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1. Exceptional Field Theory

The low energy effective description of M-theory is known to be 11-dimensional supergravity
with the coupling of the type IIA string promoted to the radius of the eleventh dimension. The
natural extension of this idea to the type IIB string gives rise to F-theory [1] where the complex
coupling in the IIB theory is taken to have its origin in the complex modulus of a torus fibred
over the usual ten dimensions of the type IIB string theory. Thus by definition, F-theory is the
12-dimensional lift of type IIB string theory.

The status of this 12-dimensional theory has been somewhat different to that of its IIA spouse
with no direct 12-dimensional description in terms of an action and fields that reduce to the IIB
theory. Indeed, there is no 12-dimensional supergravity and thus no limit in which the eleventh
and twelfth dimension can be taken to be “large”, unlike in the M-theory case. The emphasis has
thus largely been on using algebraic geometry to describe F-theory compactifications such that now
F-theory is synonymous with the study of elliptically fibred Calabi-Yau manifolds.

The complex coupling of the IIB theory is naturally acted on by an SL(2) S-duality, which is
a symmetry of the theory. F-theory thus provides a geometric interpretation of this duality. The
idea of reimagining a duality in a geometric way has reappeared in the form of double field theory
(DFT) [2] and exceptional field theory (EFT) [3]. Perhaps the key development that allows for the
construction of these theories is that the new geometry is not a conventional one, but an “extended
geometry” based on the idea of “generalised geometry” [4, 5]. For instance, a key role is played by
a “generalised metric”, in place of the torus modulus, and one introduces an extended space with a
novel “generalised diffeomorphism” symmetry.

The primary idea behind exceptional field theory is to make the exceptional symmetries of
eleven-dimensional supergravity manifest. The appearance of the exceptional groups in dimen-
sionally reduced supergravity theories was first discussed in [6]. In EFT one first performs a de-
composition of eleven-dimensional supergravity – but with no reduction or truncation – into an
(11−d)×d split. Then one supplements the d so-called “internal” directions with additional co-
ordinates to linearly realize the exceptional symmetries. That is one extends the eleven dimensions
of supergravity to

M11 = M11−d×Md −→M11−d×MdimEd(d) (1.1)

where dimEd(d) is the dimension of the relevant representation of the exceptional group Ed(d) and
MdimEd(d) is a coset manifold that comes equipped with the coset metric of Ed(d)/H (where H is the
maximally compact subgroup of Ed(d)).

The U-duality groups are related to the embedding of the eleven dimensions in the extended
space. The combination of p-form gauge transformations and diffeomorphism give rise to a con-
tinuous local Ed(d) symmetry. This however is not U-duality which is a global discrete symmetry
that only occurs in the presence of isometries. (See [7] for the equivalent discussion of T-duality in
DFT).

Crucially however there is also a physical section condition that provides a constraint in EFT
that restricts the coordinate dependence of the fields to a subset of the dimensions and thus there
naturally appears a physical submanifold which is identified as the usual spacetime. When there
are no isometries present this section condition constraint produces a canonical choice of how
spacetime is embedded in the extended space. However, in the presence of isometries there is an
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ambiguity in how one identifies the submanifold in the extended space. This ambiguity is essen-
tially the origin of U-duality with different choices of spacetime associated to U-duality related
descriptions. (This is discussed in detail for the case of DFT in [8] and for EFT in [9]).

In EFT a solution to the Ed(d) section condition will provide either a d-dimensional space
or a (d−1)-dimensional space (where crucially the d − 1 solution is not a subspace of the d-
dimensional space). The two solutions are distinct (and not related by any element of Ed(d)).
The d-dimensional solution is associated to the M-theory description and the (d−1)-dimensional
solution is associated to the type IIB description.

A completely generic solution that solves the section condition will be in one set or the other
and one will be able to label it as an M or IIB solution. However, if there are two isometries in the
M-theory solution then again we have an ambiguity and one will be able interpret the solution in
terms of IIB section with one isometry. This ambiguity gives the F-theory/M-theory duality. It is
the origin of how M-theory on a torus is equivalent to IIB on a circle [10]. Thus in summary the
F-theory/M-theory duality is an ambiguity in the identification of spacetime that occurs when there
are two isometries in an M-theory solution.

The relation between M-theory/Type IIA on the one side and F-theory/Type IIB on the other is
clearest in the “smallest” EFT where d = 2, the U-duality group is SL(2)×R+ and just one extra
dimension is needed for the construction. This 12-dimensional theory has been constructed in [11]
where it has been established that the SL(2)×R+ EFT provides a local action for F-theory. These
results where presented at the “Workshop on Geometry and Physics" at Ringberg Castle (20 - 25
November 2016) and will be summarised here.

2. The SL(2)×R+ EFT

The goal is to provide an overview of the exceptional field theory in 9+ 3 dimensions and
to describe the general features and the setup of the extended space. Then the field content and
the action are presented. The details of the construction can be found in the original paper [11].
The theory we will discuss may be thought of as a 12-dimensional theory with a 9+3 split of the
coordinates, so that we have

• nine “external” coordinates, xµ ,

• three “extended” coordinates, Y M that live in the 21⊕1−1 reducible representation of SL(2)×
R+ (where the subscripts denote the weights under the R+ factor). To reflect the reducibility
of the representation1 we further decompose the coordinates Y M = (yα ,ys) where α = 1,2
transforms in the fundamental of SL(2), and s stands for “singlet”.

The fields and symmetry transformation parameters of the theory can in principle depend on all of
these coordinates. However, as always happens in exceptional field theory and double field theory,
there is a consistency condition which reduces the dependence on the extended coordinates. This
condition is usually implemented as the section condition, which directly imposes that that the
fields cannot depend on all extended coordinates. In our case, it takes the form

∂α∂s = 0 , (2.1)
1The reducibility of the coordinate representation is not a feature of higher rank duality groups.
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with the derivatives to be thought of as acting on any field or pair of fields, so that we require both
∂α∂sO = 0 and ∂αO1∂sO2 +∂αO2∂sO1 = 0. The origin of the section condition is the requirement
that the algebra of symmetries closes and is discussed in more detail in [11].

The action we will present has a manifest invariance under a global SL(2)×R+ symmetry,
acting on the indices M = (α,s) in an obvious way. In addition, the exceptional field theory is
invariant under a set of local symmetries.

2.1 Local and global symmetries

Alongside the introduction of the extended coordinates Y M one constructs so called “gener-
alised diffeomorphisms". In the higher rank groups, these give a unified description of ordinary dif-
feomorphisms together with the p-form gauge transformations. Although the group SL(2)×R+ is
too small for the p-form gauge transformations to play a role here, the generalised diffeomorphisms
provide a combined description of part of the ordinary local symmetries of IIB and 11-dimensional
supergravity.

The generalised diffeomorphisms, generated by a generalised vector ΛM, act as a local SL(2)×
R+ action, called the generalised Lie derivative LΛ. These act on a vector, V M of weight λV in
a form which looks like the usual Lie derivative LΛ plus a modification involving the so-called
“Y-tensor” which in the case of SL(2)×R+ [12] is symmetric on both upper and lower indices and
has the only non-vanishing components Y αs

β s = δ α

β

δΛV M ≡LΛV M = Λ
N

∂NV M−V N
∂NΛ

M +Y MN
KL∂NΛ

KV L +(λV +ω)∂NΛ
NV M . (2.2)

There is also a universal weight term, +ω∂NΛNV M. The constant ω depends on the number
n = 11− d of external dimensions as ω = − 1

n−2 and for us ω = −1/7. The gauge parameters
themselves are chosen to have specific weight λΛ = 1/7, which cancels that arising from the ω

term.
The transformation rules for the components V α and V s of a generalised vector V M are

LΛV α = Λ
M

∂MV α −V β
∂β Λ

α − 1
7

V α
∂β Λ

β +
6
7

V α
∂β Λ

β ,

LΛV s = Λ
M

∂MV s +
6
7

V s
∂β Λ

β − 8
7

V s
∂sΛ

s .

(2.3)

Then by requiring the Leibniz property for the generalised Lie derivative, we can derive the trans-
formation rules for tensors in other representations of SL(2)×R+, such as the generalised metric
MMN . (The form fields must be treated separately, see [11].)

In conventional geometry, diffeomorphisms are generated by the Lie derivative and form a
closed algebra under the Lie bracket. The algebra of generalised diffeomorphisms involves the
E-bracket,

[U,V ]E =
1
2
(LUV −LVU) . (2.4)

The condition for closure of the algebra is

LULV −LV LU = L[U,V ]E (2.5)
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which does not happen automatically. A universal feature in all exceptional field theories is that we
need to impose the section condition [13] so the algebra closes. This is the constraint (2.1) given
above.

The other diffeomorphism symmetry of the action consists of external diffeomorphisms, para-
metrised by vectors ξ µ . These are given by the usual Lie derivative

δξV µ ≡ LξV µ = ξ
νDνV µ −V νDνξ

µ + λ̂V Dνξ
νV µ , (2.6)

with partial derivatives replaced by the derivative Dµ which is covariant under internal diffeomor-
phisms, and explicitly defined by

Dµ = ∂µ −δAµ
. (2.7)

where Aµ is the first of the gauge fields introduced in the tensor hierarchy of the next subsection.
The weight λ̂V of a vector under external diffeomorphisms is independent of the weight λV under
generalised diffeomorphisms.

For this to work, the gauge vector Aµ must transform under generalised diffeomorphisms as

δΛAµ
M = DµΛ

M . (2.8)

The external metric and form fields then transform under external diffeomorphisms in the usual
manner given by the Leibniz rule, while the generalised metric is taken to be a scalar, δξ MMN =

ξ µDµMMN .

2.2 Field Content

The field content of the theory is as follows. The metric-like degrees of freedom are

• an “external” metric, gµν ,

• a generalised metric, MMN which parametrises the coset (SL(2)×R+)/SO(2). (From the
perspective of the “external” nine dimensions, this metric will correspond to the scalar de-
grees of freedom.) The reducibility of the Y M coordinates implies that the generalised metric
is reducible and thus may be decomposed as,

MMN = Mαβ ⊕Mss . (2.9)

The coset (SL(2)×R+)/SO(2) implies we have just three degrees of freedom described by the
generalised metric. This means that Mss must be related to detMαβ . One can thus define Mαβ

such that
Hαβ ≡ (Mss)

3/4Mαβ (2.10)

has unit determinant. The rescaled metric Hαβ and Mss can then be used as the independent
degrees of freedom when constructing the theory. This unit determinant matrix Hαβ will appear
naturally in the Type IIB/F-theory description.

In addition, we have a hierarchy of gauge fields, similar to the tensor hierarchy of gauged
supergravities [14]. These are form fields with respect to the external directions and transform in
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different representations of the duality group:

Representation Gauge potential Field strength
21⊕1−1 Aµ

M Fµν
M

20 Bµν
αs Hµνρ

αs

11 Cµνρ
[αβ ]s Jµνρσ

[αβ ]s

10 Dµνρσ
[αβ ]ss Kµνρσλ

[αβ ]ss

21 Eµνρσκ
γ[αβ ]ss Lµνρσκλ

γ[αβ ]ss

20⊕12 Fµνρσκλ
M not needed

(2.11)

These gauge fields also transform under the generalised diffeomorphisms and external diffeo-
morphisms described above, as well as various gauge symmetries of the tensor hierarchy (see [11]
for details). The field strengths are defined such that the fields transform covariantly under gener-
alised diffeomorphisms, i.e. according to their index structure and the rules given above, and are
gauge invariant under a hierarchy of interrelated gauge transformations as detailed in [11].

We also need to specify the weight λ of each object. It is conventional to choose the gener-
alised metric to have weight zero under generalised diffeomorphisms. Meanwhile, the sequence
of form fields A,B,C, . . . are chosen to have weights λA = 1/7, λB = 2/7, λC = 3/7 and so on.
Finally, we take the external metric gµν to be a scalar of weight 2/7.

2.3 The Action

The presence of the two kinds of diffeomorphism symmetries may be used to fix the action up
to total derivatives. The resulting general form of the action, which is common to all exceptional
field theories is given schematically as follows,

S =
∫

d9xd3Y
√

g
(

R̂+Lskin +Lgkin +
1
√

g
Ltop +V

)
. (2.12)

The constituent parts are (omitting total derivatives):

• the “covariantised” external Ricci scalar, R̂, which is

R̂ =
1
4

gµνDµgρσ Dνgρσ − 1
2

gµνDµgρσ Dρgνσ +
1
4

gµνDµ lngDν lng+
1
2

Dµ lngDνgµν .

(2.13)

• a kinetic term for the generalised metric containing the scalar degrees of freedom

Lskin =−
7

32
gµνDµ lnMssDν lnMss +

1
4

gµνDµHαβ DνH αβ , (2.14)

• kinetic terms for the gauge fields

Lgkin =−
1

2 ·2!
MMNFµν

MF µνN− 1
2 ·3!

Mαβ MssHµνρ
αsH µνρβ s

− 1
2 ·2!4!

MssMαγMβδ Jµνρσ
[αβ ]sJ µνρσ [γδ ]s .

(2.15)

We do not include kinetic terms for all the form fields appearing in (2.11). As a result, not
all the forms are dynamical. We will discuss the consequences of this below.
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• a topological or Chern-Simons like term which is not manifestly gauge invariant in 9+3
dimensions. In a standard manner however we may write this term in a manifestly gauge
invariant manner in 10+3 dimensions as

Stop = κ

∫
d10xd3Y ε

µ1...µ10
1
4

εαβ εγδ

[
1
5

∂sKµ1...µ5
αβ ssKµ6...µ10

γδ ss

−5
2
Fµ1µ2

sJµ3...µ6
αβ sJµ7...µ10

γδ

+
10
3

2Hµ1...µ3
αsHµ4...µ6

β sJµ7...µ10
γδ

]
.

(2.16)

The index µ is treated to an abuse of notation where it is simultaneously 10- and 9-dimen-
sional. (This extra dimension is purely a notational convenience and is unrelated to the extra
coordinates present in Y M.) The above term is such that its variation is a total derivative and
so can be written again in the correct number of dimensions. The overall coefficient κ is
found to be κ =+ 1

48·5! .

• a scalar potential

V =
1
4
M ss

(
∂sH

αβ
∂sHαβ +∂sgµν

∂sgµν +∂s lng∂s lng
)

+
9
32

M ss
∂s lnMss∂s lnMss−

1
2
M ss

∂s lnMss∂s lng

+M
3/4
ss

[
1
4
H αβ

∂αH γδ
∂β Hγδ +

1
2
H αβ

∂αH γδ
∂γHδβ +∂αH αβ

∂β ln
(

g1/2M
3/4
ss

)
+

1
4
H αβ

(
∂αgµν

∂β gµν +∂α lng∂β lng+
1
4

∂α lnMss∂β lnMss +
1
2

∂α lng∂β lnMss

)]
.

(2.17)

This theory expresses the dynamics of 11-dimensional supergravity and 10-dimensional type
IIB supergravity in a duality covariant way. In order to do so, we have actually increased the
numbers of degrees of freedom by simultaneously treating fields and their electromagnetic duals
on the same footing. This can be seen in the collection of form fields in (2.11). For instance,
although 11-dimensional supergravity contains only a three-form, here we have additional higher
rank forms which can be thought of as corresponding to the six-form field dual to the three-form.

The action for the theory deals with this by not including kinetic terms for all the gauge fields.
The field strength Kµνρσκ of the gauge field Dµνρσ only appears in the topological term (2.16).
The field Dµνρσ in fact also appears in the definition of the field strength Jµνρ , under a ∂M

derivative. One can show that the equation of motion for this field is

∂s

(
κ

2
ε

µ1...µ9εαβ εγδ Kµ5...µ9
γδ ss− e

1
48

MssMαγMβδ J µ1...µ4γδ s
)
= 0 . (2.18)

The expression in the brackets should be imposed as a duality relation relating the field strength
Kµνρσλ to Jµνρσ , and hence removing seemingly extra degrees of freedom carried in the gauge
fields which are actually just the dualisations of physical degrees of freedom. The above relation is
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quite important – for instance the proof that the EFT action is invariant under diffeomorphisms is
only obeyed if it is satisfied.

As for the remaining two gauge fields, the equation of motion following from varying with
respect to Eµνρσκ is trivially satisfied (it only appears in the field strength Kµνρσκ ), while Fµνρσκλ

is entirely absent from the action.
Each individual term in the general form of the action (2.12) is separately invariant under

generalised diffeomorphisms and gauge transformations. The external diffeomorphisms though
mix the various terms and so by requiring invariance under these transformations one may then fix
the coefficients of the action.

3. Relation to M-Theory and F-Theory

The SL(2)×R+ exceptional field theory is equivalent to 11-dimensional and 10-dimensional
IIB supergravity, in a particular splitting inspired by Kaluza-Klein reductions. The details of this
split and the precise relationships between the fields of the exceptional field theory (gµν ,MMN ,

Aµ
M,Bµν

α,s,Cµνρ
αβ ,s,Dµνρσ

αβ ,ss) on the one side and those of M-theory (Gµν ,γαβ ,Aµ
α ,Ĉµ̂ ν̂ ρ̂)

and type IIB (Gµν ,φ ,Aµ
s,ϕ,C0,Ĉµ̂ ν̂

α ,Ĉ
µ̂ ν̂ ρ̂ λ̂

) on the other side are given in [11]. In summary,
these dictionaries can be written as follows (note that x̂µ̂ is either (xµ ,yα) or (xµ ,ys) in the two
cases).

For M-theory, we impose the M-theory section condition, ∂s = 0. Thus, the fields of our theory
depend on the coordinates xµ and yα , which are taken to be the coordinates of 11-dimensional su-
pergravity in a 9+2 splitting. Then one has for the degrees of freedom coming from the spacetime
metric, with the Kaluza-Klein vector Aµ

α = γαβ Gµβ , and the gauge fields (γ = detγαβ )

gµν = γ
1/7
(

Gµν − γαβ Aµ
αAν

β

)
, Aµ

s =
1
2

ε
αβĈµαβ ,

Hαβ = γ
−1/2

γαβ , Bµν
α,s = ε

αβĈµνβ +
1
2

ε
βγA[µ

αĈν ]βγ , (3.1)

Mss = γ
−6/7 , Cµνρ

αβ ,s = ε
αβ

(
Ĉµνρ −3A[µ

γĈνρ]γ +2A[µ
γAν ]

δĈργδ

)
.

For type IIB, we impose the IIB section, ∂α = 0. The fields then depend on the coordinates
xµ and ys, which become the coordinates of 10-dimensional type IIB supergravity in a 9+1 split.
The degrees of freedom from the spacetime metric with φ ≡ Gss and the Kaluza-Klein vector
Aµ

s = φ−1Gµs parametrise the external metric and the components of the generalised metric as

gµν = φ
1/7 (Gµν −φAµ

sAν
s) Mαβ = φ

−6/7Hαβ , Mss = φ
8/7 . (3.2)

The Kaluza-Klein vector Aµ
s can be identified as the s component of the gauge field Aµ

M. The
parametrisation of Hαβ in terms of the axio-dilaton τ =C0 + ie−ϕ is given by

Hαβ =
1
τ2

(
1 τ1

τ1 |τ|2

)
= eϕ

(
1 C0

C0 C2
0 + e−2ϕ

)
. (3.3)
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The dictionary for the gauge fields is

Aµ
α = Ĉµs

α , Bµν
α,s = Ĉµν

α +A[µ
sĈν ]s

α ,

Cµνρ
αβ ,s = ε

αβĈµνρs +3Ĉ[µ|s|
[αĈνρ]

β ]−2Ĉ[µ|s
αĈν |s|

β Aρ]
s ,

Dµνρσ
αβ ,ss = ε

αβ
(
Ĉµνρσ +4A[µ

sĈνρσ ]s
)
+6Ĉ[µν

[αĈρ|s|
β ]Aσ ]

s .

(3.4)

Above we have summarized the rules for showing the equivalence of the SL(2)×R+ EFT to
both 11-dimensional supergravity and 10-dimensional type IIB supergravity. Let us now elaborate
on the connection to F-theory, rather than just type IIB supergravity.

Figure 1: The relation of supergravity theories in
nine, ten, eleven and twelve dimensions. Note here
D denotes the overall dimensionality of the theory.

What is F-theory? Primarily we will
take F-theory to be a 12-dimensional lift of
IIB supergravity that provides a geometric
perspective on the SL(2) duality symmetry.
It provides a framework for describing (non-
perturbative) IIB vacua with varying τ , in
particular it is natural to think of sevenbrane
backgrounds as monodromies of τ under the
action of SL(2). Equivalently, there is a pro-
cess for deriving non-perturbative IIB vacua
from M-theory compactifications to a dimen-
sion lower. Crucially, singularities of the 12-
dimensional space are related to D7-branes.
We take this duality with M-theory to be the
second key property of F-theory.

We usually view the 12-dimensional
space of F-theory as consisting of a torus
fibration of 10-dimensional IIB. The group
of large diffeomorphisms on the torus is
then viewed as a geometric realisation of the
SL(2) S-duality of IIB.

In the SL(2)×R+ EFT a similar picture
arises. This is because we take the group of large generalised diffeomorphisms acting on the ex-
tended space to give the SL(2)×R+ duality group. The EFT is subject to a single constraint equa-
tion, the section condition, with two inequivalent solutions. One solution of the constraint leads
to M-theory or at least 11-dimensional supergravity, and one leads to F-theory. Thus SL(2)×R+

EFT is a single 12-dimensional theory containing both 11-dimensional supergravity and F-theory,
allowing us to naturally realise the M-theory / F-theory duality.

If we choose the IIB section, we can interpret any solutions as being 12-dimensional but with
at least two isometries in the 12-dimensional space. These two isometries lead to the 2-dimensional
fibration which in F-theory consists of a torus.

Finally, the fact that the generalised diffeomorphisms, not ordinary diffeomorphisms, play
the key role here also allows one to use the section condition to “dimensionally reduce” the 12-
dimensional SL(2)×R+ to 10-dimensional IIB (as well as 11-dimensional supergravity) as ex-
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plained above. This explicitly shows how F-theory, interpreted as the SL(2)×R+ EFT, can be a
12-dimensional theory, yet reduce to the correct 11-dimensional and type IIB supergravity fields.
The relation between the various theories in nine, ten, eleven and twelve dimensions is depicted in
Figure 1.

4. Sevenbranes

In F-theory, a vital role is played by backgrounds containing sevenbranes. In this section we
discuss some features of how one may view sevenbranes and their singularities in the context of
the SL(2)×R+ EFT.

Sevenbrane solutions of type IIB supergravity have non-trivial metric and scalar fields τ . From
the point of view of EFT, all of these degrees of freedom are contained within the metric gµν and
the generalised metric MMN . Thus we may specify entirely a sevenbrane background by giving
these objects. Below we will use the notation

ds2
(9) = gµνdxµdxν , ds2

(3) = Mαβ dyαdyβ +Mss(dys)2 , (4.1)

to specify the solutions. It is not obvious that one should view the generalised metric as providing a
notion of line element on the extended space, so in a sense this is primarily a convenient shorthand
for expression the solutions.

We consider a sevenbrane which is extended along six of the “external directions”, denoted
~x6, and along ys which appears in the extended space. The remaining coordinates are time and the
directions transverse to the brane which we take to be the polar coordinates (r,θ). In this language,
the harmonic function of the brane is H ≈ h ln[r0/r].2 The solution can be specified by

ds2
(9) =−dt2 +d~x2

(6)+H
(
dr2 + r2dθ

2)
ds2

(3) = H−1 [(dy1)2 +2hθdy1dy2 +K(dy2)2]+(dys)2

Aµ
M = 0 , K = H2 +h2

θ
2 .

(4.2)

If one goes around this solution in the transverse space changing θ = 0 to θ = 2π , the 2×2 block
Mαβ goes to

M →Ω
T M Ω , Ω =

(
1 2πh
0 1

)
. (4.3)

where the monodromy Ω is an element of SL(2).
Reducing this solution to the IIB section gives the D7-brane. By using (3.2) and (3.3) one can

extract the torus metric Hαβ and the scalar φ of the 10 = 9+1 split. From Hαβ one then obtains
the axio-dilaton, i.e. C0 and eϕ . The external metric is composed with φ to give the 10-dimensional
solution

ds2
(10) =−dt2 +d~x2

(6)+H
(
dr2 + r2dθ

2)+(dys)2

C0 = hθ , e2ϕ = H−2
(4.4)

2The cut-off r0 is related to the codimension-2 nature of the solution, i.e. we expect it to be valid only up to some
r0 as the solution is not asymptotically flat.
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which is the D7-brane. Exchanging y1 and y2 and flipping the sign of the off-diagonal term (this
is an SL(2) transformation of the Mαβ block) leads to a solution which reduces to the S7-brane.
On the M-theory section the solution (4.2) corresponds to a smeared KK-monopole which can be
written as

ds2
(11) =−dt2 +d~x2

(6)+H
(
dr2 + r2dθ

2 +(dy1)2)+H−1 [dy2 +hθdy1]2 . (4.5)

To see this more clearly, consider the usual KK-monopole in M-theory, which has three transverse
and one isometric direction, the Hopf fibre. If this solution is smeared over one of the transverse
directions to give another isometric direction one arrives at the above solution (where (r,θ) are
transverse and (y1,y2) are isometric). Therefore the M/IIB-duality between smeared monopole and
sevenbrane relates the first Chern class of the Hopf fibration to the monodromy of the codimension-
2 object.

We have now seen how the SL(2) doublet of D7 and S7 is a smeared monopole with its
two isometric direction along the yα in the extended space. This can be generalized to give pq-
sevenbranes in the IIB picture where the isometric directions of the smeared monopole correspond
to the p- and q-cycles. The external metric is the same as above, the generalized metric now reads

ds2
(3) =

H−1

p2 +q2

{[
p2H2 +(phθ −q)2](dy1)2 +

[
(p+qhθ)2 +q2H2](dy2)2

−2
[
(p2−q2)hθ + pq(K−1)

]
dy1dy2

}
+(dys)2 .

(4.6)

The two extrema are p = 0 which gives the D7 and q = 0 which gives the S7.
As for all codimension-2 objects, a single D7-brane should not be considered on its own.

To get a finite energy density, a configuration of multiple sevenbranes needs to be considered.
Introducing the complex coordinate z= reiθ on the two-dimensional transverse space, such a multi-
sevenbrane solution in EFT reads

ds2
(9) =−dt2 +d~x2

(6)+ τ2| f |2dzdz̄

ds2
(3) =

1
τ2

[
|τ|2(dy1)2 +2τ1dy1dy2 +(dy2)2]+(dys)2

(4.7)

where all the tensor fields still vanish. Instead of specifying a harmonic function on the transverse
space, we now have the holomorphic functions τ(z) and f (z). Their poles on the z-plane correspond
to the location of the sevenbranes. One usually takes

τ = j−1
(

P(z)
Q(z)

)
, (4.8)

where P(z) and Q(z) are polynomials in z and j(τ) is the j-invariant. The roots of Q(z) will give
singularities, which in the IIB section give the locations of the sevenbranes. The configuration in
this case consists of the metric

ds2
(10) =−dt2 +d~x2

(6)+dy2
s + τ2| f |2dzdz̄ (4.9)

together with the scalar fields encoded by τ . Meanwhile in the M-theory section, one finds a purely
metric background,

ds2
(11) =−dt2 +d~x2

(6)+ τ2| f |2dzdz̄+ τ2(dy1)2 +
1
τ2

(
dy2 + τ1dy1)2

. (4.10)
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This retains the singularities at the roots of Q at which τ2→ i∞.
In the original paper [11] other solutions in the SL(2)×R+ EFT such as waves, monopoles,

strings and fivebranes where also considered similar to the approach in [8, 9, 15] for higher EFTs.

5. Outlook

We are aware that the approach of most practitioners in F-theory that has yielded so much
success over a number of years has been through algebraic geometry. It is doubtful if the presence
of this action can help in those areas where the algebraic geometry has been so powerful. We
do hope though that it may provide some complementary techniques given that we now have a
description in terms of 12-dimensional degrees of freedom equipped with an action to determine
their dynamics.

One question people have tried to answer is the theory on a D3-brane when τ varies. This
might be computable in this formalism using a Goldstone mode type analysis similar to that in [15]
where this method was used to determine string and brane effective actions in DFT and EFT.

A useful result from this formalism would be to show why elliptic Calabi-Yau are good so-
lutions to the 12-dimensional theory. This would likely involve the construction of the supersym-
metric version of the SL(2)×R+ EFT in order to study the generalised Killing spinor equation.
Another interesting area of investigation would be the heterotic/type II duality, where we should
then consider EFT on a K3 background and relate this to heterotic DFT [16, 17]. This has been
investigated recently in [18].

An interesting consequence of our work is that it shows how F-theory fits into a general picture
of EFT with various Ed(d) groups. One might be then be inspired to consider far more general
backgrounds with higher dimensional fibres and with monodromies in Ed(d) and so one would not
just have sevenbranes but more exotic objects (of the type described in [19]).

One can also consider more general types of reduction than the simple fibrations described
here such as Scherk-Schwarz type reductions that yield gauged supergravities. Such a reduction on
the F-theory torus – this makes no sense from the IIB perspective but it does from the point of view
of the SL(2)×R+ EFT – leads to the massive Type IIA Romans’ supergravity [20, 21].

A further quite radical notion would be the EFT version of a T-fold where we only have a
local choice of section so that the space is not globally described by type IIB or M-theory. One
could have a monodromy such that as one goes round a one-cycle in nine dimensions and then flips
between the IIB section and M-theory section. This would exchange a wrapped membrane in the
M-theory section with a momentum mode IIB section just as a T-fold swaps a wrapped string with
a momentum mode. Note, this is not part of the SL(2)×R+ duality group and thus is not a U-fold.
This is simply because with two isometries one has a Z2 choice of section that one can then twist.
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