
P
o
S
(
C
O
R
F
U
2
0
1
6
)
1
1
1

Elliptic String Solutions in AdS3 and Elliptic Minimal
Surfaces in AdS4

Georgios Pastras∗†

Department of Physics, School of Applied Mathematics and Physical Sciences, National
Technical University, Athens 15780, Greece
NCSR “Demokritos”, Institute of Nuclear and Particle Physics 15310 Aghia Paraskevi, Attiki,
Greece
E-mail: pastras@mail.ntua.gr, pastras@inp.demokritos.gr

Non-linear sigma models defined on symmetric target spaces have a wide set of applications in
modern physics, including the description of string propagation in symmetric spaces, such as AdS
or dS, or minimal surfaces in hyperbolic spaces. Although it is difficult to acquire solutions of
these models, due to their non-linear nature, it is well known that they are reducible to integrable
systems of the family of the sine- or sinh-Gordon equation. In this study, we develop a method
to invert Pohlmeyer reduction for elliptic solutions of the reduced system, implementing a re-
lation between NLSM solutions and the eigenstates of the n = 1 Lamé problem. This method
is applied to produce a family of classical string solutions in AdS3, which includes the spiky
strings, as well as hoop string solutions with singular evolution of their angular velocity and ra-
dius, which are interesting in the framework of holographic dualities. Furthermore, application of
this method produces a wide family of static minimal surfaces in AdS4, which includes helicoids
and catenoids, and which are interesting in the framework of the Ryu-Takayanagi conjecture and
the understanding of the emergence of gravity as an entropic force related to quantum entangle-
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and geometric phase transitions between them, which are relevant to confinement-deconfinement
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1. Introduction

The AdS/CFT correspondence is a broad framework that connects gravitational theories in
spaces with AdS asymptotics to conformal field theories defined in the boundary of AdS. As a
weak/strong duality, AdS/CFT has many applications in the description of strong coupling phe-
nomena in the boundary theory, through simple computations in the weakly coupled gravitational
theory. In this context, classical string solutions in AdS spaces have provided insight into the
correspondence and the properties of the boundary theory [1 – 3]. A more systematic approach,
introduced by Alday and Maldacena [4, 5], allows the computation of gluon scattering amplitudes
from classical string solutions with boundary conditions connected to the gluon momenta.

Similarly, the holographic correspondence can be used for the understanding of the emergence
of gravity in the bulk theory from the dynamics of the boundary CFT. The more modern approach to
this field manages to explain the similarity of the black hole physics to the laws of thermodynamics
describing the gravity as an entropic force originating from quantum entanglement statistics. The
original conjecture, made by Ryu and Takayanagi [6, 7], states that the emergent geometry in the
bulk theory is such that it depicts the entanglement entropy of a subsystem of the boundary theory
to the area of a co-dimension two minimal surface anchored to the boundary at the entangling
surface, i.e. the surface separating the subsystem from its environment,

SEE =
1

4GN
Area

(
Amin) . (1.1)

A lot of progress has been made since the original conjecture [8 – 10], including an understanding of
the Einstein equations at linear level as equivalent to the first law of entanglement thermodynamics,
a trivial statement for any quantum theory [11, 12].

Co-dimension two minimal surfaces in AdS4, as well as classical string solutions in all di-
mensions are solutions of two-dimensional non-linear sigma models defined in a symmetric target
space. Solving these models is quite difficult due to their non-linear nature, however, it is well
known that they can be reduced to integrable systems. The oldest reduction of this kind is the that
of the O(3) NLSM to the sine-Gordon equation [13, 14], known as Pohlmeyer reduction, which
has been generalized to O(N) and CP(N) NLSMs [15 – 17]. Although the connection between the
original and reduced degrees of freedom is non-local, it can be shown that the reduced system can
be systematically derived from a local Lagrangian density [18 – 21]. Since the emergence of string
theory, the Pohlmeyer reduction of NLSMs describing strings propagating in symmetric spaces
has been developed [22 – 24], including spaces relevant to holographic dualities, such as AdS5×S5

[25 – 27] or AdS4×CP3 [28].
The reduced models for NLSM defined on symmetric spaces are typically multi-component

generalizations of the sine- or sinh-Gordon equation. The simplest possible systems of interest,
which are reducible to a single component system, describe strings propagating in dS3 or AdS3 or
static minimal surface in AdS4. The inversion of Pohlmeyer reduction in general is complicated
due to its non-local nature and due to the fact that it is not a one-to-one mapping. However, recently,
this inversion was achieved for a specific class of solutions of the reduced models via an interesting
connection of the NLSM solutions and the band structure of the n = 1 Lamé potential [29, 30]. In
the following, we review this construction and the basic properties of the acquired solutions.
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2. Non-linear Sigma Models and Pohlmeyer Reduction

Non-linear sigma models with a single component Pohlmeyer counterpart are those defined on
a three dimensional symmetric target space. As an indicative example, in this section, we analyse
the case of strings propagating in AdS3. For this purpose, the consideration of AdS3 as a subspace
of an enhanced higher-dimensional flat space is required. For AdS spaces, this is achieved with the
introduction of an extra time-like dimension, implying that AdS3 can be described as a submanifold
of R(2,2), with metric ηµν = diag{−1,−1,1,1}. Denoting the coordinates in this enhanced space
as Y−1, Y 0, Y 1 and Y 2, AdS3 is the submanifold

Y ·Y =−Λ
2, (2.1)

where we use the notation A ·B≡ ηµνAµBν . Then, the non-linear sigma model action reads,

S =
∫

dξ+dξ−
(
∂+Y ·∂−Y +λ

(
Y ·Y +Λ

2)), (2.2)

where ξ± are the left- and right-moving coordinates, ξ± = (ξ1±ξ0)/2.
The equations of motion for the embedding functions Y take the form

∂+∂−Y =
1

Λ2 (∂+Y ·∂−Y )Y, (2.3)

while a valid solution should also obey the geometric constraint (2.1), as well as the Virasoro
constraints

∂±Y ·∂±Y = 0. (2.4)

Pohlmeyer reduction is realized through the introduction of a base of vectors in the enhanced
four-dimensional space that includes Y , ∂+Y , ∂−Y and another space-like unit vector v4, defined to
be perpendicular to all other basis vectors. The constraints of the problem imply specific magni-
tudes and orthogonality for all basis vectors except for the pair ∂+Y and ∂−Y . Thus, the only degree
of freedom left by the constraints is the angle between the latter, which motivates the definition of
the Pohlmeyer field as,

eϕ := ∂+Y ·∂−Y. (2.5)

Consistency with the constraints and the equations of motion results in the Pohlmeyer field obeying
either the sinh- or cosh-Gordon equation

∂+∂−ϕ =
2

Λ2 coshϕ or ∂+∂−ϕ =
2

Λ2 sinhϕ, (2.6)

depending on circumstances. The situation is similar for strings propagating in dS3. Pohlmeyer
reduction leads to the same equations as in the case of AdS3 with Λ2→−Λ2.

Few differences appear in the study of static minimal surfaces in AdS4 (i.e. minimal surfaces in
H3), too. In this case, the world-sheet coordinates are both space-like, motivating the definition of a
complex world-sheet coordinate z=(ξ1 + iξ0)/2, instead of the left- and right-moving coordinates.
The extra dimension of the enhanced space has to be time-like and the geometric constraint assumes
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the same form as in the AdS3 case, given by equation (2.1). Pohlmeyer reduction leads solely to
the Euclidean cosh-Gordon equation,

∂ ∂̄ϕ =
2

Λ2 coshϕ. (2.7)

The advantage of using a given solution of the Pohlmeyer reduced system to built solutions of
the initial NLSM is apparent in the form of the equations of motion (2.3). Using the definition of
the Pohlmeyer field ϕ , the latter take the form

∂+∂−Y =
1

Λ2 eϕY. (2.8)

Unlike the equations (2.3), which are non-linear in the embedding coordinates, the system of equa-
tions (2.8) are linear and decoupled.

3. Elliptic Solutions of the Non-linear Sigma Models

3.1 Elliptic Solutions of the Reduced System

The sinh- and cosh-Gordon equations are well-known integrable systems with many known
solutions. The usual approach to generate solutions of these systems is the use of Bäcklund trans-
formations starting from the vacuum as a seed solution. These techniques though cannot be used in
the case of cosh-Gordon equation; Athough it does possesses Bäcklund transformations, it does not
have a vacuum. Thus, such methods could investigate only a class of classical strings solutions in
AdS3 and dS3 and furthermore, they are completely inappropriate for the investigation of minimal
surfaces in H3.

In the following, we adopt a different approach that is motivated by the form of the equations
of motion (2.8). Solutions of the reduced system that depend only on one of the two world-sheet
coordinates ξ0 and ξ1 facilitate the solution of the equations of motion via separation of variables.
Such solutions are easy to be found, since they solve an one-dimensional version of the correspond-
ing integrable system.

Without loss of generality, we assume that ϕ depends only on the world-sheet coordinate ξ1. In
the Lorentzian problems these correspond to static solutions of the corresponding reduced systems.
The translationally invariant solutions can be investigated in a similar manner. In the Euclidean
problem, there is no discrimination between solutions that depend of ξ0 or ξ1. For this class of
solutions, equations (2.6) or (2.7) reduce to the ordinary differential equation

ϕ
′′ =−s

1
Λ2

(
eϕ + te−ϕ

)
, (3.1)

where prime denotes differentiation with respect to ξ1. The parameters s and t were introduced
so that all variations of the reduced integrable system can be dealt simultaneously. They take the
values ±1 depending on the case. The latter equation can be integrated to the form

1
2

ϕ
′2 + s

1
Λ2

(
eϕ − te−ϕ

)
= E. (3.2)

3
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Finally, performing the change of variable

y :=−s
1

2Λ2 eϕ +
E
6
, (3.3)

the equation (3.2) is written as,

y′2 = 4y3−
(

E2

3
+

t
Λ4

)
y+

E
3

(
E2

9
+

t
2Λ4

)
. (3.4)

This is the standard form of Weierstrass equation with the moduli taking the specific values

g2 =
E2

3
+

t
Λ4 , g3 =−

E
3

(
E2

9
+

t
2Λ4

)
. (3.5)

Its general solution in the complex domain is given in terms of the Weierstrass elliptic function
℘(ξ1;g2,g3). However, in our case eϕ , and, thus, y, must be real, since it is connected to the real
embedding functions Y µ via the definition of the Pohlmeyer field. Equation (3.4) may have one
or two real solutions in the real domain, depending on the reality of the three roots e1,2,3 of the
cubic polynomial in the right hand side of (3.4). When all three roots are real, let e1 > e2 > e3,
the equation (3.4) has two real solutions in the real domain, an unbounded one taking values in
[e1,+∞) given by

y =℘(ξ1;g2,g3) (3.6)

and a bounded one taking values in [e3,e2] given by

y =℘(ξ1 +ω2;g2,g3) , (3.7)

where ω2 is the imaginary half-period of ℘(ξ1;g2,g3). When there is only one real root e2 and
two complex ones e1 and e3, equation (3.4) has only one real solution in the real domain, which is
unbounded taking values in [e2,+∞) and it is given by expression (3.6).

The specific values of the moduli g2 and g3 lead to simple expressions for the three roots of
the cubic polynomial,

x1 =
E
6
, x2,3 =−

E
12
± 1

4

√
E2 + tm4. (3.8)

The roots xi are plotted as functions of the constant E in figure 1. In all cases, a valid solution of the
form (3.6) or (3.7) should be such that the quantity eϕ is not only real, but also positive, so that the
world-sheet has the correct signature. This imposes the constraint −s(y− x1) ≥ 0, which allows
only the bounded or unbounded solution, depending on circumstances.

The equation (3.2) can be viewed as the energy conservation for en effective one-dimensional
mechanical problem of a point particle under the influence of a hyperbolic potential. In all cases, the
solution describes a scattering or oscillatory motion for the point particle, whose “time of flight” or
period is equal to the real period 2ω1 of the Weierstrass elliptic function ℘(ξ1;g2,g3). Especially
in the case of the cosh-Gordon equation, only scattering solutions exist and it turns out that the
“time of flight” has a global maximum for a specific value of the constant E = E0, satisfying

K (k0) = 2E (k0) , k0 =

√
e2 (E0)− e3 (E0)

e1 (E0)− e3 (E0)
. (3.9)

4
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−m2

m2
−m2

m2

x1

x2

x3

xi xi

E E

cosh-Gordon sinh-Gordon

Figure 1: The roots of the cubic polynomial as function of the constant E

3.2 The Effective Schrödinger Problems

All elliptic solutions of equation (3.4) assume the form

−s
1

Λ2 eϕ = 2(℘(ξ1 +δξ1)− x1) , (3.10)

implying that the equations of motion are written as

d2Y µ

dξ 2
1
− d2Y µ

dξ 2
0

= 2(℘(ξ1 +δξ1)− x1)Y µ , (3.11)

where δξ1 vanishes for the unbounded solution while it is equal to ω2 for the bounded one.
These equations can be solved via separation of variables. We let

Y µ (ξ0,ξ1) := Σ
µ (ξ1)Tµ (ξ0) (3.12)

to yield a pair of ordinary differential equations,

−d2Σµ

dξ 2
1

+2(℘(ξ1 +δξ1)− x1)Σ
µ = κ

µ
Σ

µ , (3.13)

−d2Tµ

dξ 2
0

= κ
µTµ . (3.14)

The equations above can be viewed as a pair of effective Schrödinger problems with identical
eigenvalues, one with a trivial flat potential and another one being the n = 1 Lamé problem. The
solutions to these problems do not have the physical interpretation of a wavefunction, therefore no
normalization condition is required for the effective wavefunctions.

Had we used a translationally invariant solution of the reduced system, the situation would be
identical with Σ and T interchanged. Finally, in the case of minimal surfaces in H3 the situation is
also similar, the difference being the fact that the eigenvalues of the pair of effective Schrödinger
problems are opposite instead of equal.

The solutions of the n = 1 Lamé problem are well known. They are given by the expressions

y± (x;a) =
σ (x±a)

σ (x)σ (±a)
e−ζ (±α)x or y± (x;a) =

σ (x+ω2±a)σ (ω2)

σ (x+ω2)σ (ω2±a)
e−ζ (±a)x, (3.15)

5
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depending on whether we study the unbounded or bounded potential. In both cases the correspond-
ing eigenvalues are

λ =−℘(a) . (3.16)

In the case of three real roots, the eigenfunctions corresponding to eigenvalues obeying λ < −e1

or −e2 < λ < −e3 are real and exponentially diverging in either plus or minus infinity. The same
holds in the case of one real root for λ < −e2. The eigenfunctions corresponding to the comple-
mentary regions, λ >−e3 or −e1 < λ < e2 and in the case of one real root λ >−e2, are complex
conjugate to each other and have the form of a Bloch wave. Furthermore, the eigenfunctions obey
the following “normalization” condition

y+y− = c(℘(x)−℘(a)) , (3.17)

where c = 1 in the case of the unbounded potential and c = sign(e3−℘(a)) in the case of the
bounded potential.

3.3 Construction of the Solutions

Following section 3.2, we have acquired the general solution of the equations of motion (2.8).
The construction of a classical string solution or a minimal surface requires the appropriate se-
lection of four such solutions of the equation of motion, one for each embedding function in the
enhanced space, which also satisfy the geometric constraint (2.1) and the Virasoro constraints (2.4).

The simplest possible construction would involve eigenfunctions corresponding to a single
eigenvalue of the Schrödinger problems for all four components. It turns out that such a construc-
tion is not possible, and, thus, the simplest possible construction involves two distinct eigenvalues.
The geometric constraint and the form of the metric in the enhanced four-dimensional space spec-
ify the sign of these two eigenvalues; in the case of strings propagating in AdS3 the eigenvalues
have to be of the same sign, whereas in the case of strings propagating in dS3 or minimal surfaces
in H3 they have to be of apposite sign.

As an indicative example, we study the case of strings propagating in AdS3 and two positive
eigenvalues, but the construction is similar in all cases. The solution falls within an ansatz of the
form

Y =


c+1 Σ

+
1 (ξ1;a1)cos(`1ξ0)+ c−1 Σ

−
1 (ξ1;a1)sin(`1ξ0)

c+1 Σ
+
1 (ξ1;a1)sin(`1ξ0)− c−1 Σ

−
1 (ξ1;a1)cos(`1ξ0)

c+2 Σ
+
2 (ξ1;a2)cos(`2ξ0)+ c−2 Σ

−
2 (ξ1;a2)sin(`2ξ0)

c+2 Σ
+
2 (ξ1;a2)sin(`2ξ0)− c−2 Σ

−
2 (ξ1;a2)cos(`2ξ0)

 . (3.18)

The functions Σ
±
1,2 (ξ1;a1,2) are in general real linear combinations of the functions y± (ξ1;a1,2)

given by (3.15). Since the eigenvalues of the ξ0 problem and the ξ1 are identical, it follows that

`2
1,2 =−℘(a1,2)−2x1. (3.19)

The geometric constraint (2.1) assumes the form(
c+1 Σ

+
1

)2
+
(
c−1 Σ

−
1

)2−
(
c+2 Σ

+
2

)2−
(
c−2 Σ

−
2

)2
= Λ

2. (3.20)

6
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This equation, combined with the property (3.17), implies that the geometric constraint can be
satisfied only if

c+1 = c−1 ≡ c1, c+2 = c−2 ≡ c2, c2
1 = c2

2 ≡ c2 =± Λ2

℘(a2)−℘(a1)
, (3.21)

Σ
+
1,2 =

1
2

(
y+1,2 + y−1,2

)
, Σ

−
1,2 =

1
2i

(
y+1,2− y−1,2

)
, (3.22)

the sign in (3.21) depending on the choice of the unbounded or bounded solution of the reduced
system. Reality of the solution implies that y±1,2 must be complex conjugate to each other, thus,
they should correspond to Bloch wave within the allowed bands of the n = 1 Lamé potential. This
is a general result; the geometric constraint enforces positive eigenvalues to correspond to Bloch
waves and negative eigenvalues to correspond to non-normalizable states within the gaps of the
Lamé spectrum. Furthermore, equation (3.21) implies that string solutions corresponding to the
unbounded solution of the reduced system obey ℘(a2)−℘(a1)> 0, whereas string solutions that
correspond to the bounded solution of the reduced system obey ℘(a2)−℘(a1)< 0.

It is a matter of simple algebra to show that the Virasoro constraint (2.4) assumes the form

℘(a1)+℘(a2) =−x1. (3.23)

Putting everything together, finding a string solution or a minimal surface is equivalent to
finding a pair of ℘(a1) and ℘(a2), such that:

1. They take appropriate values, so that the eigenvalues of corresponding effective Schrödinger
problems (3.19) have the appropriate sign,

2. They take appropriate values, so that the corresponding solutions of the n = 1 Lamé problem
lie within the bands or the gaps of the spectrum, depending on the sign of the corresponding
eigenvalues.

3. They obey equation (3.23).

The above constraints can be easily solved graphically, as in figure 2 for strings in AdS3 and positive
eigenvalues. The solutions in general depends on whether the root x1 is identified with e1, e2 or e3.

4. Properties of the Solutions

4.1 String Solutions in AdS3

To better visualize the form of the constructed solutions, we convert to global coordinates

Y−1 = Λ

√
1+ r2 cos t, Y 0 = Λ

√
1+ r2 sin t, Y 1 = Λr cosϕ, Y 2 = Λr sinϕ. (4.1)

The string solutions associated to the unbounded configurations take the parametric form

r =

√
℘(ξ1)−℘(a2)

℘(a2)−℘(a1)
, t = `1ξ0− argy+ (ξ1;a1) , ϕ = `2ξ0− argy+ (ξ1;a2) . (4.2)

7
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e1

-2e2

e2

e3

−2e3

e1

e2

e3

e3 e2 -2e2 e1 e3 e2 e1 −2e3

℘(a1) ℘(a1)

℘
(a

2)

x1 = e2, E < 0 x1 = e3

κ1,2 > 0

κ1,2 within the bands

℘(a1)+℘(a2) =−x1

unbounded solutions

bounded solutions

Figure 2: The pairs of ℘(a1) and ℘(a2) that generate classical string solutions in AdS3 built from eigen-
states of the effective Schrödinger problems corresponding to two distinct positive eigenvalues

Likewise, for the bounded configurations, the corresponding string solution is

r =

√
℘(a2)−℘(ξ1 +ω2)

℘(a1)−℘(a2)
, t = `1ξ0− argy+ (ξ1;a1) , ϕ = `2ξ0− argy+ (ξ1;a2) . (4.3)

It is clear that in both cases, the solution corresponds to a rigidly rotating string with constant
angular velocity ω = `2/`1. For the unbounded solutions, the angular velocity is smaller than one
and the solution extends up to infinite radius, whereas for the bounded ones the angular velocity is
greater than one and the solution extends up to maximum radius. This is kinematically expected;
for a rigidly rotating configuration in AdS3 with ω > 1, there is a finite value of the radial coordinate
r = arctanh(1/ω), where the velocity reaches the speed of light. At this radius the solution becomes
singular presenting spikes and it turns out that the solution coincides with the AdS3 spiky string
solutions [31]. A bounded solution should obey appropriate periodic conditions so that it is single
valued in the enhanced space, namely the angular opening δϕ between two consecutive spikes
should equal δϕ = 2π/n, n ∈ Z.

For the case x1 = e3, there is an interesting limit as ℘(a1,2)→ e1,2. In this limit, the n = 1
Lamé eigenfunctions that appear in the solution correspond to the edge of the allowed bands, and,
thus, they become both real and periodic. Therefore, the solution assumes the form φ−ωt = 0 and
it describes a straight string rotating like a rigid rod around its center. This is the Gubser-Klebanov-
Polyakov solution [1], which in this context arises as a degenerate limit of a spiky string with two
spikes.

In a similar manner, one can construct string solutions corresponding to translationally invari-

8
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ant solutions of the reduced system. Such solutions assume the parametric form,

r =

√
℘(a2)−℘(ξ0 +ω2)

℘(a1)−℘(a2)
, t = `1ξ1− argy+ (ξ0;a1) , ϕ = `2ξ1− argy+ (ξ0;a2) . (4.4)

These solutions can be understood as the outcome of the interchange of the angle ϕ and time
applied on a finite spiky string. The solution looks like a hoop string rotating with time-dependent
angular velocity and radius. The radius varies between two extrema and the analogue of the spike
appears at the maximum radius, where the hoop string reaches the speed of light and gets violently
reflected towards smaller radii. The periodic dependence of the enhanced coordinates on the global
time coordinate implies that the period of the oscillation should equal T = 2π/n, n ∈ Z, similarly
to the periodic conditions applied to the finite spiky strings.

Solutions corresponding to negative eigenvalues have quite complicated expressions in global
coordinates. If studied in a hyperbolic slicing of AdS3, they look like a periodic spiky structure
translating without changing shape. More details are provided in [29].

4.2 Minimal Surfaces in H3

The methods of section 3 can be applied for the construction of static minimal surfaces in
AdS4. Two eigenvalues of opposite sign are required, κ1 < 0, κ2 > 0. The fact that κ1 < κ2

enforces them to correspond to the finite gap and band of the n = 1 Lamé spectrum, respectively.
It turns out that only unbounded solutions can be found. This is expected since bounded surfaces
would be shrinkable to a point, and, thus, not minimal. The graphic solution for ℘(a1) and ℘(a2)

is depicted in figure 3. More details are provided in [30].

e1

-2e2

e2

e3

e1

e2

-2e2

e3

e3 e2 -2e2 e1 e3 -2e2 e2 e1

℘(a1) ℘(a1)

℘
(a

2)

E < 0 E > 0

κ1 > 0, κ2 < 0

κ1 in gap, κ2 in band

℘(a1)+℘(a2) =−x1

minimal surface solutions

Figure 3: The pairs of ℘(a1) and ℘(a2) that lead to elliptic minimal surfaces
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The family of elliptic minimal surfaces in H3 is a two-parameter family. One of the parameters
is the integration constant E; the other is the parameter ℘(a1). Surfaces characterized by the same
constant E have identical principal curvatures and they comprise an associate family of minimal
surfaces. As a consequence, they share the same local stability properties. The moduli space of the
solutions can be visualized as a region bounded by three smooth curves connected in a non-smooth
way. These three curves coincide with the boundaries of the segments of solutions in figure 3 and
provide interesting limits of the elliptic minimal surfaces:

• For ℘(a1) = e3, the elliptic minimal surfaces are ruled surfaces, the helicoids in H3.

• For ℘(a1) =−2e2, the minimal surfaces are surfaces of revolution, the catenoids in H3

• For ℘(a1) = e2, the elliptic minimal surfaces are conical surfaces.

In the following, we use the Poincaré coordinates in order to study some properties of the
elliptic minimal surfaces,

Y−1 =
1
2z

z−1 (z2 + r2 +Λ
2), Y 0 =

1
2z

(
z2 + r2−Λ

2), Y 1 =
Λ

z
r cosϕ, Y 2 =

Λ

z
r sinϕ. (4.5)

The minimal surfaces intersect the boundary when the Weierstrass elliptic function diverges, namely
at ξ1 = 2nω1. Thus, surfaces that are appropriately anchored at the boundary are spanned by
ξ1 ∈ (2nω1,2(n+1)ω1) and ξ0 ∈ R, where n ∈ Z. The trace of the minimal surfaces on the
boundary is the union of two logarithmic spirals with the same exponent, namely

r = Λeωϕ , r = Λeω(ϕ−δϕ), (4.6)

ω = `1/`2, δϕ = π−2 [`1Im(ζ (ω1)a2−ζ (a2)ω1)+ `2Re(ζ (ω1)a1−ζ (a1)ω1)]/`1. (4.7)

Thus, the entangling curve is completely determined by two parameters. Minimal surfaces that
share the same values of ω and δϕ (or δϕ’s that sum to 2π) correspond to identical boundary
conditions, and, thus, geometric phase transitions between them are possible. In the following,
surfaces with δϕ > 2π are not considered, since they have self-intersections. The special case of
the catenoids is an exception to the above, since the entangling curve is the union of two concentric
circles. In this case, the boundary conditions are determined by the ratio of the two radii.

The area of the elliptic minimal surfaces, which is connected to the entanglement entropy via
the Ryu-Takayanagi conjecture, can be expressed as

A = ΛL−
√

2Λ
2

√
1−ω2

E

(
E
3

ω1 +2ζ (ω1)

)∫ +∞

−∞

dϕ. (4.8)

The first term is the usual “area law”. The second term is the universal constant term, which
diverges due to the entangling curve being non-compact. Catenoids are the only exception; in this
case the integral

∫ +∞

−∞
dϕ is simply equal to 2π . We define the quantity

a0 (E,ω) :=−
√

2Λ
2

√
1−ω2

E

(
E
3

ω1 (E)+2ζ (ω1 (E))
)
, (4.9)

which can be used as a measure of comparison for the areas of minimal surfaces corresponding
to the same boundary conditions. It can be shown that a0 is negative and has a local maximum at
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Ea0 E0

ω = 0.1
ω = 0.5
ω = 1.5
ω = 2.0

Figure 4: The coefficient a0 as function of the constant E for various values of the exponent ω

E = E0, where E0 is the value of the constant E that maximizes the real period of the Weierstrass
function, given by equation (3.9). The dependence of a0 on the constant E is depicted in figure 4.

Moving in the moduli space of elliptic minimal surfaces keeping ω constant, the constant E
varies between 0 and 1/ω −ω , the latter corresponding to a helicoid. It turns out that δϕ , along
such a curve in the moduli space, has the same monotonicity properties as a0. Furthermore, δϕ

vanishes for E = 0 and is equal to π at the helicoid limit. The above imply that there is a critical
ω0, defined as E0 = 1/ω0−ω0; surfaces with ω < ω0 do not have a partner surface with the same
δϕ , whereas surfaces with ω > ω0 have two partner minimal surfaces with the same boundary
conditions. Two such surfaces are depicted in figure 5. Let E1 < E2 < E3 be the constants E

Figure 5: Two elliptic minimal surfaces with the same boundary conditions defined by ω = 1/4 and δϕ = π

of the three surfaces with identical boundary conditions. The monotonicity of δϕ implies that
E1,2 <E0 <E3. Equation (4.9), implies that a0 (E1,ω)< a0 (E2,ω)< a0 (E3,ω). Finally, following
[32], surfaces with E > E0 are locally unstable. Thus,

• The surface with E = E3 is locally and globally unstable.

• The surface with E = E2 is locally stable, but globally unstable.

• The surface with E = E1 is locally and globally stable.

Therefore, as the minimum E surface is always the globally preferred, no geometric phase transi-
tions occur, as the boundary conditions are varied.
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The analysis for the special case of the catenoids has already been performed in the context of
Wilson loops (i.e. [33]). For completeness, we summarize the results in our language. Let f < 1
be the ratio of the radii of the two circles comprising the entangling curve. Then, for any ratio
f > f0, where f0 corresponds to the catenoid with E = E0, there are two catenoids, one locally
stable and one locally unstable; for f < f0 there is none. For any value of f , there is a Goldschmidt
solution, being the union of the minimal surfaces corresponding to each of the boundary circles.
Such surfaces are depicted in figure 6. Equation (4.9) implies that there is a critical value of the ratio

Figure 6: A catenoid and a Goldschmidt minimal surface with the same boundary conditions

fc > f0, corresponding to an integration constant Ec satisfying Ecω1 (Ec)+6ζ (ω1 (Ec)) = 3
√

2Ec,
so that for f < fc the Goldschmidt minimal surface is the globally preferred one, whereas for f > fc

the stable catenoid is the globally preferred surface. Therefore, there is a geometric phase transition
between a catenoid and a Goldschmidt solution.

5. Discussion

We developed a method, based on the inversion of Pohlmeyer reduction, to construct solutions
to NLSMs defined on a three-dimensional symmetric target space, using as a starting point, a
specific class of solutions of the reduced theory, namely solutions that depend on only one of the
two world-sheet coordinates. For this class of solutions, the equations of motion take the form of
four pairs of effective Schrödinger problems. Each pair consists of a flat potential and and n = 1
Lamé potential with connected eigenvalues. Consistency with the constraints select only Bloch
waves with positive eigenvalues and non-normalizable states with negative eigenvalues.

Application of the above method to the NLSM describing strings propagating in AdS3 results
in a wide class of classical string solutions. This includes the rigidly rotating spiky strings [31],
rigidly rotating strings that extend to the AdS boundary, as well as hoop strings with periodically
varying radius and angular velocity.

It would be interesting to apply this techniques to other target space geometries such as the
sphere or the projective plane, as well as to higher dimensional target geometries, where Pohlmeyer
reduction results in multi-component generalizations of the sine- and sinh-Gordon equations. Such
generalizations would be particularly interesting in the case of space-times that are relevant to
holographic dualities, such as AdS5×S5 or AdS4×CP3.

Inverting Pohlmeyer reduction in the NLSM describing minimal surfaces in H3 results in the
construction of a two-parameter family of minimal surfaces, interpolating between the helicoids,
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catenoids and cusps. These surfaces intersect the AdS boundary at the union of two logarithmic
spirals or two concentric circles in the case of catenoids. The local stability properties of this
surfaces interestingly are connected with the specific energy that maximizes the “time of flight” of
a point particle moving under the influence of a sinh potential. Furthermore, there are in general
more than one elliptic minimal surfaces that correspond to the same boundary conditions. However,
in the more general case of spiral boundary conditions, a geometric phase transition never occurs,
unlike the special case of catenoids, where a geometric phase transition between a catenoid and a
disjoint surface occurs. Such phase transitions may enlighten the role of entanglement entropy as
an order parameter in confinement-deconfinement phase transitions.

An interesting application of the elliptic minimal surfaces in the framework of the Ryu-
Takayanagi conjecture would be the verification of the equivalence of the linearized Einstein equa-
tions to the first law of entanglement thermodynamics. This has been shown in the case of minimal
surfaces corresponding to a circular entangling curve [11, 12]. However, these minimal surfaces
are special; they have both principal curvature vanishing. Verification of the above equivalence
in minimal surfaces with non-trivial curvature, such as the elliptic surfaces presented here, would
greatly support the idea of gravity emerging as a quantum entropic force.
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