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1. Introduction

Since its discovery, T-duality [1] has been a very important tool to study string backgrounds.
In the most simple setting, it tells that strings propagating on a circle of radius R cannot be distin-
guished from those propagating on a circle of radius 1/R. This can be easily generalised to strings
on a d-dimensional torus, where the possible dual backgrounds are related by O(d,d,Z) transfor-
mations. Furthermore, it is also possible to dualise more general backgrounds, provided they have
a compact isometry. Duality transformations for the general case are known in the literature as
Buscher rules [2].

Among other implications, T-duality points out a new direction to enlarge the string landscape
beyond usual geometry. One can conceive backgrounds where transition functions between patches
are generalised to T-duality transformations. From the point of view of classical geometry, these
transformations are not diffeomorphisms, so the background is not even a manifold. This motivates
the name of non-geometric backgrounds [3, 4]. However, strings do not see such discontinuities
due to the mentioned T-duality. Then, from a stringy point of view such backgrounds are smooth.

In recent years, different models for non-geometric models appeared. An important example
are T-folds [5, 6], which are non-trivial flat torus fibrations. The torus is allowed to vary smoothly
along the base and it is globally well defined only if at the gluing point between patches a T-
duality transformation is used. An important example are 2-torus fibration over a 2-dimensional
base [3, 17]. In this situation, the moduli of the torus degenerate at some point of the base and,
after encircling this degeneration, the fiber is glued with a T-duality transformation. Such defects
are known in the literature as T-fects [17, 18].

Another important observation from T-duality is that it relates two type of string states which
are a priory very different: momentum and winding modes. This motivated the appearance of new
frameworks such as Generalised Geometry [7, 8] or Double Field Theory (DFT) [9, 10]. In the first
the tangent bundle is formally substituted by the sum of the tangent and the cotangent bundle. In
this way, winding and momentum are treated in the same manner. In the second, the dimension of
the space is doubled to introduce a set of dual coordinates, whose canonical momentum is winding.

In this proceedings paper we discuss T-duality between backgrounds where isometries are
present only in certain regions. In particular, we study a concrete example: backgrounds dual
to the NS5 brane configuration. After compactifying its transversal space, compact isometries
appear in some limit away from the brane, which motivates the use of Buscher rules to find new
backgrounds. In the case where two directions are compactified, the configurations in this limit can
be understood as a T-fect. When we move close to the brane, however, this description breaks down
and corrections describing the exact configuration need to be taken into account. We will analyse
these corrections by considering string trajectories in the limit away from the brane. Some of them
will introduce dependence of the background fields on dual coordinates. These will be related with
winding modes physics, not captured by Supergravity.

We will structure the paper as follows: In the first part we will describe the NS5 dual back-
grounds away from the brane after one and two compactifications. We will study string trajectories
on them and argue how they are corrected when we move towards the brane. Since dependence on
dual space appears, it is useful to study such corrections in a formalism where these coordinates
are naturally included, such as DFT. This will be addressed in the second part of the paper.
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2. Supergravity configurations and T-duality

Our starting point is the NS5 brane, a well known magnetic five-brane solution of the super-
gravity equations of motion. On the transversal R4 the configuration reads

ds2 = h(r4)(dr2
4 + r2

4dΩ
2
3),

eΦ = gsh(r4), (2.1)

H = dB = ?4dh(r4),

where ?4 is the 4-dimensional Hodge dual operator, r4 is the radial transversal direction and dΩ2
3

the volume form on a 3-dimensional sphere. The function h(r4) is a solution of the co-dimension
four harmonic equation, and can be written as

h(r4) = 1+
σ

r2
4
, (2.2)

where σ is a constant.

2.1 S1 compactifications

We next compactify the NS5 brane on a circle of radius R by placing the configuration (2.1)
on R3×S1. The compact coordinate, ξ , will be defined up to the identification ξ ∼ ξ +2πR. This
situation is equivalent to an array of branes separated by a distance of 2πR along ξ . The harmonic
function becomes

h(r3,ξ ) = 1+ ∑
n∈Z

σ

r2
3 +(ξ −2πnR)2 , (2.3)

where r3 is the radial direction along the 3 non-compact transversal directions. The series is actually
convergent an can be summed analytically to [22]

h(r3,ξ ) = 1+
σ

2Rr3

sinh(r3/R)
cosh(r3/R)− cos(ξ/R)

. (2.4)

Due to the periodicity of the coordinate ξ the function can also be written as a Fourier series, where
the different modes give the order by order corrections to the smearing limit discussed below as

h(r3,ξ ) = 1+
σ

2Rr3

(
1+ ∑

k 6=0
e−|k|r3/Reikξ/R

)
. (2.5)

Smearing limit and T-duality

Far away from the brane (r3 � R) all modes in the expansion (2.5) are exponentially sup-
pressed and the harmonic function is well approximated by

h(r3) = 1+
σ

2Rr3
. (2.6)

In this situation, the B-field can be written as B = ω ∧ dξ , where ω is a 1-form satisfying dω =

?3dh(r3) with ?3 the 3-dimensional Hodge dual operator. For the following computations, we will
use spherical coordinates on the base and take a gauge where

ω =
σ

2R
(1− cosθ)dϕ. (2.7)
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We observe that, in this region, all dependence of the background fields on the compact coor-
dinate disappears and therefore this direction becomes a (compact) isometry. The presence of such
symmetry allows to apply Buscher rules along this direction and obtain

ds2 = h(r3)
(
dr2

3 + r2
3dθ

2 + r2
3 sin2

θdϕ
2)+ 1

h(r3)
(dξ +ω)2,

B = Φ = 0. (2.8)

This geometric configuration is an euclidean Taub-NUT space, known in the context of string
theory as KK-monopole. Locally it is a non-trivial S1 fibration and the fiber shrinks at the origin.
However, it is globally R4, since for constant radius the configuration is a Hopf fibration.

Unwinding trajectories and corrections to the smearing limit

As we shall argue in this section, the duality described above cannot be the full story. Whereas
Buscher’s approach to T-duality fits perfectly to describe the situation away from the brane, it
breaks down when corrections (2.5) are considered. The discussion presented in this section is due
to [22], but we will revisit it here since it will be the starting point for the generalisation to the
2-torus case. For details, we refer to the original reference.

The analysis is based on the fact that, even in the smearing limit region, one can find rem-
iniscences of the physics of the full configuration. An example of this is the existence of string
trajectories unwinding the fiber away from the origin1. These are consequence of the fact that, at
constant radius, the background is globally S3, which has π1(S3) = 0. On the smeared NS5 side, the
duals of such trajectories do not preserve the canonical momentum2 along the direction ξ , though
in this region translations along it are Killing vectors.

To understand what happens to the winding and momentum charges in these trajectories, it is
useful to perform a dimensional reduction on the compact direction and describe the theories from
R

3 point of view. From this point of view strings with non-trivial momentum or winding along the
reduced dimension are seen as charged states. Studying the unwinding trajectories in this context,
one observes that in both cases they produce an inflow of current into the brane, while the total
charge inside an sphere at infinity is preserved [22]. This implies that the smeared NS5 and the
KK-monopole should carry some sort of momentum and winding charge respectively.

For the NS5 case, this analysis is consistent with our previous knowledge of this background:
the smearing limit has to be corrected by considering the correction terms in (2.5) that break the
isometry by introducing an explicit dependence on the fiber coordinate. Translations along this di-
rection are not symmetries any more and therefore the corresponding momentum is not a conserved
quantity.

1Strings can also unwind at the origin, where the fiber shrinks. However, we are interested in the far away physics
and therefore trajectories through the origin are not considered.

2In the presence of a B-field, the canonical momentum (which generates translations) is defined as

pa =
∫

dσ(gabẊb +BabX ′b).
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The KK-monopole case needs a bit more of attention. First, the winding modes couple with
the background through the B-field, which is trivial in the configuration (2.8). Second, on the NS5
side the full set of corrections (2.5) localise the brane around some point ξ0 ∈ S1 (which we set to
ξ0 = 0 for simplicity), which is actually a zero mode of the background. What is the corresponding
dual zero mode in the KK-monopole? The answer is in terms of the known harmonic self-dual
two-form of the KK-monopole [23],

Ω = dΛ, Λ =
R2

h(r3)
(dξ +ω). (2.9)

This allows to construct a B-field of the form

B = ΘΩ, (2.10)

where Θ is a parameter at classical level but promotes to a zero mode when considering a quantum
theory. Considering a KK-monopole background with non-zero Θ and dualising back to the NS5
background, the gauge transformation is mapped into a shift on the fiber coordinate (plus a trivial
gauge transformation of the B-field) and furthermore, by looking at the Euclidean world-sheet
action on a 2-cycle dual to Ω, the coordinate Θ can be proved to be periodic with period 2π/R
[23]. Then, one can identify Θ as the missing fourth collective coordinate, dual to the position of
the NS5 brane along S1. A more detailed analysis can be found in [21].

Comparison with the NS5 case suggests that the background should also have corrections
similar to (2.5). However, these do not localise the brane in the geometrical space but are of stringy
nature. In particular, it is conjectured in [22] that the higher Fourier modes in (2.5) are mapped
one by one into stringy corrections of the Taub-NUT space by introducing a dependence on a dual
coordinate ξ̃

Ck = e−|k|r3/Reikξ/R T duality−→ C̃k = e−|k|r3R̃eikξ̃ R̃, (2.11)

where we also introduce the dual radius R̃ = 1/R. In the same way that geometrical corrections in
the NS5 localise the brane around a point ξ0, the dual corrections in the KK-monopole background
localise it around the dual collective coordinate Θ. Therefore dual (or winding) coordinates are
identified with the dyonic collective coordinate (2.10) [22, 24]. This conjecture has been checked
(to some extend) in [24, 25], where corrections (2.11) are interpreted as worldsheet instanton cor-
rections to T-duality, as it was done on the NS5 side in [20].

2.2 T 2 compactifications and T-fects

Next, we generalise the arguments above and we study the NS5 brane on a transversal space
R

2×T 2. This is equivalent to an infinite set of branes displayed along a 2-dimensional lattice3.
Splitting r4 into r2

4 = r2 +(ξ 1)2 +(ξ 2)2, where ξ i are the compact coordinates with periodicity
2πRi, the background is described by the harmonic function

h(r,ξ 1,ξ 2) = 1+ ∑
~n∈Z2

σ

r2 +(ξ 1−2πR1n1)2 +(ξ 2−2πR2n2)2 . (2.12)

3For simplicity we consider only rectangular lattices. Generalisation to twisted tori is straightforward.
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Unlike the case discussed in the last section, this double sum is not convergent. However, one can
perform a regularisation procedure together with a Poisson resummation to obtain [12, 28]

h(r,ξ 1,ξ 2) =
σ

2πR1R2

log
µ

r
+ ∑

~k∈(Z2)
∗
K0 (λ r)e

−i
(

k1ξ 1

R1
+

k2ξ 2

R2

) , (2.13)

where (Z2)
∗
= Z

2−{(0,0)} and µ is a parameter that controls the regularisation and absorbs also
other possible constants. We also define

λ =

√(
k1

R1

)2

+

(
k2

R2

)2

. (2.14)

Smearing limit, T-fects and T-duality

Again, it is interesting to study the region where r � R1, R2. In this limit, the harmonic
function (2.13) reduces to

h(r) =
σ

2πR1R2
log

µ

r
, (2.15)

and the compact directions ξ 1 and ξ 2 become isometries of the background. The configuration is
locally a flat torus fibered over a 2-dimensional base. The corresponding B-field is, up to gauge
transformations,

B =
σ

2πR1R2
θ dξ

1∧dξ
2. (2.16)

In the smearing limit, the NS5 with two compact transversal directions can be seen as a co-
dimension two defect, which in this context are generally called T-fects [17]. Such degenerations
arise in 2-torus fibrations whose moduli are allowed to vary along a 2 dimensional base and they
are characterised by its non-trivial monodromy around them.

More concretely, the moduli space of a 2-dimensional torus can be parametrised by two com-
plex parameters: its complex structure τ and the Kähler form ρ . We use the conventions

τ =
g12

g22
+ i
√

detg
g22

, ρ = B+ i
√

detg, (2.17)

where gab and B are the components of the metric and the B-field tensors on the torus. In this
language, the T-duality group in 2 dimensions factorises into O(2,2,Z) = SL(2,Z)τ ×SL(2,Z)ρ ×
Z2 ×Z2, where the SL(2,Z) factors act on τ and ρ as Möbius transformations. The first one
is actually the group of large diffeomorphisms of the torus, and therefore is usually called the
geometric subgroup. The second includes gauge transformations for the B-field and non-geometric
T-duality transformations. Finally, the Z2 factors correspond to τ↔ ρ and (τ,ρ)→ (−τ̄,−ρ̄). The
first of this elements corresponds to the factorised duality (Buscher rules) along the direction ξ 2.
The other factorised duality, along ξ 1, corresponds to τ ↔−1/ρ .

A 2-torus fibered over a 2-dimensional base is a solution of the string background equations of
motion if the moduli parameters ρ and τ are meromorphic functions of the base. It is then possible
to construct a class of solutions where the base has a degeneration point idenified by a monodromy
in the T-duality group, including also elements in the non-geometric subgroup. A classification of
such possible degenerations can be found in [18, 19]. We now use this formalism to describe the
smeared NS5 and its dual backgrounds.

5
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Monodromy Winding/momentum numbers
NS5 ρ → ρ +1 (n1,n2)→ (n1,n2)

(m1,m2)→ (m1 +n2,m2−n1)

KK monopole τ → τ +1 (n1,n2)→ (n1,n2−n1)

(m1,m2)→ (m1 +m2,m2)

Q brane − 1
ρ
→− 1

ρ
+1 (n1,n2)→ (n1 +m2,n2−m1)

(m1,m2)→ (m1,m2)

Table 1: Mondromies of the NS5 dual in the semiflat approximation and its duals. The second column
shows how the winding numbers (n1,n2) and the momentum numbers (m1,m2) change.

• Smeared NS5. The smeared NS5 brane described by the harmonic function (2.15) is identi-
fied with the monodromy ρ → ρ +1. In this case, after going around the origin, the B-field
differs by a total derivative. The background is then globally well defined in terms of classi-
cal geometry.

• Smeared KK monopole. Applying Buscher rules to one of the compact isometries of the
NS5 brane, one obtains a smeared version of the KK monopole configuration (2.8). In terms
of monodromies, this background is described by τ → τ +1. Since the monodromy belongs
to the geometric subgroup, the background is a differentiable manifold. In terms of Kodaira
classification for degenerations of torus fibrations [16], this corresponds to a I1 degeneration.

• Q-brane. Finally, one can dualise the NS5 along both isometries simultaneously 4 obtaining
[13, 14]

ds2 = h(r)
(
dr2 + r2dθ

2)+ 4π2h(r)
4π2h(r)2 + R̃2

1R̃2
2θ 2

[
(dξ

1)2 +(dξ
2)2
]
,

B = − 2πR̃1R̃2θ

4π2h(r)2 + R̃2
1R̃2

2θ 2 dξ
1∧dξ

2 , (2.18)

e2Φ =
4π2h(r)

4π2h(r)2 + R̃2
1R̃2

2θ 2 ,

which has the monodromy − 1
ρ
→ − 1

ρ
+ 1. This configuration is non-geometric and it is

globally well defined only if one allows for T-duality transformations as transition functions
between patches. In particular, after going θ → θ +2π the fiber can only be glued together
using a transformation that mixes the volume of the torus and the B-field in a non-trivial way.

Unwinding trajectories and corrections

As we did for the S1 case, we will now investigate reminiscence of the physics of the full back-
ground by studying unwinding trajectories in the semiflat approximation discussed in the previous
section. Describing our backgrounds in terms of their monodromies becomes useful because, after

4The same configuration can also be obtained stepwise by applying Buscher rules to the smeared KK-monopole
configuration. However, stepwise duality has some global issues that are avoided if one considers direct dualisation
from the NS5. For a more detailed discussion, see [28].
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a small calculation, one can read how momentum and winding numbers change when going around
the brane. The cases of our interest are summarised in table 1. Explicit trajectories and their un-
winding physics are discussed in [28]. We will here outline the main conclusions and refer to the
original reference for details.

• In the NS5 case, only the momentum numbers change around the brane, which allows tra-
jectories along which momentum is not conserved in both toroidal directions after a good
choice of initial winding numbers. On the other side, winding numbers are not affected by
the monodromy, so strings cannot unwind. The situation is then analogue to the S1 case: mo-
mentum along both compact directions is not conserved, which is consistent with corrections
(2.13), that break both isometries.

• For the smeared KK monopole, we expect corrections in winding space at least in one of
the directions. Indeed, the change of winding and momentum numbers while encircling the
origin shows that trajectories unwinding ξ 2 can be constructed. Furthermore, the momentum
along this direction is conserved. On the other side, winding along direction ξ 1 is conserved
while momentum is not. This is then consistent with the findings of the S1 situation: after
compactifying the KK-monopole, corrections in the dual space discussed in (2.11) remain
and we get an extra set of geometric corrections that localise the brane along the extra com-
pact direction [11].

• Finally, the analysis can be extended to the Q-brane. In this case, the study of winding and
momentum numbers points out that a string winding any direction of the torus can be un-
wound by a trajectory with an appropriate initial momentum. On the other side, momentum
along both coordinates is conserved. This analysis suggests that the Q-brane should have
corrections depending on dual coordinates along both directions of the torus.

As we did for the S1 case, it is also useful to study the zero modes of such backgrounds though,
in this case, the explicit form of the collective coordinates for the Q-brane is not known. However,
one can still guess their nature with the help of T-duality. Our starting point is the knowledge that on
the smeared NS5 the zero modes are translations along the toroidal coordinates. We consider then
the NS5 background and the shifts ξ 1 → ξ 1 + f1(r,θ) and ξ 2 → ξ 2 + f2(r,θ). Under T-duality
along ξ 2, f1 remains as a coordinate shift of the KK monopole, while f2 is mapped to a gauge
transformation of the B-field. On the Q-brane configuration, both transformations become gauge
transformations and the metric is not affected by the shifts. This fact points in the direction that the
Q-brane has two dyonic zero modes, which is consistent with the previous analysis of unwinding
trajectories.

3. Solutions in extended space

In the previous sections, it was argued the need of corrections depending on dual coordinates
in some of the analysed backgrounds. For this reason, it is useful to study such configurations in
a formalism that treats on equal footing both geometrical and dual coordinates. Therefore, in this
section we will discuss the previous findings using Double Field Theory (DFT) [9, 10].

7
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3.1 Double Field Theory and generalized T-duality

DFT is defined on a 2d-dimensional space with coordinate content XM = (xµ , x̃µ), where xµ

are the geometrical coordinates and x̃µ the corresponding dual ones. The main objects in DFT are
the generalised metric, an O(d,d) tensor that encodes the supergravity fields as

HMN =

(
g−Bg−1B Bg−1

−g−1B g−1

)
MN

, (3.1)

and the generalised dilaton Φ̃, defined via the relation e−2Φ̃ =
√

detge−2Φ. With them, one can
construct an O(d,d)-covariant theory described by the action [10]

S∼
∫

dNXe−2Φ̃ R(H ,Φ̃) , (3.2)

where R(H ,Φ̃) is called generalized curvature scalar5. If none of the fields depend on the dual
coordinates, bosonic Supergravity is recovered after reducing along them.

Within this formalism, factorised duality along direction xa corresponds to the transforma-
tion xa ↔ x̃a. If we consider a supergravity configuration (with no dependence on x̃a) which has
a compact isometry (no dependence on xa), the interchange xa ↔ x̃a in the doubled space the-
ory is equivalent to apply Buscher rules between the corresponding supergravity configurations.
However, since DFT is an O(d,d)-covariant theory, if one applies this transformation to a solution
which has no isometries, one obtains another DFT solution. This is usually known in the litera-
ture as generalised duality [9], and will be used in the next section to discuss dualisation in the
localised configurations. In particular, it reproduces the transformation (2.11) for the higher order
corrections. Then, the fact that generalised duality applied to the present case gives sensible re-
sults might be due to the fact that the directions along which we dualise are compact and a Fourier
decomposition of the harmonic function is possible.

3.2 Localised solutions in Double Field Theory

With the described generalised duality, one can dualise along the compact coordinates of the
localised NS5 described by the harmonic function (2.13). In this situation it is possible to choose a
gauge where the B-field for the NS5 is [28]

B =
θ

2πR1R2
dξ

1∧dξ
2 +Π1 dθ ∧dξ

1 +Π2 dθ ∧dξ
2 , (3.3)

where Π1,2 are determined by the relation dB = ?4dh. Then, applying the duality ξ 2 ↔ ξ̃2 one
obtains

ds2 = h̃
[
dr2 + r2dθ

2 +(dξ
1)2
]
+

1
h̃

[
dξ

2 +
R̃2

2πR1
θ dξ

1 + Π̃2 dθ

]2

,

B = Π̃1 dθ ∧dξ
1 , (3.4)

e2Φ = const. ,

5Despite its name, H is not a metric tensor for the doubled space and therefore R does not describe its curvature.
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where Π̃1,2 ≡ Π1,2(r,ξ 1, ξ̃2) and h̃ ≡ h(r,ξ 1, ξ̃2), with h the localised harmonic function (2.13),
and we write the result in terms of the dual radius R̃2 = 1/R2. This background has dependence
on the dual coordinate ξ̃2 as expected from our previous analysis. Furthermore, in the limit r�
R1,1/R̃2 the smeared KK-monopole configuration is recovered. A second dualization along the
other compact direction, ξ 1↔ ξ̃1, leads to the background

ds2 = h̃
[
dr2 + r2dθ

2]+ 4π2h̃
4π2h̃2 + R̃2

1R̃2
2θ 2

[
(dξ

1 + Π̃1dθ)2 +(dξ
2 + Π̃2dθ)2] ,

B = − 2πR̃1R̃2θ

4π2h̃2 + R̃2
1R̃2

2θ 2

(
dξ

1 + Π̃1dθ
)
∧
(
dξ

2 + Π̃2dθ
)
, (3.5)

e2Φ =
4π2h̃

4π2h̃2 + R̃2
1R̃2

2θ 2
,

where a now Π̃1,2 ≡ Π1,2(r, ξ̃1, ξ̃2) and h̃ ≡ h(r, ξ̃1, ξ̃2). We also substitute R1,2 → R̃1,2 = 1/R1,2.
This background is again consistent with our previous discussion. The Q-brane configuration (2.18)
is obtained in the limit r� 1/R̃1,1/R̃2.

Such configurations depend explicitly on the dual coordinates and therefore they are not Su-
pergravity configurations. They have to be understood as DFT solutions by inserting them into
(3.1). The corresponding DFT configurations have vanishing generalised curvature RMN and are
therefore solutions to the equations of motion of the action (3.2). A more detailed analysis of such
solutions can be found in [28]. Also their near brane limit was considered in [26, 27]

4. Conclusions

We investigated T-duality for the NS5-brane solution with compact transverse spaces. For this
backgrounds, application of Buscher rules is only possible at a region far away from the brane,
where the compact directions become isometries. However, even in this limit one can find remi-
niscences of the full configuration by analysing string trajectories on them. In particular, winding
modes physics was crucial in this analysis. In the dual backgrounds, strings can unwind some
of the cycles of the torus without going through the brane. We related this to the fact that such
backgrounds get corrections localising them along the dual space.

In the second part, we analysed the localised configurations using generalised T-duality within
DFT. The resulting backgrounds are solutions of the DFT equations of motion which depend ex-
plicitly on dual coordinates. This results could also be obtained by mapping term by term the
localising corrections of the NS5-brane to corrections localising the dual backgrounds along wind-
ing space, as in (2.11). This was possible because directions along which dualisation was applied
are compact.

Finally, there are still some remaining open questions. T-fects used in the analysis of the T 2

compactification can be constructed for other monodromies of the T-duality group. Then, analysis
of winding and momentum charges can be easily extended to all of them. However, some of this
backgrounds are not T-dual to any geometric one, and therefore it is not possible to guess the exact
form of the corrections. Furthermore, in general there might be cases where neither momentum
nor winding along one direction is preserved. It would then be interesting to analyse the strong
constraint for DFT in these situations.
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