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1. Supersymmetric vacua of the heterotic string

In 1986, the following system of equations was proposed independently by C. Hull [22, 23] and
A. Strominger [36] for compactifications of the heterotic string which preserve supersymmetry. Let
Y be a 3-dimensional compact complex manifold, equipped witha nowhere vanishing holomorphic
3-form Ω, and letE → Y be a holomorphic vector bundle overY. We look then for a Hermitian
metricgk̄ j onY (identified with the corresponding symplectic formω = igk̄ jdzj ∧dz̄k) , and for a
Hermitian metricHᾱβ on E, satisfying the following system

F2,0 = F0,2 = 0, ω2∧F1,1 = 0 (1)

i∂ ∂̄ ω − α ′

4
(Tr(Rm∧Rm)−Tr(F ∧F)) = 0 (2)

d†ω = i(∂̄ −∂ ) log‖Ω‖ω (3)

Hereα ′ is the slope parameter. The expressionsRmandF are the curvatures of the metricsω and
Hᾱβ , viewed as a(1,1)-forms valued inEnd(T1,0(Y)) and inEnd(E) respectively. The expressions
F p,q denote the(p,q)-components of the curvature formF. The norm‖Ω‖ω is defined by

‖Ω‖2
ω = iΩ∧Ωω−3.

This system is an extension of a well-known set of conditionsfor compactifications of the
heterotic string with unbroken supersymmetry proposed earlier by P. Candelas, G. Horowitz, A.
Strominger, and E. Witten [4]. The first equation is just the usual Hermitian-Einstein equation,
which ensures the invariance of the gluino under supersymmetry. If we identify the de Kalb-
Ramond field strength with the 3-formT+ T̄, whereT = i∂ω is the torsion of the Hermitian metric
ω , then the second equation can be recognized as the seminal anomaly cancellation mechanism due
to M. Green and J. Schwarz (1984). The distinctive feature ofthe system proposed by Hull and
Strominger is the third equation, which is actually a torsion constraint less restrictive than the
Kähler conditionT = 0. In components, if we express the torsion asT = 1

2Tk̄ jmdzm∧dzj ∧dz̄k, it
can be written more explicitly as

g j k̄Tk̄ jm = ∂m log‖Ω‖ω .

The Calabi-Yau compactifications found by Candelas, Horowitz, Strominger, and Witten [4]
can be recovered from the above system in the following manner. We take(Y,ω) to be Kähler,
and setE = T1,0(Y), Hᾱβ = ω . ThenRm= F and the second equation is trivially satisfied. Next
ω2∧Rm= 3Ric(ω) (viewed as an endomorphism ofT1,0(Y)), and thus the first equation reduces
to the condition of vanishing Ricci curvature

Ric(ω) = 0.

As conjectured by Calabi, and proved by Yau [39], manifolds admitting such metrics are exactly the
ones with vanishing first Chern classc1(Y) = 0. TakingΩ a non-trivial holomorphic, covariantly
constant 3-form, the third equation follows from the Kählercondition, and we obtain a solution of
the Hull-Strominger system.
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Becauseω is not necessarily Kähler, there are many natural unitary connections which pre-
serve the complex structure. As shown by C. Hull [24], the anomaly cancellation mechanism does
not require a specific unitary connection forω . In this work, we restrict ourselves to the choice of
the Chern unitary connection, characterized by

∇ j̄V
k = ∂ j̄V

k, ∇ jV
k = gkp̄∂ j(gp̄mVm).

In this case, the Riemann curvature tensor is given by,

Rm= Rk̄ j
p

qdzj ∧dz̄k, Rk̄ j
p

q =−∂k̄(g
pm̄∂ jgm̄q),

with a similar expression for the curvatureF of Hᾱβ , F =Fk̄ j
α

β dzj ∧dz̄k, Fk̄ j
α

β =−∂k̄(H
αγ̄∂ jHγ̄β ).

2. Non-Kähler geometry and non-linear partial differential equations

While the system (1-3) originally arose from string theory,it is potentially of considerable
interest in mathematics as well for several reasons.

First, it can be interpreted as providing a notion of canonical metric in a particular non-Kähler
setting. In Kähler geometry, a canonical metric is usually defined by a cohomological condition
(e.g.dω = 0), and by a curvature condition (e.g.ω has constant scalar curvature, see e.g. [34] for
a survey). As pointed out by J. Li and S.T. Yau [25], the third equation (3) in the Hull-Strominger
system is equivalent to the following “conformally balanced" condition

d(‖Ω‖ω ω2) = 0. (4)

The notion of balanced metric, i.e.d(ω2) = 0, was introduced in mathematics by Michelsohn [26]
(1981). It is a natural notion, as the existence of a balancedmetric is a property invariant under
modifications (see Alessandrini-Bassanelli [1]). The firsttwo equations in the Hull-Strominger
system can then be viewed as the analogue of the curvature condition in the setting of conformally
balanced metrics.

Second, the expression Tr(Rm∧Rm), which appears in the equation (2) and is fundamental
to the Green-Schwarz anomaly cancellation in string theory, does not seem to have been studied
before as a curvature condition in complex differential geometry. What sets it apart from much
studied conditions such as constant scalar or constant Ricci curvature is that it is quadratic in the
curvature tensor. In particular, it leads to a class of fullynon-linear equations which is new in the
theory of partial differential equations, and whose geometric meaning is yet to be explored. In this
context, it is natural to consider generalizations of theseequations to dimensions different from 3.
This has already led to some remarkable equations of complexHessian type [17, 18, 28, 30, 31].

Finally, we shall see shortly that there are compelling reasons for studying the Hull-Strominger
system as the fixed point of a geometric flow. Remarkably, thisflow will turn out to have some
strong resemblance with the Ricci flow [21] (or renormalization group flow for sigma models [15]),
although it will of course be more complicated. As such, it should provide a good laboratory for
the development of new techniques for the study of geometricflows.
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2.1 Some special solutions of the Hull-Strominger system

By now many special solutions have been found in the physics literature (see e.g. Strominger
[36], Dasgupta, Rajesh, and Sethi [7], Becker, Becker, Fu, Tseng, and Yau [3], Carlevaro and Israel
[5], Andreas and Garcia-Fernandez [2], and others).

Other special solutions have been found using some specific geometric constructions. They
include invariant solutions on Lie groups and their quotients (see e.g. Grantcharov [20], Fernandez,
Ivanov, Ugarte and Villacampa [14], Otal, Ugarte and Villacampa [27], Fei and Yau [12], and refer-
ences therein) using connections which are not always Chernconnections. They also include local
models, such as torus bundles over an ALE space (Fu, Tseng, and Yau [16]), torus bundles over
conformallyT4 manifolds (Fernandez, Ivanov, Ugarte, and Vassilev [13]) and a local model based
on the twistor space of a hyperkähler manifold (Fei [10]). Recently, compact non-Kähler solutions
were constructed by Fei, Huang, and Picard [11] on hyperkähler fibrations over a Riemann surface,
building on previous work by Fei [9].

But the first non-perturbative, non-Kähler solution was found by Fu and Yau [17] on certain
toric fibrationsπ : Y → X over K3 surfaces constructed by Goldstein and Prokushkin [19], building
on earlier ideas of Calabi and Eckmann [6]. We shall say more about this geometric set-up later,
but for the moment, we just discuss the analytic features of the Fu-Yau solution. It turns out that,
in this case, the Hull-Strominger system can be reduced to a single non-linear PDE of complex
Monge-Ampère type on the two-dimensional baseX,

i∂ ∂̄ (euω −α ′e−uρ)+
α ′

2
i∂ ∂̄ u∧ i∂ ∂̄u+µ = 0. (5)

Hereρ andµ are given smooth(1,1) and(2,2) forms respectively, withµ satisfying the integra-
bility condition

∫

X
µ = 0.

The existence of solutions to equations of this type was shown by Fu and Yau [17, 18] using
the method of continuity in two separate papers, forα ′ > 0 andα ′ < 0 respectively. While the
geometric set-up is the same in both cases, the equations areanalytically quite different, and the
key a priori estimates for their solutions are also quite different.

3. The Anomaly flow

We begin by discussing some of the key difficulties which haveto be addressed when trying
to solve the Hull-Strominger system. For givenω , the first equation (1) is the equation forF to be
the curvature of an integrable Hermitian-Einstein connection. For givenω , the classical theorem
of Donaldson-Uhlenbeck-Yau [8, 38] gives a necessary and sufficient condition for the existence
of Hermitian-Einstein connections in terms of the Mumford stability of the bundleE → (Y,ω).
While the Hull-Strominger system is a system for the pair(ω ,Hᾱβ ), at this preliminary stage of
our considerations, it is then not unreasonable to assume that Hᾱβ is known and to focus on the
equations (2-3) forω (this is for example what will happen in the case of the Fu-Yausolution to be
discussed later).
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If we take the case of canonical metrics in Kähler geometry asa guideline, we run immediately
into a new difficulty: a Kähler metric can be characterized bya potential which is unique up to
a harmless constant, while there is no such known characterization for balanced or conformally
balanced metrics. Various ansatze for balanced metrics have been constructed by many authors,
e.g. Tosatti-Weinkove [37], Popovici [35], Fei [9], et al. For example, ifω0 is balanced (dω2

0 = 0),
then any metric of the form

ω2 = ω2
0 + i∂ ∂̄ (uω̃)

is balanced (for any scalar functionuandω̃ any(1,1)-form which keepω2 positive). The drawback
is that no particular ansatz seems more compelling than the others, and the resulting equations all
seem very complicated and unnatural.

In this talk, we describe a series of papers [29],[31],[32] whose goal is to bypass this problem
of any particular Ansatz for balanced or conformally balanced metrics by viewing the solutions
of the Hull-Strominger systems as the stationary points of the following flow of metrics(ω ,Hᾱβ ),
where the balanced or conformally balanced condition is automatically preserved,

∂t(||Ω||ω ω2) = i∂ ∂̄ ω − α ′

4
(Tr(Rm∧Rm)−Tr(F ∧F))

H−1∂tH =−3
ω2∧F

ω3 (6)

with ω = ω0 whent = 0, whereω0 is a balanced metric. For fixedω , the flow of the metricH in
the second line above is just the Donaldson heat flow [8].

We can also consider the flow ofω alone, as given by the first line in (6), for a given(2,2)-
form Tr(F ∧ F). We call all these flows “Anomaly flows", in reference to the Green-Schwarz
anomaly cancellation mechanism. To lighten the discussion, we don’t indicate which Anomaly
flow we discuss in each instance, as it should be clear from thecontext, and also how to adapt the
discussion from one flow to the other.

Theorem 1 [29] The above flow of positive(2,2)-forms defines a vector field on the space of
positive(1,1)-forms.

(a)The corresponding flow preserves the balanced property of the metricω(t).
(b) Clearly its stationary points are solutions of the Hull-Strominger system.
(c) The flow exists at least for a short time, assuming that|α ′Rm(ω)| is small enough.

The proof of the first statement in the theorem makes essential use of an early work of Michel-
sohn [26], who showed that, given a positive(n− 1,n− 1)-form Ψ, there is a unique positive
(1,1)-form ω so thatωn−1 = Ψ. It turns out thatω can be expressed algebraically inΨ. In fact,
(n−1)! ⋆ω = Ψ, if ⋆ is the Hodge operator defined byω itself. The statements (a-b) are obvious.
The only non-trivial statement left is (c), which is proved by establishing the weak parabolicity of
the flow and applying the Nash implicit function theorem.

Even though Michelsohn’s theorem can be used to show that theAnomaly flow does define
a smooth vector field on the space of metrics, it does not give apractical formula for this vector

4
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field. In particular, it is hard to deduce from it the flows of the curvature and torsion tensors. This
difficulty was recently overcome in [31]:

Theorem 2 [31] Consider the Anomaly flow with a conformally balanced initial metric. Then the
flow is given by

∂tgk̄ j =
1

2‖Ω‖ω

{

− R̃k̄ j +gsr̄gpq̄Tq̄s jT̄pr̄k̄−
α ′

4
gsr̄(R[k̄s

α
β Rr̄ j ]

β
α −Φk̄sr̄ j )

}

HereR̃k̄ j = gpq̄Rq̄pk̄ j is the Ricci tensor for general Hermitian metrics, i∂ω = 1
2Tk̄ jmdzm∧dzj ∧dz̄k

is the torsion tensor, and we have setΦ = Tr(F ∧F). The bracket[, ] denote anti-symmetrization
in each of the two sets of barred and unbarred indices.

Once a description of the flow as in Theorem 2 is available, it is easy to derive the flows of
the curvature tensor and of the torsion. The complete formulas are provided in [31]. Here for
illustrative purposes, we quote only the leading terms. We find for the full curvature tensor

∂tRk̄ j
ρ

λ =
1

2‖Ω‖ω
(∆Rk̄ j

ρ
λ +

α ′

2
gρµ̄gsr̄R[r̄λ

β
α ∇s∇µ̄ ]Rk̄ j

α
β )+ · · ·

for the Ricci curvature,

∂tRk̄ j =
1

2‖Ω‖ω
(∆Rk̄ j +

α ′

2
gλ µ̄ gsr̄R[r̄λ

β
α ∇s∇µ̄]Rk̄ j

α
β )+ · · ·

for the scalar curvatureR= g j k̄Rk̄ j = g j k̄R̃k̄ j,

∂tR=
1

2‖Ω‖ω
(∆R+

α ′

2
gλ µ̄gsr̄R[r̄λ

β
α ∇s∇µ̄ ]R

α
β )+ · · ·

and for the torsionTp̄ jq,

∂tTp̄ jq =
1

2‖Ω‖ω

[

∆Tp̄ jq−
α ′

4
gsr̄(∇ j(R[p̄s

α
β Rr̄q]

β
α)−∇q(R[p̄s

α
β Rr̄ j ]

β
α))

]

+ · · ·

Here∆ = g j k̄∇ j∇k̄ is the Laplacian. By definition, the diffusion operator is the leading linearized
differential operator on the right hand side. Thus, for the Riemann curvature tensor, it is given by

δRk̄ j
ρ

λ → 1
2‖Ω‖ω

(

∆(δRk̄ j
ρ

λ )+
α ′

2
gρµ̄gsr̄R[r̄λ

β
α ∇s∇µ̄ ]δRk̄ j

α
β
)

with similar expressions for the diffusion operators for the Ricci tensor, as well as the scalar cur-
vature. Naively, the diffusion operator for the torsion tensor is 1

2‖Ω‖ω
∆, but in this case, there are

additional terms in the curvature which are of the same order.

It is instructive to compare the Anomaly flow with the well-known Ricci flow

∂tgk̄ j =−Rk̄ j

5
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on Kähler metrics. In the case of the Ricci flow, the curvatures evolve as follows [21]

∂tR= ∆R+Rk̄ jR
j k̄, ∂tRk̄ j = ∆Rk̄ j +Rk̄mp̄qR

qp̄m
j

Thus the diffusion operator for the curvatures in the Ricci flow is ∆. The relation between the dif-
fusion operators for the Ricci flow and for the Anomaly flow canclearly be traced to the similarity
in the flows, as shown by Theorem 2. However, there is no clear analogy for the diffusion of the
torsion terms, since the torsion is identically 0 in the caseof the Ricci flow. Also, the Anomaly
flow is clearly more complicated due to the factors of(2‖Ω‖ω)

−1, and especially the terms which
are quadratic in the curvature tensor.

4. Ellipticity vs Parabolicity in the theory of Partial Diff erential Equations

The Anomaly flow provides one particular parabolic approachto finding solutions of the Hull-
Strominger system. It may be appropriate to pause here to discuss briefly the issue of selecting a
parabolic approach to a particular elliptic partial differential equation.

For a given elliptic equation, sayF(D2u) = eψ , there are an infinite number of possible
parabolic equations with the same equation as stationary point, for example

∂tu= F(D2u)−eψ or ∂tu= logF(D2u)−ψ .

However, they can behave quite differently. A well-known example is the Monge-Ampère equa-
tion, withF(D2u) = detD2u, where the parabolic equation with logF(D2u) is much better behaved,
because of the concavity of the function logF(D2u) in the second derivatives ofu.

In the present case of Hull-Strominger systems, our choice of parabolic equation is dictated by
the need to preserve the conformally balanced condition. There is no further flexibility, and thus
it is a particularly important issue to determine whether the parabolic flow which is the Anomaly
flow is well-behaved.

Since for a given manifoldY with c1(Y) = 0 and a holomorphic vector bundleE → Y, there
may not be any solution to the Hull-Strominger system, no parabolic flow with the Hull-Strominger
system as stationary point can always converge. So what can be good criteria for the well-behavior
of a given parabolic flow ? Certainly weak-parabolicity, which ensures at least the existence of
the flow for a short time, is a minimum requirement. Beyond that, we can hope for the long-time
existence of the flow, or cogent geometric conditions for when singularities may appear and when
the flow may fail to converge. The general difficulty is that, if the flow exists on an interval[0,T),
the metricgk̄ j(t) may become either degenerate or infinite, ast → T. Similarly, the curvatureRm
or the torsionT may blow up ast → T. This would prevent the continuation of the flow beyond
time T, let alone convergence. Whether this happens or not will require suitable a priori estimates.
Another very important criterion for the well-behavior of aflow is that it should converge whenever
there is a stationary point, at least for a large basin of initial data. A good example is provided by
the Kähler-Ricci flow on manifoldsY with c1(Y) > 0: while stationary points, which are Kähler-
Einstein metrics in this case, do not always exist, the flow will always converge when they do.

6
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The answer to all these questions for the Anomaly flow in full generality appears out of reach
at the present time. But we shall see that the Anomaly flow passes all the tests in the following two
important special cases, which will be discussed in detail in the next two sections:

• The caseα ′ = 0: The most difficult quadratic terms in the curvature tensorwon’t occur. But
the flow still presents new difficulties due to the factor‖Ω‖ω and the non-vanishing torsion, and it
appears still at least as complicated as the Ricci flow.

• The case of Calabi-Eckmann-Goldstein-Prokushkin fibrations: this is the case where the
elliptic equation was solved by Fu and Yau. So it is importantto find out whether the Anomaly
flow can at least recapture this case. We shall see that it can,and even though it requires a different
set of techniques, it will prove to be even more powerful thanthe Monge-Ampère techniques used
by Fu and Yau.

5. The case ofα ′ = 0

In this case, the Anomaly flow reduces to the following flow,

∂t(‖Ω‖ω ω2) = i∂ ∂̄ω ,

or equivalently, in view of Theorem 2,

∂tgk̄ j =
1

2‖Ω‖ω
(−R̃k̄ j +gsr̄gqp̄Tp̄s jT̄qr̄k̄).

Even though the terms quadratic in the curvature are absent in this case, and the stationary point
is only a truncation of the Green-Schwarz anomaly cancellation mechanism, the flow is still quite
interesting from the geometric view point. Its stationary points would satisfyi∂ ∂̄ ω = 0. When
combined with the conformally balanced condition, this would imply thatω is Kähler, so the flow
would provide a way of answering the basic and long-standingquestion of when a balanced or
conformally balanced manifold is actually Kähler.

In this case, we can establish an essential property of well-behaved flows, which is that it
suffices to control afinite number of geometric quantities in order to control all derivatives of the
metric:

Theorem 3[31] Assume that the flow exists for t∈ [0, 1
A] and that

|Rm|ω + |DT|ω + |T|2ω ≤ A, z∈ X.

Then for any k∈ N, there exists a constant Ck depending on a uniform lower bound for‖Ω‖ω so
that

|DkRm|ω ≤CkAt−
k
2 , |Dk+1T|ω ≤CkAt−

k
2 .

This leads immediately to the following simple criteria forthe long-time existence of the flow:

Theorem 4 [31] The flow exists for all time t≥ 0, unless there is a finite time T and a sequence
(zj , t j) with t j → T, and either‖Ω(zj , t j)‖ω j → 0, or

(|Rm|ω + |DT|ω + |T|2ω)(zj , t j)→ ∞.

7
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6. The Anomaly flow and the Fu-Yau equation

Next, we consider the case of the Calabi-Eckmann-Goldstein-Prokushkin fibrations, which is
the case solved by Fu and Yau [17] using elliptic methods.

We begin by recalling the geometric set-up for these fibrations. Let(X, ω̂) be a Calabi-Yau
surface, with Ricci-flat metriĉω , and holomorphic formΩ normalized so that‖Ω‖2

ω̂ = 1. Given
any two formsω1,ω2 ∈ 2πH2(X,Z) with ω1∧ ω̂ = ω2∧ ω̂ = 0, building on earlier ideas of Calabi
and Eckmann [6], Goldstein and Prokushkin [19] construct a toric fibrationπ : Y → X, equipped
with a (1,0)-form θ onY satisfying∂θ = 0, ∂̄ θ = π∗(ω1+ iω2). Furthermore, the form

ΩY =
√

3Ω∧θ

is a holomorphic nowhere vanishing(3,0)-form on Y, and for any scalar functionu on X, the
(1,1)-form

ωu = π∗(euω̂)+ iθ ∧ θ̄ (7)

is a conformally balanced metric onY.

Next, look for a solution of the Hull-Strominger system onY,π∗(E) under the form(ωu,π∗(H)),
whereH is a Hermitian-Einstein metric on a stable vector bundleE → (X, ω̂). Then the only equa-
tion left to solve is the Green-Schwarz anomaly equation (3),

i∂ ∂̄ ωu−
α ′

4
Tr(Rm(ωu)∧Rm(ωu)−F ∧F) = 0.

In a key calculation, Fu and Yau [17] showed that this equation descends to an equation for the
scalar functionu on X,

i∂ ∂̄ (euω̂ −α ′e−uρ)+
α ′

2
i∂ ∂̄u∧ i∂ ∂̄u+µ = 0

whereρ andµ are given(1,1) and(2,2)-forms. They then showed that the existence of solutions
to this equation is equivalent to the integrability condition

∫

X µ = 0.

In our case, we consider the Anomaly flow on a Calabi-Eckmann-Goldstein-Prokushkin fibra-
tion, with an initial dataω0 of the form (7). Then we have

Theorem 5[33] Consider the Anomaly flow

∂t(‖Ω‖χ χ2) = i∂ ∂̄ χ − α ′

4
Tr(Rm(χ)∧Rm(χ)−F∧F)

on a Calabi-Eckmann-Goldstein-Prokushkin fibrationπ :Y→X, with initial dataχ(0)= π∗(Mω̂)+

iθ ∧ θ̄ , where M is a positive constant. Assume the integrability condition onµ (which depends
only on the Goldstein-Prokushkin data). Then there exists M0 > 0, so that for all M≥ M0, the flow
exists for all time, and converges to a metricω∞ with (ω∞,π∗(H)) satisfying the Hull-Strominger
system.

8
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This theorem holds forα ′ > 0 andα ′ < 0. We formulated it in terms of flows on the 3-foldY.
But of course the advantage of Calabi-Eckmann-Goldstein-Prokushkin fibrations is that it descends
to a flow on the surfaceX, and the theorem which is equivalent to Theorem 5 and which weshall
actually prove is the following:

Theorem 5’ Let (X, ω̂) be a Calabi-Yau surface, with a Ricci-flat metriĉω and a holomorphic
(2,0)-form Ω normalized to‖Ω‖ω̂ = 1. Consider the flow

∂tω =− 1
2‖Ω‖ω

(
R
2
−|T|2− α ′

4
σ2(iRicω)+2α ′ i∂ ∂̄ (‖Ω‖ω ρ)

ω2 −2
µ

ω2)ω (8)

with an initial metric of the formω(0) = Mω̂. Hereσ2(iRicω) is the second symmetric polynomial
in the eigenvalues of iRicω . Assume the integrability condition onµ . Then there exists a constant
M0 so that, for all M≥ M0, the flow exists for all time and converges exponentially fast to a metric
ω∞ satisfying the Fu-Yau equation

i∂ ∂̄ (ω∞ −α ′‖Ω‖ω∞ρ)− α ′

8
Ricω∞ ∧Ricω∞ +µ = 0.

Because for Calabi-Eckmann-Goldstein-Prokushkin fibrations, the relevant metricsωu are de-
termined by a single conformal factoru, the Anomaly flow also provides an interesting example of
a flow in conformal geometry. It may be instructive to examineit in this light. For this, we write it
as a parabolic equation for the conformal factoru (ω = euω̂),

∂tu=
e−u

2

(

∆ω̂eu−α ′ i∂ ∂̄ (e−uρ)
detĝk̄ j

+α ′ detuk̄ j

detĝk̄ j
+

µ
detĝk̄ j

)

(9)

with stationary points given by the Fu-Yau equation,

∆ω̂eu−α ′ i∂ ∂̄ (e−uρ)
detĝk̄ j

+α ′ detuk̄ j

detĝk̄ j
+

µ
detĝk̄ j

= 0.

This parabolic version of the Fu-Yau equation does not have any desirable concavity property.
Due to that, none of the techniques, except for Moser iteration, used to solve the elliptic equation
can be adapted to this parabolic version.

Another big difference between the elliptic and the parabolic versions can be seen from the
dependence of their behavior on the slope parameterα ′. While in string theory, the parameterα ′

is > 0, from the point of view of geometry, it makes sense to consider the Hull-Strominger system
for bothα ′ > 0 andα ′ < 0. Then the behavior of the elliptic version changes drastically with the
sign ofα ′. Indeed, if we rewrite the equation as (settingρ = 0 for notational simplicity)

det(euω̂ +α ′i∂ ∂̄u)
detω̂

= (e2u−α ′eu|Du|2)−α ′ µ
detω̂

and impose the ellipticity condition thatω ′ = euω̂ +α ′i∂ ∂̄u> 0, then forα ′ > 0, the estimate for
‖Du‖C0 is easy, but the determinant ofω ′ may slide to 0. On the other hand, forα ′ < 0, a lower
bound for the determinant ofω ′ is easy, but the estimate for‖Du‖C0 is hard. Thus the two cases
α ′ > 0 andα ′ < 0 require different methods in the elliptic case [17, 18] (and also [28, 31] for
generalizations to higher dimensions). On the other hand, as we shall see below, the behavior of
the Anomaly flow is insensitive to the sign ofα ′. This indicates a greater robustness and capacity
for generalization for this method.

9
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7. Estimates for the Anomaly flow

It turns out that the simplicity that we seem to gain by writing the Anomaly flow as a parabolic
equation in a scalar unknown functionu is only apparent. Rather, it is important not to lose sight
of the geometric significance of the flow, and to work directlywith the evolving metricω , without
having to specify the sign ofα ′. Even though we have to deal then with a system, the geometric
insight more than compensates for it.

We make the key assumption that|α ′Ricω |<< 1 ande−u << 1, which implies the parabolicity
condition (c) of the flow in Theorem 1, so that the diffusion operator

∆F = F pq̄∇p∇q̄, F pq̄ = gpq̄+α ′‖Ω‖3
ω ρ̃ pq̄− α ′

2
(Rgpq̄−Rpq̄)

is elliptic. Of course a crucial and difficult step will be to prove that this condition is preserved
along the flow. Herẽρ is defined such thati∂ ∂̄ f ∧ρ = ρ̃ j k̄ fk̄ j

ω̂2

2! for any function f .
We also exploit some simplifications which occur in the case of Calabi-Eckmann-Goldstein-

Prokushkin fibrations, by opposition to the general case. The first is that the full curvatureRmof
the metriceuω̂ is determined by its Ricci curvature

Rm=−∂ ∂̄u⊗ I +Rm(ω̂), Ricω =−2∂ ∂̄ u

and the second is that the full torsion tensor

T = i∂ω = i∂u∧ω

is also completely determined by the components

Tj = gpq̄Tq̄p j =−∂ ju.

Upon descending to the base, the metriceuω̂ happens to satisfy the same useful relations between
curvature and torsion as the original metriceuω̂ + iθ ∧ θ̄ ,

Rk̄ j = 2∇k̄Tj , Tj = ∂ j log‖Ω‖ω .

Third, and most important, the leading diffusion operatorsfor the curvature and the torsion are
given by the same operator1

2‖Ω‖ω
∆F .

7.1 Uniform equivalence of the metricsω(t)

This is equivalent to a uniform estimate for the conformal factor u in ω = euω̂ , and is estab-
lished by Moser iteration, exploiting the fact that the quantity

∫

X ‖Ω‖ω ω2 is conserved along the
flow:

Proposition 1 Assume that the flow exists fort ∈ [0,T) and starts withω(0) = Mω̂ . Then there
existsM0 so that, forM ≥ M0, we have

supX×[0,T)e
u ≤C1M, supX×[0,T)e

−u ≤ C2

M

whereC1,C2 depend only on(X, ω̂), µ , ρ , andα ′.

10
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7.2 Estimates for the torsion

These are equivalent to estimates for‖Du‖C0 if we work with the scalar parabolic equation
(9). However, they appear inaccessible from (9). Working instead with the geometric formulation
(8) of the flow, we can establish the following:

Proposition 2 There existsM0 with the following property. If the flow is started withω(0) = Mω̂
andM ≥ M0, and if

|α ′Ricω | ≤ 10−6

along the flow, then there exists a constantC3 depending only on(X, ω̂), µ , ρ , andα ′ so that

|T|2 ≤ C3

M4/3
<< 1.

7.3 Estimates for the Ricci curvature

These are equivalent to estimates for‖i∂ ∂̄ u‖C0 for the scalar equation (9). In the geometric
formulation, we have

Proposition 3Start the flow withω(0) = Mω̂ . There existsM0 >> 1 such that, for everyM ≥ M0,
if

‖Ω‖2 ≤ C2

M2 , |T|2 ≤ C3

M4/3

along the flow, then

|α ′ Ricω | ≤
1

M1/2

Note that these estimates imply in particular that the ellipticity condition |α ′ Ricω | << 1 is
preserved along the flow.

7.4 Estimates for higher order derivatives

The next step is to obtain estimates for all higher order derivatives of the curvature and torsion.
From general PDE theory, we need only to obtain them for the first derivatives (since they result in
all derivatives up to third order for the metric), and this isdone in the following proposition:

Proposition 4There exists 0< δ1,δ2 with the following property. If

−1
8

gpq̄ < α ′ ‖Ω‖3ρ̃ pq̄ <
1
8

gpq̄, ‖Ω‖ ≤ 1

and
|α ′ Ricω | ≤ δ1, |T|2 ≤ δ2

then
|∇Ricω | ≤C, |∇T| ≤C

for a constantC depending only onδ1,δ2,α ′,ρ ,µ and(X, ω̂).

It may be worth noting here the use in the maximum principle ofa seemingly new type of test
function

G= (|α ′Ricω |+ τ1)|∇Ricω |2+(|T|2+ τ2)|∇T|2.

11
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7.5 Long-time existence of the flow

Proposition 5 There existsM0 >> 1 such that, for allM ≥ M0, if the flow exists on[0, t0) and
initially starts fromω0 = Mω̂, then along the flow

1
C1M

≤ e−u ≤ C2

M
, |T|2 ≤ C3

M4/3
, |α ′Ricω | ≤

1

M1/2

and
|Dku|ω̂ ≤ C̃k,

1
2

ĝ j k̄ ≤ euF j k̄ ≤ 2ĝ j k̄.

This readily implies

Proposition 6 There existsM0 so that, for allM ≥ M0, if the flow starts fromω(0) = Mω̂, then it
will exist on [0,∞).

7.6 Convergence of the flow

Even though it does not appear that the Anomaly flow is a gradient flow, once a priori estimates
for all the derivatives are available, we can establish the convergence of the flow:

Proposition 7There existsM0 >> 1 so that for allM ≥ M0, if the flow starts initially withω(0) =
Mω̂ , then it exists for all time, and converges inC∞ to a metricω∞ satisfying

0= i∂ ∂̄ (ω∞ −α ′‖Ω‖ω∞ρ)+
α ′

8
iRicω∞ ∧ iRicω∞ +µ ,

∫

X
‖Ω‖∞ω2

∞ = M.

For the proof, recallω = euω̂ and introduce

v= ∂te
u, J(t) =

∫

X
v2 ω̂2

2

Then we can show that
∫

X
v= 0,

dJ
dt

≤−ηJ

for some constantη > 0. It follows thatJ(t)≤Ce−ηt , andv→ 0 in L2. With the a priori estimates
for all derivatives available, it is not difficult to deduce thateu converges inC∞ to eu∞ .

AcknowledgementsWe would like to thank warmly Professors Chris Hull and Shing-Tung Yau
for bringing several important references to our attention.
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