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1. Supersymmetric vacua of the heterotic string

In 1986, the following system of equations was proposedgaddently by C. Hull[22, 23] and
A. Strominger [36] for compactifications of the heterotigrsj which preserve supersymmetry. Let
Y be a 3-dimensional compact complex manifold, equipped avitbwhere vanishing holomorphic
3-form Q, and letE — Y be a holomorphic vector bundle ovér We look then for a Hermitian
metricgg; onY (identified with the corresponding symplectic form= igy;dZ A dZ) , and for a
Hermitian metricHzg on E, satisfying the following system

F?P=F% =0, ’AF"=0 (1)

_ /
idda)—%(Tr(Rm/\ Rm) — Tr(F AF)) =0 2)
d'w=i(0 - 9)log Q| (3)

Hered’ is the slope parameter. The expressiBnsandF are the curvatures of the metriasand
Hap, viewed as 41,1)-forms valued irEnd(T*(Y)) and inEnd(E) respectively. The expressions
F P4 denote thd p,q)-components of the curvature forfn The norm||Q||, is defined by

Q]2 =iQ AT w2

This system is an extension of a well-known set of conditifmiscompactifications of the
heterotic string with unbroken supersymmetry proposetieedsy P. Candelas, G. Horowitz, A.
Strominger, and E. Witten [4]. The first equation is just tlseial Hermitian-Einstein equation,
which ensures the invariance of the gluino under supersyimgméf we identify the de Kalb-
Ramond field strength with the 3-fori+ T, whereT =idwis the torsion of the Hermitian metric
w, then the second equation can be recognized as the semamaancancellation mechanism due
to M. Green and J. Schwarz (1984). The distinctive featurthefsystem proposed by Hull and
Strominger is the third equation, which is actually a tans@mnstraint less restrictive than the
Kéhler conditionT = 0. In components, if we express the torsioriTas %ngmdzmA dz AdZ, it
can be written more explicitly as

gjkTij: Om109|Q||eo-

The Calabi-Yau compactifications found by Candelas, HamvBtrominger, and Witten [4]
can be recovered from the above system in the following nrane take(Y, w) to be Kahler,
and se€ = T1O(Y), Hzg = w. ThenRm=F and the second equation is trivially satisfied. Next
w? ARm= 3Ric(w) (viewed as an endomorphism t°(Y)), and thus the first equation reduces
to the condition of vanishing Ricci curvature

Ric(w) = 0.

As conjectured by Calabi, and proved by Yau [39], manifoldisiéting such metrics are exactly the
ones with vanishing first Chern clasgY) = 0. TakingQ a non-trivial holomorphic, covariantly

constant 3-form, the third equation follows from the Ké&tdendition, and we obtain a solution of
the Hull-Strominger system.
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Becausew is not necessarily Kéhler, there are many natural unitanneotions which pre-
serve the complex structure. As shown by C. Hull [24], thenaaly cancellation mechanism does
not require a specific unitary connection for In this work, we restrict ourselves to the choice of
the Chern unitary connection, characterized by

OvE=avE,  OVE=go;(gomV™).
In this case, the Riemann curvature tensor is given by,
Rm= R;PadZ A dZ ReiPq = —0k(0"™9j0rmo),

with a similar expression for the curvatufeof Hap, F = F;% gdz AdZ, F @ = — 0 (HYY9jHp ).

2. Non-Kahler geometry and non-linear partial differential equations

While the system (1-3) originally arose from string thedtyis potentially of considerable
interest in mathematics as well for several reasons.

First, it can be interpreted as providing a notion of canalnigetric in a particular non-Kahler
setting. In Kahler geometry, a canonical metric is usuadfirced by a cohomological condition
(e.g.dw = 0), and by a curvature condition (e.@.has constant scalar curvature, see e.g. [34] for
a survey). As pointed out by J. Li and S.T. Yau [25], the thigdi&ion (3) in the Hull-Strominger
system is equivalent to the following “conformally baladteondition

d(||Qllww?) =0. (4)

The notion of balanced metric, i.d(w?) = 0, was introduced in mathematics by Michelsohn [26]
(1981). It is a natural notion, as the existence of a balameettic is a property invariant under
modifications (see Alessandrini-Bassanelli [1]). The fivgd equations in the Hull-Strominger
system can then be viewed as the analogue of the curvatudéioonn the setting of conformally
balanced metrics.

Second, the expression (RmA Rm), which appears in the equation (2) and is fundamental
to the Green-Schwarz anomaly cancellation in string thedwgs not seem to have been studied
before as a curvature condition in complex differentialrgetry. What sets it apart from much
studied conditions such as constant scalar or constani ®iogature is that it is quadratic in the
curvature tensor. In particular, it leads to a class of faliy-linear equations which is new in the
theory of partial differential equations, and whose geoimeteaning is yet to be explored. In this
context, it is natural to consider generalizations of thexpeations to dimensions different from 3.
This has already led to some remarkable equations of conkf#egian type [17, 18, 28, 30, 31].

Finally, we shall see shortly that there are compellingoeador studying the Hull-Strominger
system as the fixed point of a geometric flow. Remarkably, fthig will turn out to have some
strong resemblance with the Ricci flow [21] (or renormalimaigroup flow for sigma models [15]),
although it will of course be more complicated. As such, @il provide a good laboratory for
the development of new techniques for the study of geomibbris.
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2.1 Some special solutions of the Hull-Strominger system

By now many special solutions have been found in the phyi&siure (see e.g. Strominger
[36], Dasgupta, Rajesh, and Sethi [7], Becker, Becker, Bang@, and Yau [3], Carlevaro and Israel
[5], Andreas and Garcia-Fernandez [2], and others).

Other special solutions have been found using some speeifimetric constructions. They
include invariant solutions on Lie groups and their quasd€see e.g. Grantcharov [20], Fernandez,
Ivanov, Ugarte and Villacampa [14], Otal, Ugarte and Vilepa [27], Fei and Yau [12], and refer-
ences therein) using connections which are not always Gloemections. They also include local
models, such as torus bundles over an ALE space (Fu, Tsedgfean[16]), torus bundles over
conformally T4 manifolds (Fernandez, lvanov, Ugarte, and Vassilev [18) @ local model based
on the twistor space of a hyperkahler manifold (Fei [10])c&#ly, compact non-K&hler solutions
were constructed by Fei, Huang, and Picard [11] on hypeekditdrations over a Riemann surface,
building on previous work by Fei [9].

But the first non-perturbative, non-Kahler solution wasnioiy Fu and Yau [17] on certain
toric fibrationsrt: Y — X over K3 surfaces constructed by Goldstein and Prokushil flilding
on earlier ideas of Calabi and Eckmann [6]. We shall say mbeeitathis geometric set-up later,
but for the moment, we just discuss the analytic featureb@fu-Yau solution. It turns out that,
in this case, the Hull-Strominger system can be reduced toghesnon-linear PDE of complex
Monge-Ampére type on the two-dimensional bxse

!/ — —
iaa(e“w—a’e*“p)+%iaaumaau+u —0. (5)

Herep andu are given smootlil,1) and(2,2) forms respectively, withu satisfying the integra-
bility condition
/u:O
X

The existence of solutions to equations of this type was shbwFu and Yau [17, 18] using
the method of continuity in two separate papers,dor- 0 anda’ < 0 respectively. While the
geometric set-up is the same in both cases, the equatioranalgically quite different, and the
key a priori estimates for their solutions are also quitéed#nt.

3. The Anomaly flow

We begin by discussing some of the key difficulties which havbe addressed when trying
to solve the Hull-Strominger system. For giventhe first equation (1) is the equation ferto be
the curvature of an integrable Hermitian-Einstein conioectFor givenw, the classical theorem
of Donaldson-Uhlenbeck-Yau [8, 38] gives a necessary affttismt condition for the existence
of Hermitian-Einstein connections in terms of the Mumfotdbdlity of the bundleE — (Y, w).
While the Hull-Strominger system is a system for the gaiHgg), at this preliminary stage of
our considerations, it is then not unreasonable to assuatédtly is known and to focus on the
equations (2-3) fow (this is for example what will happen in the case of the Fu-a@lution to be
discussed later).
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If we take the case of canonical metrics in Kadhler geometey@sdeline, we run immediately
into a new difficulty: a Kahler metric can be characterizedabgotential which is unique up to
a harmless constant, while there is no such known charzatem for balanced or conformally
balanced metrics. Various ansatze for balanced metrios bagn constructed by many authors,
e.g. Tosatti-Weinkove [37], Popovici [35], Fei [9], et abiexample, ifay is balancedc[wg =0),
then any metric of the form

w? = wh +100(ud)

is balanced (for any scalar functiorandé any (1, 1)-form which keepw? positive). The drawback
is that no particular ansatz seems more compelling thantiiersy and the resulting equations all
seem very complicated and unnatural.

In this talk, we describe a series of papers [29],[31],[3Bpge goal is to bypass this problem
of any particular Ansatz for balanced or conformally bakhenetrics by viewing the solutions
of the Hull-Strominger systems as the stationary pointheffollowing flow of metrics w,Hgg),
where the balanced or conformally balanced condition israatically preserved,

/

4(/|Q||ww?) = 100w — %(Tr(Rm/\ Rm) — Tr(F AF))

w? NF

e (6)
with w = wpy whent = 0, wherewy is a balanced metric. For fixad, the flow of the metridd in
the second line above is just the Donaldson heat flow [8].

We can also consider the flow of alone, as given by the first line in (6), for a givéh 2)-
form Tr(F AF). We call all these flows “Anomaly flows", in reference to thee@m-Schwarz
anomaly cancellation mechanism. To lighten the discussi@ndon’t indicate which Anomaly
flow we discuss in each instance, as it should be clear fromedgh&ext, and also how to adapt the
discussion from one flow to the other.

H1gH =-3

Theorem 1[29] The above flow of positive2, 2)-forms defines a vector field on the space of
positive(1,1)-forms.

(a) The corresponding flow preserves the balanced propertyeofrétricco(t).

(b) Clearly its stationary points are solutions of the Hull@tringer system.

(c) The flow exists at least for a short time, assuming théRm w)| is small enough.

The proof of the first statement in the theorem makes essesgaf an early work of Michel-
sohn [26], who showed that, given a positile— 1,n — 1)-form W, there is a unique positive
(1,1)-form w so thatw"* = W. It turns out thaiw can be expressed algebraically‘h In fact,
(n—1)!'xw =W, if x is the Hodge operator defined byitself. The statements (a-b) are obvious.
The only non-trivial statement left is (c), which is provegdstablishing the weak parabolicity of
the flow and applying the Nash implicit function theorem.

Even though Michelsohn’s theorem can be used to show tharienaly flow does define
a smooth vector field on the space of metrics, it does not gipeetical formula for this vector
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field. In particular, it is hard to deduce from it the flows oétturvature and torsion tensors. This
difficulty was recently overcome in [31]:

Theorem 2[31] Consider the Anomaly flow with a conformally balanced ihitreetric. Then the
flow is given by

1 ~ e = a
%% = m{ —Re+ 070" Tas Ty — 4 9™ (Rics"pRe o — ‘%—,)}
Here Ry; = gPRy; is the Ricci tensor for general Hermitian metricg = 3Ty, dZ" AdZ A dZ*
is the torsion tensor, and we have set= Tr(F AF). The bracket,] denote anti-symmetrization
in each of the two sets of barred and unbarred indices.
Once a description of the flow as in Theorem 2 is availables @asy to derive the flows of

the curvature tensor and of the torsion. The complete famare provided in [31]. Here for
illustrative purposes, we guote only the leading terms. W fior the full curvature tensor

1 o o
ARPr = 5= (BRPr + 5 9PH9 R P o OO Re; %) + -
2|Qllw 2
for the Ricci curvature,
- 1 - a’ AL ST B —a
atRkj:m(ARkj—FEg g R[D\ aDstRkj B)+"'

for the scalar curvatur® = ngjo = gjiﬁgj,

&R

a - o
= a7, AR+ 596 Ra P sTgRp) + -

and for the torsiofTgjgq,

1 a’

XToia = gy [ATeia — 9 (03 (Res"sRe ") — a(Ryss"gRey )]+

HereA = ngDjDE is the Laplacian. By definition, the diffusion operator ig teading linearized
differential operator on the right hand side. Thus, for tlenfRann curvature tensor, it is given by

1 a' i
ORPx — w(A(5Fq;jm+ ?gp“gs'R[mBaDstéjo“B)
w

with similar expressions for the diffusion operators fog fRicci tensor, as well as the scalar cur-
vature. Naively, the diffusion operator for the torsiondenis m& but in this case, there are
additional terms in the curvature which are of the same order

It is instructive to compare the Anomaly flow with the welldwmn Ricci flow

athj =—Rj
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on Kéhler metrics. In the case of the Ricci flow, the curvaeeolve as follows [21]
dR=AR+RGR¥, 4R = AR + ReysgRP™

Thus the diffusion operator for the curvatures in the Riamivfls A. The relation between the dif-
fusion operators for the Ricci flow and for the Anomaly flow cd@arly be traced to the similarity
in the flows, as shown by Theorem 2. However, there is no clealogy for the diffusion of the
torsion terms, since the torsion is identically 0 in the cathe Ricci flow. Also, the Anomaly
flow is clearly more complicated due to the factorg &fQ||,) %, and especially the terms which
are quadratic in the curvature tensor.

4. Ellipticity vs Parabolicity in the theory of Partial Diff erential Equations

The Anomaly flow provides one particular parabolic appraadinding solutions of the Hull-
Strominger system. It may be appropriate to pause here tostidriefly the issue of selecting a
parabolic approach to a particular elliptic partial diffetial equation.

For a given elliptic equation, salf(D?u) = e¥, there are an infinite number of possible
parabolic equations with the same equation as stationany, ffor example

du=F((D%u)—-€e¥ or  du=logF(D%u)— .

However, they can behave quite differently. A well-knowraewple is the Monge-Ampére equa-
tion, with F (D?u) = detD?u, where the parabolic equation with IBgD?u) is much better behaved,
because of the concavity of the function BgD?u) in the second derivatives of

In the present case of Hull-Strominger systems, our chdipam@bolic equation is dictated by
the need to preserve the conformally balanced conditioreré fs no further flexibility, and thus
it is a particularly important issue to determine whether plarabolic flow which is the Anomaly
flow is well-behaved.

Since for a given manifoltf with c1(Y) = 0 and a holomorphic vector bundie— Y, there
may not be any solution to the Hull-Strominger system, nalpalic flow with the Hull-Strominger
system as stationary point can always converge. So whatecgada criteria for the well-behavior
of a given parabolic flow ? Certainly weak-parabolicity, aliensures at least the existence of
the flow for a short time, is a minimum requirement. Beyond,tthee can hope for the long-time
existence of the flow, or cogent geometric conditions for nveiagularities may appear and when
the flow may fail to converge. The general difficulty is th&the flow exists on an interva0, T ),
the metricg; (t) may become either degenerate or infinitet as T. Similarly, the curvaturdRm
or the torsionT may blow up ag — T. This would prevent the continuation of the flow beyond
time T, let alone convergence. Whether this happens or not willirecguitable a priori estimates.
Another very important criterion for the well-behavior diaw is that it should converge whenever
there is a stationary point, at least for a large basin ofinidata. A good example is provided by
the Kéahler-Ricci flow on manifolds with c;(Y) > 0: while stationary points, which are Kahler-
Einstein metrics in this case, do not always exist, the floWaliways converge when they do.
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The answer to all these questions for the Anomaly flow in faelhgrality appears out of reach
at the present time. But we shall see that the Anomaly flowgsaal the tests in the following two
important special cases, which will be discussed in detaié next two sections:

e The casen’ = 0: The most difficult quadratic terms in the curvature tervgon’t occur. But
the flow still presents new difficulties due to the facl@?||,, and the non-vanishing torsion, and it
appears still at least as complicated as the Ricci flow.

e The case of Calabi-Eckmann-Goldstein-Prokushkin fibnaticthis is the case where the
elliptic equation was solved by Fu and Yau. So it is importantind out whether the Anomaly
flow can at least recapture this case. We shall see that incargven though it requires a different
set of techniques, it will prove to be even more powerful ti@Monge-Ampére techniques used
by Fu and Yau.

5. Thecase o’ =0

In this case, the Anomaly flow reduces to the following flow,
& (|0l ww?) =i00w,

or equivalently, in view of Theorem 2,
1 . _ _
%% = 7], (R 9T TosiTek)

Even though the terms quadratic in the curvature are absehtsi case, and the stationary point
is only a truncation of the Green-Schwarz anomaly caneafilahechanism, the flow is still quite
interesting from the geometric view point. Its stationanints would satisfyiddw = 0. When
combined with the conformally balanced condition, this Wamply that w is K&hler, so the flow
would provide a way of answering the basic and long-standimgstion of when a balanced or
conformally balanced manifold is actually K&hler.

In this case, we can establish an essential property of edlkved flows, which is that it
suffices to control dinite number of geometric quantities in order to control all datives of the
metric:

Theorem 3[31] Assume that the flow exists foet0, ] and that
IRMe+|DT |+ T <A zeX.

Then for any ke N, there exists a constant@epending on a uniform lower bound €., so
that
k k
DR, <GAtZ, DT, < CAL2.

This leads immediately to the following simple criteria tbe long-time existence of the flow:
Theorem 4[31] The flow exists for all time X 0, unless there is a finite time T and a sequence
(zj,t)) witht; — T, and either{|Q(zj,tj) o — O, or

(IRMe+ DT+ [TI5)(z),t) — .
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6. The Anomaly flow and the Fu-Yau equation

Next, we consider the case of the Calabi-Eckmann-Gold&sdkushkin fibrations, which is
the case solved by Fu and Yau [17] using elliptic methods.

We begin by recalling the geometric set-up for these fibnatioLet (X, @) be a Calabi-Yau
surface, with Ricci-flat metrigd, and holomorphic fornQ normalized so thafQ||3 = 1. Given
any two formswy, wp, € 2n|—|2(X,Z) with wy A @ = wy A @ = 0, building on earlier ideas of Calabi
and Eckmann [6], Goldstein and Prokushkin [19] construairi fibration7: Y — X, equipped
with a (1,0)-form 6 onY satisfyingd6 = 0, 96 = m*(w; +iwy). Furthermore, the form

Qv =v3QA0

is a holomorphic nowhere vanishin@,0)-form onY, and for any scalar function on X, the
(1,1)-form
w, = 1(e"®)+i6A 0O (7)

is a conformally balanced metric oh

Next, look for a solution of the Hull-Strominger system¥amt*(E) under the form{cy,, 7(H)),
whereH is a Hermitian-Einstein metric on a stable vector buriglle: (X, @). Then the only equa-
tion left to solve is the Green-Schwarz anomaly equation (3)

i00w, — %/Tr(Rn’(qu) ARM ) — FAF) =0,

In a key calculation, Fu and Yau [17] showed that this equatiescends to an equation for the
scalar functioru on X,

/ _ _
100(e"®— a'e Yp) + %iaam i0du+ =0

wherep andu are given(1,1) and(2,2)-forms. They then showed that the existence of solutions
to this equation is equivalent to the integrability corafitify u = 0.

In our case, we consider the Anomaly flow on a Calabi-Eckm@nlustein-Prokushkin fibra-
tion, with an initial datawy, of the form (7). Then we have

Theorem 5[33] Consider the Anomaly flow

&(19x?) =100 — & TH(R(X) ARM(X) ~ F AF)

on a Calabi-Eckmann-Goldstein-Prokushkin fibratmnY — X, with initial datay (0) = m*(M®@) +
i0 A6, where M is a positive constant. Assume the integrabilityddmn onu (which depends
only on the Goldstein-Prokushkin data). Then there exists-M, so that for all M> My, the flow
exists for all time, and converges to a metsig with (ws., 77 (H)) satisfying the Hull-Strominger
system.
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This theorem holds foor’ > 0 anda’ < 0. We formulated it in terms of flows on the 3-fofd
But of course the advantage of Calabi-Eckmann-Goldstedkiishkin fibrations is that it descends
to a flow on the surfac¥, and the theorem which is equivalent to Theorem 5 and whickhead
actually prove is the following:

Theorem 5’ Let (X, @) be a Calabi-Yau surface, with a Ricci-flat metdzand a holomorphic
(2,0)-form Q normalized td|Q||, = 1. Consider the flow
/
—ﬁ(g— 2~ % oaliRica) + 20
with an initial metric of the formw(0) = M. Hereg,(iRic,,) is the second symmetric polynomial
in the eigenvalues of iRjc Assume the integrability condition @n Then there exists a constant
Mg so that, for all M> My, the flow exists for all time and converges exponentiallyttaa metric

s Satisfying the Fu-Yau equation

103(10]wp) 1
w? w?

0w = Jw (8)

T a . .
100 (0o — ' ||Q|| . P) — §R|cww ARiCy, + 1 =0.

Because for Calabi-Eckmann-Goldstein-Prokushkin fibrestj the relevant metriag, are de-
termined by a single conformal factaythe Anomaly flow also provides an interesting example of
a flow in conformal geometry. It may be instructive to exanitrie this light. For this, we write it
as a parabolic equation for the conformal faaidrw = "),

y100(etp)  detug  p

efu
2
with stationary points given by the Fu-Yau equation,

ji90(ep) | ety p

du= (A(;,e“ — (9)

Npe' —a

This parabolic version of the Fu-Yau equation does not hayalasirable concavity property.
Due to that, none of the techniques, except for Moser itmmatised to solve the elliptic equation
can be adapted to this parabolic version.

Another big difference between the elliptic and the panabetrsions can be seen from the
dependence of their behavior on the slope paranteYWhile in string theory, the parameter
is > 0, from the point of view of geometry, it makes sense to carside Hull-Strominger system
for botha’ > 0 anda’ < 0. Then the behavior of the elliptic version changes dralifievith the
sign ofa’. Indeed, if we rewrite the equation as (settimg- 0 for notational simplicity)

det(e"&+ a'iddu) U
detd detw

and impose the ellipticity condition that’ = e"d + a'iddu > 0, then fora’ > 0, the estimate for
|Dul|co is easy, but the determinant @f may slide to 0. On the other hand, faf < 0, a lower
bound for the determinant @d’ is easy, but the estimate f§Dul|co is hard. Thus the two cases
a’ > 0 anda’ < 0 require different methods in the elliptic case [17, 18]daiso [28, 31] for
generalizations to higher dimensions). On the other hasigyeashall see below, the behavior of
the Anomaly flow is insensitive to the sign af. This indicates a greater robustness and capacity
for generalization for this method.

= (e —a’e"|Du?) — o
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7. Estimates for the Anomaly flow

It turns out that the simplicity that we seem to gain by wgtthe Anomaly flow as a parabolic
equation in a scalar unknown functieris only apparent. Rather, it is important not to lose sight
of the geometric significance of the flow, and to work dire@tiyh the evolving metriaw, without
having to specify the sign ai’. Even though we have to deal then with a system, the geometric
insight more than compensates for it.

We make the key assumption theatRic,| << 1 ande " << 1, which implies the parabolicity
condition (c) of the flow in Theorem 1, so that the diffusiorecgtor
— — — — / — —
Be=FRD,05 PRI gfy o035 - & (RGP R

is elliptic. Of course a crucial and difficult step will be toope that this condition is preserved
along the flow. Herg is defined such thatd f A p = pikf; ‘5’—,2 for any functionf.

We also exploit some simplifications which occur in the cals€alabi-Eckmann-Goldstein-
Prokushkin fibrations, by opposition to the general case firgt is that the full curvatur&mof
the metrice' is determined by its Ricci curvature

RmM= —ddu® | +Rm®&),  Ric,=—20du
and the second is that the full torsion tensor
T=i1dw=iduAw
is also completely determined by the components
Tj = g™ Tgpj = —0ju.

Upon descending to the base, the metfi® happens 1o satisfy the same useful relations between
curvature and torsion as the original me#ico+i06 A 0,

R =20;T, Ty =0jlog||Q]|w.

Third, and most important, the leading diffusion operatimrsthe curvature and the torsion are
given by the same operat%Ap.

7.1 Uniform equivalence of the metricsw(t)

This is equivalent to a uniform estimate for the conformatdau in w = '@, and is estab-
lished by Moser iteration, exploiting the fact that the ditsin/y || Q||,w? is conserved along the
flow:

Proposition 1 Assume that the flow exists fore [0,T) and starts wittw(0) = M@. Then there

existsMg so that, foiM > Mg, we have
u _u C2
SURxfom)€ <CiM,  SUBG(om)€ T < o
whereC;,C, depend only or{X, @), u, p, anda’.

10
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7.2 Estimates for the torsion

These are equivalent to estimates ff@ru||co if we work with the scalar parabolic equation
(9). However, they appear inaccessible from (9). Workirgiead with the geometric formulation
(8) of the flow, we can establish the following:

Proposition 2 There existdVp with the following property. If the flow is started witta(0) = Mo
andM > Mg, and if
|a’Rice,| < 107°

along the flow, then there exists a cons@gtepending only oriX, @), u, p, anda’ so that

Cs

2
|T| SW

<< 1

7.3 Estimates for the Ricci curvature
These are equivalent to estimates r(aaa_uuco for the scalar equation (9). In the geometric
formulation, we have

Proposition 3 Start the flow withw(0) = M. There existdy >> 1 such that, for everiyl > Mo,
if

C Cs
HQ”2§W7 \TIZSW
along the flow, then
. 1
o' Ricy| < M2

Note that these estimates imply in particular that the @ty condition |a’Ric,| << 1 is
preserved along the flow.

7.4 Estimates for higher order derivatives

The next step is to obtain estimates for all higher ordewndévies of the curvature and torsion.
From general PDE theory, we need only to obtain them for teedirivatives (since they result in
all derivatives up to third order for the metric), and thisl@e in the following proposition:

Proposition 4 There exists 6< &;, & with the following property. If
1 = O
—gd < 12°6™ < gd™ =1
and
a'Ricy| <&, [TP<&

then
IORic,| <C,  |OT[<C

for a constan€ depending only oy, &,,a’, p, 4 and (X, @).

It may be worth noting here the use in the maximum principla séemingly new type of test
function
G = (|a'Ricy| + 11)|ORicw|? + (| T|? 4 12)|OT|2.

11
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7.5 Long-time existence of the flow
Proposition 5 There existdVlp >> 1 such that, for alM > My, if the flow exists on[0,tp) and
initially starts fromwy = M@, then along the flow

1 e Cs _ 1
_— _<glu<c = 2o = ! <
cmM =% =W T = am  loRi%] < T

and 1 - B B
Pulp <G, 5@ <eFic<2g

This readily implies

Proposition 6 There existdVlp so that, for allM > My, if the flow starts fromw(0) = M ¢, then it
will exist on [0, ).

7.6 Convergence of the flow

Even though it does not appear that the Anomaly flow is a gnafli@wv, once a priori estimates
for all the derivatives are available, we can establish treergence of the flow:

Proposition 7 There existsVlp >> 1 so that for alM > My, if the flow starts initially withw(0) =
M, then it exists for all time, and convergesGfi to a metricw, satisfying

— !/

0=100 (s — o0 . 9) +  RiCa, AiRiCw, + 1. / 1Q]Jwe? = M.
X

For the proof, recalto = €"& and introduce

~2
V=g, J(t):/xvz%

Then we can show that
/ V= 0 J < ”\]
X ’ dt —

for some constam > 0. It follows thatJ(t) < Ce ', andv — 0 in L2, With the a priori estimates
for all derivatives available, it is not difficult to dedudeate” converges irC* to €.

AcknowledgementsWe would like to thank warmly Professors Chris Hull and Skingg Yau
for bringing several important references to our attention
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