RT area functional takes the form

A = Ld−1
Ωd−2

∫ Rt

ε

dz
zd−1 (h(z))

d−2
√

f (z)+(h′(z))2, (4.2)

where Ωd−2 is the volume of the unit (d−2) sphere, given by

Ωd−2 = 2
π

d−1
2

Γ
(d−1

2

) .
Rt is the turning point of the bulk minimal surface.

In order to find the minimal surface, we have to minimize the area functional (4.2) to solve
for h(z). It is hard to solve the equations of motion analytically. We therefore aim at solving
it perturbatively in orders of mRd << 1 and look for a solution of the form (up to linear order;
quadratic order to be done later)

h(z) = h0(z)+mh1(z) . (4.3)

As shown in [26], this gives

h0 =

√
R2

t − z2

h1 =
2Rd+2

t − zd(R2
t + z2)

2(d +1)
√

R2
t − z2

. (4.4)

With these ingredients, we now move on to compute the volume under the RT minimal surface in
the bulk. This is given by

VRT =
LdΩd−2

d−1

∫ Rt

ε

dz
zd (h(z))d−1√ f (z). (4.5)

Our aim is now to compute the variation of this volume order by order in perturbation, mRd

for the reasons mentioned at the beginning of this section.

4.1 At linear order in stress-energy tensor

From fundamentals of AdS/CFT dualities, we know that such Fefferman-Graham type expan-
sion of AdS metric conrresponds to the corresponsding expectation values of boundary stress tensor
[27]. In order to find the leading variation in the RT volume we first expand (4.3) up to leading
order in mRd

h(z)≈
√

R2− z2

(
1−m

zd(R2 + z2)

2(d +1)(R2− z2)

)
, (4.6)

Inserting (4.6) into (4.5) and expanding individual terms in the integral again, we have

V (m)
RT ≈

LdΩd−2

d−1

∫ Rt

ε

dz
(R2− z2)

d−1
2

zd

(
1−m

(d−1)zd(R2 + z2)

2(d +1)(R2− z2)

)(
1+

mzd

2

)
. (4.7)

Here the superscript m denotes that this corresponds to the volume under the RT surface corre-
sponding to perturbed geometry. Next we subtract from it the same volume for the unperturbed
background, i.e for pure AdS obtained by setting m = 0 in (4.1). This yields

V (m)
RT −V (0)

RT ≈ m
LdΩd−2

(d−1)(d +1)

∫ R

ε

dz(R2− z2)
d−3

2
(
R2−dz2)= 0, (4.8)
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where in the first line, we have only kept terms up to order mRd in the integrand. Furthermore, we
have replaced Rt by R since the term linear in mRd in Rt gives a quadratic correction to the volume.
This shows that the leading correction to the volume under RT surface vanishes identically as
claimed in [11, 28]. The vanishing of this linear term in m is also crucial for our porposal (A) to
work which will be clearer in the next section.

4.2 At quadratic order in stress-energy tensor

At quadratic order, we have

f (z) = 1+mzd +
1
4

m2z2d ,

where coefficients of individual terms in the expansion is fixed by comparing with the FG expansion
of AdS black hole. Now in order to compute the quadratic correction to the RT surface in the bulk,
we start with an ansatz

h(z) = h0(z)+mh1(z)+
m2√

R2
t − z2

h2(z) , (4.9)

with h0 and h1 as given in (4.4).
The equation of minimal surface for h2 is again obtained by extremizing the area functional,

(4.2) :

h′′2(z)+
(d−1)R2

t

z
(
z2−R2

t
)h′2(z)+Cd(z) = 0, (4.10)

with Cd(z) being a complicated function of z. It is very hard to solve (4.10) for general dimensions.
However, as an illustration, we will consider d = 3 when (4.10) can be readily solved to yield

h2(z) =
1

320

((
160c1Rt −11R8

t
)

log(z−Rt)+
(
59R8

t −160c1Rt
)

log(Rt + z)

+320c1z− 20R9
t

Rt + z
−90R7

t z+34R6
t z2−30R5

t z3 +22R4
t z4− 9R2

t z6

2

)
+ c2 . (4.11)

c1 and c2 are integration constants which should be suitably chosen in order to extract the physical
solution. Now one can easily note from the solution that in order to ensure

h2(z)√
R2

t − z2
→ 0 as z→ Rt ,

one must have

c1 =
11R7

t

160
and c2 =

1
640

(
113R8

t −96R8
t log(2Rt)

)
.

Consequently, the turning point also take a new contribution at this order of perturbation and is
given by

Rt =
3

640
m2R7(29+32log(2))− mR4

4
+R (4.12)

Now expanding (4.5) up to quadratic order, we find

V (m2)
RT −V (0)

RT ≈
21R6m2

128
. (4.13)
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Similar results can be obtained in other dimensions and we can write a general form as

V (m2)
RT −V (0)

RT ≈
LdΩd−2

d−1
Ad m2R2d , (4.14)

with Ad a dimension-dependent constant.
This is the first central result of our paper. We see that in this way, we have arrived at a UV

finite notion of regularized volume under RT surface. It is second order in m, the fact we will exploit
to define the holographic dual to Fisher information. It is worth emphasizing that the finiteness of
this quantity is critical in our proposal and what makes it meaningful for mixed states. So for now,
we will go ahead and propose the holographic dual to Fisher information metric as

GF,mm = ∂
2
mF , (4.15)

with

F =
π

3
2 d (d−1)Γ(d−1)

G2d+1(d +1)Γ
(
d + 3

2

)
LAd

(
V (m2)

RT −V (0)
RT

)
(4.16)

Inserting (4.16) back into (4.15) yields

GF,mm = ∂
2
mF =

π
3
2 dΩd−2Γ(d−1)

G2d+1(d +1)Γ
(
d + 3

2

)Ld−1R2d . (4.17)

The choice of prefactors in (4.16) will become clear in the next section. As mentioned before, mRd

plays the role of perturbation parameter in the dual bulk picture, in accordance with the holographic
dictionary.

Although so far, (4.15) applies only to ball-shaped regions in the CFT, one may also wish to
consider general entangling regions, e.g. strips. In such cases the O(mRd) terms do not necessarily
vanish [28]. However, in principle, one can still define the holographic dual to Fisher informa-
tion metric as the second order variation of the regularized RT volume with respect to the mass
parameter playing the role of perturbation parameter in the dual bulk theory.

4.3 Connection to canonical energy and boundary relative entropy

In a related development, [29] connects the quantum Fisher information corresponding to per-
turbations of the CFT vacuum density matrix of a ball-shaped region to the canonical energy for
perturbations in the corresponding Rindler wedge of the dual AdS space-time. This is obtained by
using the definition of boundary relative entropy

S(bdy)
rel (ρλ ′ ||σλ ) = Tr(ρ logρ)−Tr(ρ logσ)

= 〈logρ〉ρ −〈logσ〉ρ , (4.18)

which gives
S(bdy)

rel (ρλ ′ ||σλ ) = ∆〈H (σ)
R 〉−∆SEE . (4.19)

The first term on the right-hand side denotes the change in the expectation value of the modular
Hamiltonian HR corresponding to the change in the reduced density matrix. The modular Hamil-
tonian corresponding to a reduced density matrix σλ is defined through

σR,λ =
e−HR,λ

Tr(e−HR,λ )
. (4.20)
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Here, the second term represents the change in entanglement entropies in the two mentioned states.
When the two states in question are perturbatively close to one another, expanding the density
matrix ρλ ′ around λ = 0 in (4.19) gives

GF,λλ = 〈δρδρ〉(σ)
λλ

=
∂ 2

∂λ 2 Srel(ρλ ||ρ0), (4.21)

where the left-hand side denotes the Fisher information metric as defined in (2.2). ρ0 = σ is
identified with the CFT vacuum.

Furthermore, the right-hand side of (4.21) is equal to the classical canonical energy in gravity
as defined in [17], i.e,

∂ 2

∂λ 2 Srel(ρλ ||ρ0)
∣∣∣
λ=0

= E −2
∫

Σ

ξ
µ

∂ 2Eg
µν

∂λ 2 vν . (4.22)

All quantities on the right-hand side of (4.22) belong to the gravity side of the correspondence.
E is the classical canonical energy for the unperturbed vacuum state and can be expressed as an
integral of boundary stress-energy tensor [17],

E =
∫

Σ

ξ
µ Tµν vν , (4.23)

where Σ is any Cauchy slice in the entanglement wedge corresponding to the ball-shaped entangling
region in the boundary. ξ is the conformal Killing vector, v is the volume form defined as (for a
D-dimensional spacetime)

vν =
1

D!

√
g̃εν ,µ1µ2...µDdxµ1 ∧dxµ2 · · ·∧dxµD ,

and ε being the usual Levi-Civita tensor. Eg denotes gravitational equations of motion with proper
cosmological constant, e.g, for pure gravity in AdS

Eg
µν =

1
16πG

√
−g
(

Rµν −
1
2

Rgµν +
1
2

Λgµν

)
. (4.24)

For the perturbed AdSd+1 space-time as in (4.1), and for the case when the entangling region is
a sphere, the canonical energy as on the right-hand side of (4.22) may be computed explicitly. One
can also independently compute the second order variation of relative entropy, ∂ 2

∂λ 2 Srel(ρλ ||ρ0).
Both calculations were done for d = 2 in [29] and were shown to match explicitly. Again, in
the holographic setup λ is identified with the boundary energy, mRd where m appears as a mass
parameter in (4.1).

We now generalize this result to general dimensions. It reads

∂ 2

∂λ 2 Srel(ρλ ||ρ0) =
π

3
2 dΩd−2Γ(d−1)

G2d+1(d +1)Γ
(
d + 3

2

)Ld−1R2d = GF,λλ , (4.25)

where in the last line we have used the definition (4.21). The basic ingredients in this computation
is (4.19) and the fact that in this particular case of spherical entangling region in CFT, the modular
Hamiltonian has a local expression in terms of the boundary stress energy tensor as

HR =
∫
|x|<R

dd−1x
R2−|x|2

2R
T00

10
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T00 being the temporal component of the stress-energy tensor in the boundary CFT. Hence one can
vary both the terms in the right hand side of (4.19) up to second order in mRd which yields (4.25).

Hence we find our proposal (4.17) fully consistent with the expression for Fisher information
metric obtained in (4.25). This also justifies the choice of prefactors as in (4.16).

As discussed before, it is worth mentioning again at this point that for a restricted class of
states when the reduced density matrices in the vacuum and in the excited state are simultane-
ously diagonalizable - or in other words, when the subregions are maximally entangled even after
perturbation, one should expect, analogous to (4.21),

GR,λλ =
∂ 2

∂λ 2 Srel(ρλ ||ρ0), (4.26)

GR,λλ being the reduced fidelity susceptibility defined in (2.6). For these states, our proposal (4.17)
also serves as a holographic dual to reduced fidelity susceptibility while (4.16) can be interpreted
as the holographic dual to reduced fidelity.

Let us then briefly summarize our results of this section. We show that there is a well defined,
finite notion of regularized volume which serves as the holographic dual to Fisher information for
two perturbatively close states. Both of them are in turn related to the classical canonical energy
in the subregion. This set of connections will play a crucial role for the next part of our paper
where we make statements regarding their quantum counterpart. Here we also noted that for the
special class of states, all the above definitions coincide with the definition of reduced fidelity
susceptibility, thus modifying the previously existing proposal of [11].

5. Fisher information and bulk entanglement

We now turn to the second part of our proposal on relating the 1/N quantum correction to
reduced fidelity susceptibility with bulk entanglement entropy.

5.1 Bulk entanglement entropy and quantum canonical energy

Our study on bulk entanglement entropy is motivated from a recent study in [15]. There the
authors argue that the quantum correction to the boundary entanglement entropy for a boundary
subregion R is given by the bulk entanglement between two regions - the region inside the corre-
sponding RT surface in the bulk and its complement. The relevant regions are depicted in figure 1.
This bulk entanglement entropy can be computed order by order in Newton’s constant G, using the
replica trick in the bulk, [7, 15] as6

Sbulk(R) = Sbulk,cl(R)+Sbulk,q(R), (5.1)

where the first term on the right-hand side of (5.1) scales as 1/G (or equivalently is of order N2)
and corresponds to the minimal area surface term7, while the second term scales as G0 and equals
the first quantum correction to the boundary entanglement entropy.

6For the cases where one has a U(1) symetry as for static black holes, it is easier to implement the replica trick for
non-integer n, n being the number of replicated geometries. For more general cases without any U(1) symmetry, one
needs to define the partition function for non-integer n separately [15].

7Note that the motivation of [15] was to connect the bulk entanglement entropy with the quantum correction of
boundary entanglement entropy. So, these authors only studied the Sbulk,q part, which they called Sbulk−ent .
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R	Rcb	Rc	

A	

B	

Rb	

Figure 1: At the boundary CFTd of the global AdSd+1 cylinder, we have a disc shaped region R denoted by
AB (red line, color online). The dashed (black) line γ represents the RT surface which divides the bulk region
into two subregions Rb and Rc

b. The area of this minimal surface gives the leading semiclassical term of the
total boundary entanglement entropy SEE . The O(G0) term of bulk entanglement entropy of the region Rb

is a measure of the first order quantum correction term SEE,q of SEE .

In [15], the quantum corrections to the boundary entanglement entropy SEE,q is given by

SEE,q = Sbulk =−∂n (logZn,q−n logZ1,q)
∣∣
n→1, (5.2)

where Zn is the bulk partition function of the replicated geometry in the bulk.
Taking these results into account, we now proceed to state our observations. In the path-

integral language, the decomposition of (5.1) can be realized by writing the full bulk partition
function Zbulk as

Zbulk =W bulk +W bulk
eff ,

where W bulk denotes the classical action. This gives the classical part of bulk entanglement entropy.
It is essentially the same minimal area surface term that appears in Wald’s treatment of the first law
[30]. W bulk

eff is the one-loop effective bulk action which gives Sbulk,q(R).
In the framework of replicated n-fold geometries ĝn, the full density matrix ρ̂ ′n is given in

terms of a bulk time dependent Hamiltonian Hτ,full which generates the time translation along the
Euclideanized time τ direction [7]. That is,

ρ̂
′
n = e−

∫ 2πn
0 Hb,n,full = e−

∫ 2πn
0 (Hb,n,cl+Hb,n,q) = ρ̂

′
n,cl · ρ̂ ′n,q (5.3)

where the subscripts b, n, cl or q above respectively suggest that the associated Hamiltonian H is
in bulk, in n-deformed spacetime and it is either classical or quantum part (at order by order in
G expansion). These classical and quantum parts give rise to the classical and quantum parts of
the corresponding bulk entanglement Sbulk. From the above, it is most easy to see for diagonal
density matrices, where by plugging in the expression (5.3) to the von Neumann formula for bulk

12
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entanglement entropy, it is clear that it divides the Sbulk in classical and quantum parts as in (5.1).

Sbulk =−∂n
[
logTr(ρ̂ ′n,cl)−n logTr(ρ̂ ′1,cl)

]
−∂n

[
logTr(ρ̂ ′n,q)−n logTr(ρ̂ ′1,q)

]
+ . . .

= Sbulk,cl(R)+Sbulk,q(R)+ . . . , (5.4)

where the dots are terms which are expressed as local integrals on the RT surface. When only
the background metric has a non-zero vacuum expectation value, there are two other terms that
in principle can contribute to O(G0) correction to boundary entanglement entropy. These come
from a change in area due to back-reaction on the classical background and from general higher
derivative terms, respectively.8 For our present purpose we do not consider the higher derivative
terms in the bulk action.

Our key observation in this section will be the term by term matching of the expansions (5.1)
or (5.4) to an analogous expansion of Fisher information metric, namely,

GF,λλ = GF,cl +GF,q. (5.5)

Once again, the subscripts cl and q denote the classical and quantum parts.
To begin with, let us consider perturbation of the background metric g(0) by

g = g(0)+δg(0)+h. (5.6)

Here we consider two different kinds of perturbations of the bulk metric. h is an O(
√

G) quantum
fluctuation, while δg(0) takes into account the λ variation. Expanding the right-hand side of (4.24)
in powers of λ according to (5.6), and inserting the expansion back into (4.22), we obtain

∂ 2

∂λ 2 Sbdy
rel (ρλ ||ρ0)

∣∣∣
λ=0

=E −
∫

Σ

ξ
µT grav,(2)

µν (δg(0))vν

−
[∫

Σ

ξ
µT grav,(2)

µν (h)vν +
∫

Σ

ξ
µT matter,(2)

µν (g)vν

]
+boundary terms .

(5.7)

This gives a clean separation of classical and quantum contributions in the Fisher metric and also
the classical and quantum contributions coming towards the leading order canonical energy in the
perturbed background. The first two terms on the right hand side of (5.7) are classical (O(1/G))
contributions, with the second term arising from (4.23) upon the second order variation in δg(0).
These two classical terms are the same as the right hand side of (4.22). The superscript (2) signifies
the fact that all the variations are of second order in δg(0) and h.9 The remaining terms in the bracket
are quantum corrections.10 Furthermore, it was shown that the boundary terms can be taken care
of through a suitable choice of gauge as pointed out in [31].

Now combining (4.21) and (5.7) enables us to schematically write

∂ 2

∂λ 2 Sbdy
rel (ρλ ||ρ0)

∣∣∣
λ=0

= GF,λλ = GF,cl +GF,q, (5.8)

8In addition to that one might need to include counter terms to have the entanglement finite.
9Note that the first order variation in either case vanishes by virtue of linearized equation of motion.

10Also note that the matter part of the stress tensor only appears at the quantum level as classically for empty AdS,
the contribution is identically zero.
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Thus from (4.21) and (5.7), we obtain an expansion of Fisher information metric at order by
order in Newton’s constant and their respective connections with the classical and quantum part of
the canonical energy.

Furthermore, bearing in mind (4.26), for the special case of commuting density matrices, this
also implies a corresponding connection between reduced fidelity susceptibility. For the restricted
class of states mentioned above, this calls for a decomposition analogous to (5.8) as

∂ 2

∂λ 2 Sbdy
rel (ρλ ||ρ0)

∣∣∣
λ=0

= GR,cl +GR,q. (5.9)

In the next subsection, we further develop this connection, where we relate GF,q (and GR,q

for the restricted class of states) to the bulk modular Hamiltonian and hence to bulk entanglement
entropy.

5.2 Canonical energy and bulk modular Hamiltonian

Here we complete our arguments by invoking the fact that the quantum correction to canonical
energy (the bracketed term in the second and third lines of (5.7)) is essentially the same as the bulk
modular Hamiltonian HR

bulk that appears as the first quantum correction to the boundary modular
Hamiltonian [32, 16]

HR =
Area(γ)

4G
+HR

bulk + . . . . (5.10)

This is the operator equivalent11 of the expansion of boundary entanglement entropy at order
by order in G expansion, namely

SEE =
Area(γ)

4G
+SEE,q + . . . . (5.11)

Thus the results of (5.7), (5.8), (5.9), (5.10), (5.11) clearly suggest that the quantum Fisher infor-
mation metric and equivalently the reduced fidelity susceptibility for the mentioned restricted class
of states can indeed be understood as sum of two terms as in (5.5), namely a leading semiclassical
term and a sub-leading quantum term. In this division we are simply keeping track of the orders
G−1 and G0 respectively.

For example, if we just focus on the quantum part, i.e. the O(G0) part, we see, from (5.8) and
(5.7) that

GF,q =−
[∫

Σ

ξ
µT grav,(2)

µν (h)vν +
∫

Σ

ξ
µT matter,(2)

µν (g)vν

]
= SEE,q (5.12)

where the last quantity is coming from the quantum canonical energy and is equal to the modular
Hamiltonian in the bulk H bulk

R [32, 16].
Thus following the separation in the classical and the quantum parts in (5.7), we conclude

that while the classical part of the Fisher information metric GF,λλ is given by the classical part of
canonical energy in agreement with [29], the quantum part of it can be thought of as a dual to the
bulk modular Hamiltonian. The same conclusion holds for the reduced fidelity susceptibility but
only for a restricted class of states.

11This is possible by noting the connection between the entanglement entropy and the modular Hamiltonian via the
density matrix as in (4.20).
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6. Conclusions and outlook

In the first part of this work we have proposed a holographic dual of Fisher information metric
for a mixed state as a subtracted volume contained under the RT surface in the bulk. This also
serves as a holographic dual for reduced fidelity susceptibility but for a restricted class of states,
namely, when the density matrices commute before and after perturbation, i.e when the states are
effectively classical. At least for this class of states we can compare our result for a previous
proposal for holographic dual to reduced fidelity susceptibility in [11] in terms of holographic
complexity, namely, the leading term in the volume under the RT surface. However, the proposal
suffers from the following shortcomings. As we mentioned before, for classical (or effectively
classical) states fidelity susceptibility is physically the same as Fisher information which is defined
by the second order variation of relative entropy. Now relative entropy for a mixed state is always
UV-finite and hence it is hard to justify holographic complexity which is UV-divergent being the
bulk dual of this. This UV convergent behaviour was also advocated from a purely field theory
computation in [33] at least for free theories and conformal field theories with large central charge.
Furthermore, the second order variation of relative entropy can be explicitly computed [29, 34]
and the behaviour differs significantly from that of holographic complexity as proposed in [11].12

On the other hand, as we have shown, our proposal for the holographic dual of reduced fidelity
susceptibility for those states meet both the requirements by construction. Our proposal for the
bulk dual is rather similar in spirit to the recently proposed idea of complexity of formation [13, 35]
which measures the relative complexity between two states. One natural question might then be
whether this is also related to the computational complexity as discussed in [36, 12, 25].

One naive intuition to justify the connection to the computational complexity comes from the
positivity of reduced fidelity susceptibility and the Fisher information. Furthermore, as already
mentioned in [37], the identification of Fisher information with the Hollands-Wald canonical en-
ergy [29, 17] implies the positive energy theorem for asymptotically AdS spacetime. Our result
hints at another alternative way to view the derivation of positive energy theorem for asymptot-
ically AdS spacetimes in terms of positivity of reduced fidelity susceptibility of the mixed state.
One can perhaps then interpret this positivity of canonical energy (in our case, it is the canonical
energy associated to the bulk Rindler wedge corresponding to the spherical boundary region R) as a
fact that we go from a reference vacuum state to a more complex excited state. In other words, the
monotonically increasing nature of reduced fidelity susceptibility mimics that of the computational
complexity. However, a full justification behind such a connection is yet to be understood. Work in
this direction is in progress and we hope to report on this generalisation in near future. In particular,
we expect a calculation within quantum field theory to reproduce the scaling with R2d as in (4.17)
and (4.25).

The second part of our proposal relates the quantum part of Fisher information or reduced

12However if we do not consider the complexity of formation, then one can directly compute reduced fidelity suscep-
tibility purely within field theory by using its connection with modular Hamiltonians. In this context one can explicitly
show that at the large volume limit of boundary subregions, the reduced fidelity boils down to the volume computed by
[21] in the contexts of fidelity susceptibility (2.1). This can be viewed as a field theory derivation of the well-known fact
that the Bures metric becomes the fidelity susceptibiility as we take the reduced density metric to be a pure state density
metric.
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fidelity susceptibility to bulk entanglement. The latter has been argued to be instrumental in un-
derstanding the reconstruction of the bulk points inside an entanglement wedge in terms of local
operators in the boundary CFT through modular evolution [16]. We expect our proposed duality
might add an useful component towards a concrete study in this direction.

There are many other important issues that need to be investigated in future for a complete
understanding of the proposed connections. We already mentioned about the quantum information
origin of holographic complexity itself, which is missing so far in the literature. It will also be
interesting to understand how our construction changes for more complicated boundary states,
such as subregions with arbitrary shapes or thermofield double geometries. A generalization to
multi-dimensional parameter space and a covariant generalization of our proposal also deserve a
closer look.
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