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1. Introduction

Exceptional field theory [1, 2] is an extension of 10- and 11-dimensional supergravity, which
treats the metric and p-form fields in a d-dimensional “internal space”, on an equal footing, and
has an extended set of coordinates. These features allow the exceptional field theory to make an
Ed(d) symmetry of the supergravity manifest.

This Ed(d) symmetry is often confused with the U-duality group arising by compactifying 11-
dimensional supergravity on a T d . However, here the Ed(d) symmetry arises before any truncation
or compactification occurs, or equivalently all modes of the d-dimensional internal space are kept.
Instead, the metric and p-form fields at each point combine into Ed(d) representations. We will see
later how the global structure of the internal space determines the resulting “duality group”, which
to be precise we take in this case to be the global symmetry of the lower-dimensional gauged
SUGRA that arises after truncating the theory.

In addition to repackaging the fields into Ed(d) representations, the exceptional field theory
extends the coordinates of the internal space to form a particular representation of Ed(d). For the
special case that the internal space is a torus, these coordinates have a nice interpretation as mo-
mentum and wrapping modes of membranes on T d . For general backgrounds such an interpretation
fails, but the extra coordinates allow us to treat 11-dimensional and 10-dimensional type II – and
indeed, as we will see, also heterotic – supergravities at the same time. This allows us to easily see
when a lower-dimensional theory can have different higher-dimensional origins, i.e. when there is
a duality, and it is in this sense that one can think of exceptional field theory as making dualities
manifest.1

Exceptional field theory [1, 2], as well as double field theory [3] and generalised geome-
try [4–6] have proven very powerful in finding consistent truncations of 10- and 11-dimensional
supergravities [7–17]. This has allowed an uplift of various, previously “orphaned”, gauged su-
pergravities. However, so far this has focused on so-called generalised Scherk-Schwarz Ansätze
which yield consistent truncations preserving all supersymmetries.

In [18] and [19] we considered exceptional field theory on backgrounds with non-trivial struc-
ture groups. The particular class of backgrounds considered admit half the possible number of
spinors and thus have a generalised N = 2 structure. We showed how exceptional field theory
naturally describes such backgrounds and developed the technology to find consistent truncations
to seven-dimensional half-maximal gauged SUGRA. Using these tools we also showed how excep-
tional field theory can be reduced to the heterotic double field theory when the internal space has
generalised SU(2)-structure.

In this proceedings article we will present these results. In section 2 we will give a self-
contained introduction to the SL(5) exceptional field theory. We will then show in section 3 how
the SL(5) exceptional field theory describes half-maximal backgrounds. Section 4 is devoted to

1Note that with this interpretation in mind, we do not need to define the exceptional field theory structures over
the enlarged space. Instead it is sufficient to define these structures only over a geometric manifold, corresponding to a
subspace of the full enlarged space. If one wanted to consider non-geometric backgrounds, one would have to take care
to define the exceptional structure over the full enlarged space. However, here will not need to do this as we will only
consider geometric set-ups.
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the study of half-maximal consistent truncations while section 5 details how to obtain the heterotic
double field theory from exceptional field theory. We conclude in section 6.

2. Review of SL(5) exceptional field theory

We begin with a brief review of the key features of the SL(5) exceptional field theory [1,2,20]
which are necessary for our purposes. We consider 11-dimensional supergravity but breaking
GL(11) −→ GL(7)×GL(4). We will see that having made SL(5) symmetry manifest we will
automatically also have obtained the equivalent reformulation of type IIB supergravity. With re-
spect to this splitting we write xµ̂ =

(
xµ ,xi

)
with µ̂ = 1, . . . ,11, µ = 1, . . . ,7 and i = 1, . . . ,4.

Decomposing the metric and p-form fields at each point we have

gµ̂ ν̂ −→ gµν , gµi, gi j ,

Cµ̂ ν̂ ρ̂ −→Cµνρ , Cµν i, Cµi j,Ci jk ,

Cµ̂1...µ̂6 −→Cµ1...µ6 , Cµ1...µ5i, Cµ1...µ4i j, Cµ1µ2µ3i jk, Cµ1µ2i jkl .

(2.1)

The 14 fully internal components gi j, Ci jk parameterise the coset space SL(5)
SO(5) and can be com-

bined into the so-called generalised metric

Mab ∈
SL(5)
SO(5)

, (2.2)

where a,b= 1, . . . ,5 are fundamental SL(5) indices. Similarly, the 10 components which transform
as a vector under GL(7), i.e. gµi, Cµi j can be combined into a GL(7)-covector valued in the 10 of
SL(5)

Aµ
ab = Aµ

[ab] . (2.3)

One can continue and combine the five Cµν i and Cµν i jkl into an object Bµν ,a, and so on.
Now that the metric and p-form fields have been combined into SL(5) representations, we also

extend the four-dimensional internal space to be ten-dimensional, with coordinates Y ab = Y [ab].
This will allow us to write fully SL(5) covariant expressions, even though as we will see not all of
these coordinates are physical. For example, diffeomorphisms and p-form gauge transformations
combine into a local SL(5) transformation. These symmetries are generated by the generalised Lie
derivative [21–23] which acts on a SL(5) vector V a with weight w as

LΛV a = Λ
bc

∂bcV a−V b
∂bcΛ

ac +

(
w
2
+

1
5

)
V a

∂bcΛ
bc , (2.4)

where Λab = Λ[ab] is a so-called “generalised vector field” and has weight 1
5 . The derivatives ∂ab

are with respect to the extended coordinates Y ab.
These generalised diffeomorphism symmetries must close into an algebra and this requires the

following condition on all pairs of fields which we denote abstractly as f and g

∂[ab f ∂cd]g = ∂[ab∂cd] f = 0 . (2.5)

2
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This is known as the “section condition” [21] and restricts all fields to depend only on a subset of
coordinates. Up to SL(5) transformations there are two solutions:

(i) ∂i j = 0 , ∂i5 6= 0 , for i = 1, . . . ,4 ,

(ii) ∂α4 = ∂α5 = 0 , ∂αβ 6= 0 , for α = 1,2,3 .
(2.6)

The first clearly breaks SL(5) −→ SL(4) while the second breaks SL(5) −→ SL(3)× SL(2). It
should thus not come as a surprise that the first corresponds to 11-dimensional supergravity while
the second to type IIB supergravity [2, 24]. One way to see this is to act with the generalised Lie
derivative on the generalised metric Mab. With the corresponding solution to the section condition
the generalised Lie derivative reduces to diffeomorphisms and the correct p-form gauge transfor-
mation for these two theories.

Equipped with the generalised Lie derivative (2.4) one can introduce a generalised connection
∇ab such that

∇abV c ≡ ∂abV c +Γab,c
dV d , (2.7)

for a generalised tensor V c is also generalised tensor. This implies a certain transformation law
for the components Γab,c

d , which means that they are not tensorial themselves. However, as usual,
there are certain combinations of the connection which are by themselves tensors. These are the
generalised torsion of the generalised connection, and are given by

L ∇

Λ V a−L ΛV a =
1
2

τbc,d
a
Λ

bcV d , (2.8)

where Λ is any generalised vector and L ∇

Λ
denotes the generalised Lie derivative with all deriva-

tives replaced by the connection ∇. The definition (2.8) makes it manifest that the torsion is a
tensor. Later on we will make use of the fact that the torsion takes values in the representations

W ≡ 10⊕15⊕40⊂ 10⊗24 = 10⊕15⊕40⊕175 . (2.9)

We conclude this section by noting that it is possible to rewrite the 11-dimensional and type
IIB supergravity actions in terms of Mab, Aµ

ab and the other fields. This action is uniquely fixed by
the requirement that it is invariant under the generalised Lie derivative, up to the section condition,
as well as the external seven-dimensional diffeomorphisms, which we have not discussed here as
they are not important for what follows. We will call the part of the action that has only “internal”
derivatives with respect to the 10 Y ab as the potential, V . It is given by

V =−1
4
R− 1

8
M abM cd

∇abgµν∇cdgµν , (2.10)

where R depends only on the generalised metric Mab and

∇abgµν = |e|2/7
∂ab

(
gµν |e|−2/7

)
. (2.11)

As we will show later upon performing a truncation this part correctly reproduces the scalar poten-
tial of seven-dimensional half-maximal gauged SUGRA, as well the internal part of the heterotic
DFT.

3
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3. SU(2)-structures and half-maximal supersymmetry in exceptional field theory

Let us now turn our attention to internal spaces which admit nowhere vanishing spinors cor-
responding to 16 supercharges. Because we wish to include fluxes these spinors transform in
the fundamental of USp(4), not SO(4) as one would expect from the 11-dimensional perspec-
tive. A SU(2)R ⊂ USp(4) doublet of spinors carries the appropriate 16 supercharges and the exis-
tence of these spinors implies that the generalised structure group is reduced to SU(2)S ⊂ USp(4)
which stabilises this SU(2)R doublet [25]. Here the subscripts R and S are used to distinguish
the SU(2) R-symmetry from the structure group. We will call these internal spaces generalised
SU(2)-manifolds.

3.1 Reformulating the exceptional field theory

We now seek a bosonic description of generalised SU(2)-manifolds. One can show [18] that
one can form the following generalised tensors as bilinears of the well-defined spinors:

κ , Aa , Âa , Bu
ab , , (3.1)

where a= 1, . . . ,5 is a SL(5) index and u= 1, . . . ,3 labels the triplet of SU(2)R. We will throughout
raise and lower the SU(2)R triplet indices u by δuv. Using Fierz identities one can show that these
satisfy

AaÂa = κ
5 , Bu

abÂb = 0 ,
1
4

Bu
abBv

cd
εabcde = Âe , (3.2)

where εabcde =±1. Here Bu
ab is a generalised vector field, thus has weight 1

5 under the generalised
Lie derivative (2.4), while Â has weight 2

5 and Aa has weight 3
5 under the generalised Lie derivative.

These objects should be thought of as the generalisation of complex and Kähler structures on K3.
Readers familiar with exceptional field theory will recognise these objects from the tensor hierarchy
of exceptional field theory [26,27]. This is not a coincidence since sections of the appropriate vector
bundles behave in many ways as generalisations of differential forms [28]. Indeed, this observation
allows one to generalise this construction to other dimensions [29].

We will now show that the set of nowhere vanishing κ , Aa, Âa and Bu
ab define a generalised

SU(2)-structure. We will do so by showing that they are stabilised by a SU(2)S ⊂ SL(5)×R+

subgroup. We begin by noting that the scalar density κ breaks the SL(5)×R+ structure group of
the exceptional field theory to SL(5).

It is easy to show that Aa and Âa subject to (3.2) are stabilised by a SL(4) ⊂ SL(5) subgroup
and thus nowhere vanishing Aa and Âa define a SL(4) ' SO(3,3) structure. Upon performing a
consistent truncation, Aa and Â will lead to the dilaton scalar field of the seven-dimensional gauged
SUGRA, and thus we will also call a set of globally well-defined nowhere-vanishing Aa and Âa a
“dilaton structure”.

Furthermore, a set of three globally well-defined nowhere-vanishing Bu
ab subject to (3.2),

further reduce the generalised structure group to SU(2)S ⊂ SL(4) ⊂ SL(5). Because SU(2)S ⊂
USp(4) and the generalised metric is a generalised USp(4)-structure, the objects Aa, Âa and Bu

ab

together implicitly define a generalised metric. However, there is in general no explicit expression
for the generalised metric in terms of Aa, Âa and Bu

ab. Nonetheless, because they carry the same

4
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degrees of freedom, it is possible to express the exceptional field theory action in terms of Aa, Âa

and Bu
ab as we will demonstrate in the next section.

It is also useful to further define the following objects using the generalised SU(2)-structure

Vu,ab =
1
4

εabcdeBu
cdAe , Kuv

a
b = κ

−5B[u
acVv]bc , (3.3)

where Vu,ab is in the 10 of SL(5) and has weight 4
5 , while Kuv

a
b is in the adjoint of SL(5). It is easy

to show that it satisfies the SU(2)R algebra

[Kuv,Kwx]
a

b = δu[wKx]v
a

b−δv[wKx]u
a

b , (3.4)

and acts on Bu
ab as

2Kuv
[a

cBw
b]c = δw[uBv]

ab . (3.5)

From this one can see that Kuv
a

b generates the SU(2)R ⊂ SL(5) subgroup. Furthermore, in the
case of 11-dimensional supergravity, it becomes the hypercomplex structure on the “internal” four-
manifold.

3.2 Intrinsic torsion

The first step in expressing the exceptional field theory action in terms of Aa, Âa and Bu
ab is

to introduce a generalised connection. The natural choice here is given by a generalised SU(2)
connection which means that it is compatible with the generalised SU(2)-structure, i.e.

∇abAc = ∇abÂc = ∇abBu
cd = ∇abκ = 0 . (3.6)

Note that we are not imposing a torsion constraint on this connection and so it will certainly not be
unique. However, we will not require the connection explicitly. We will only need to make use of
the relations (3.6).

To write the action we want to use generalised tensors which are given by one derivative of the
SU(2)-structure. We use the intrinsic torsion of a SU(2) connection. This is the part of the torsion
which is independent of the choice of SU(2) connection. This implies that it can be written without
a SU(2) connection appearing explicitly. Furthermore, it should only involve the SU(2)-structure.
One can easily show that the intrinsic torsion consists of the following representations

Wint = 2 · (1,1)⊕ (3,1)⊕2 · (1,3)⊕ (3,3)⊕3 · (2,2)⊕ (2,4) . (3.7)

We can give explicit expressions for the intrinsic torsion by making use of the generalised Lie
derivative. We begin by considering

LBuBv
ab = L ∇

Bu
Bv

ab +Bu
cd

τcd,e
[aBv

b]e = Bu
cd

τcd,e
[aBv

b]e , (3.8)

where we have made use of the fact that ∇ is an SU(2)-connection to show that this is an element
of the SU(2) torsion. It is clear that it is independent of the choice of SU(2)-connection because
the left-hand side does not make use of a SU(2)-connection. Thus it is intrinsic. Similarly, one can
show that

LBuAa , LBuκ
5 , ∂baAb , (3.9)

5
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are also intrinsic. Keeping track of the representations that appear and with the help of some algebra
one can write [29]

LBuBu
ab = κ

2T ab +κT uBu
ab +κ

−1T [aAb] ,

LB[uBv]
ab = κ

2Ruv
ab +κRuvwBw,ab−2κ

−1T cKuv
[a

cAb]+
2
3

κT[uBv]
ab ,

LBuAa = κ
3Bu

abSb +κ

(
Uu−

2
3

Tu

)
Aa +κ

4Su
a ,

LBuκ
5 = κ

6Uu ,

∂baAb = κ
3Pa +κÂaP .

(3.10)

The generalised tensors T ab, T u, T a, Ruv
ab, Ruvw, Sa, Su

a, Uu, Pa and P, which for later con-
venience we have defined to have weight −1

5 , correspond to the irreducible representations of the
intrinsic torsion. They are explicitly given by

T a = 2κ
−4ÂbLBuBu

ab , Tu = κ
−6VuabLBvBv

ab ,

T ab = κ
−2LBuBu

ab−κ
−1Bu

abT u−κ
−3T [aAb] ,

Ruvw = κ
−6V[w|ab|LBuBv]

ab ,

Ruv
ab = κ

−2LB[uBv]
ab−κ

−1RuvwBw,ab +2κ
−1T cKuv

[a
cAb]+

2
3

κT[uBv]
ab ,

Sa =−
4
3

κ
−3V u

abLBuAb , Su
a = κ

−4LBuAa−κ
−1Bu

abSb−κ
−3
(

Uu−
2
3

Tu

)
Aa ,

Uu = κ
−6LBuκ

5 , P = κ
−6Aa

∂baAb , Pa = κ
−3

∂baAb−κ
−2ÂaP ,

(3.11)

and satisfy

T aÂa = 0 , ÂaT ab =V u
abT ab = 0 , Ruv

abÂa = Ruv
abV w

ab ,

SaAa = 0 , Su
aÂa = Su

aV u
ab = 0 , PaAa = 0 .

(3.12)

This implies that they correspond to the following irreducible representations of SU(2)S×SU(2)R

Tu ∈ (1,3) , T ab ∈ (3,1) , T a ∈ (2,2) ,

Ruv
ab ∈ (3,3) , Ruvw ∈ (1,1) , Uu ∈ (1,3) ,

Sa ∈ (2,2) , Su
a ∈ (2,4) , Pa ∈ (2,2) , P ∈ (1,1) .

(3.13)

These are the exactly the representations of the intrinsic torsion (3.7).
One can show explicitly that any other generalised tensor involving one derivative and con-

structed from the SU(2)-structure is given by a linear combination of the intrinsic torsion above.
For example, one can show that

LB(uBv)
ab =

1
3

δuvLBwBw
ab , (3.14)

and thus the symmetric part of LBuBv
ab is fully determined by its trace and thus by the intrinsic

torsion T ab, Tu and T a.

6
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3.3 Reformulating the action

One can reformulate the exceptional field theory action in terms of the SU(2)-structure. For
example, the kinetic terms of the generalised metric, are given by [2]

Lkin =
1
4

gµνDµM abDνMab , (3.15)

where Dµ = ∂µ −LAµ
is the SL(5)-covariant derivative with respect to the external seven dimen-

sions. This term can be written in terms of the SU(2)-structure as

Lkin =
1
4

κ
−5gµνDµBu

abDνBu,cd
εabcdeAe +κ

−10gµν ÂaDµAaDνκ
5 . (3.16)

The kinetic terms for the field strengths can similarly be rewritten by replacing the generalised with
the SU(2)-structure.

The potential term in the action (2.10) can be rewritten in terms of the SU(2)-structure as

V =−1
4
R+

1
2

Bu
abBu,cd

∇abgµν∇cdgµν . (3.17)

By writing the SU(2)-structure in terms of spinor bilinears, as detailed in [18] one can show that
R is given by

R =−2UuUu +
4
3

UuT u +
2
3

T uTu +
1
3

RuvwRuvw +
1
4

κ
−3Ruv

abRuv,cd
εabcdeAe

+
1
18

T abT cd
εabcdeAe−4κ

−2LBu (U
u
κ)− 1

2
P2 +

√
2

3
PεuvwRuvw + . . . ,

(3.18)

where . . . refers to terms consisting only of the doublets of the intrinsic torsion, which we will not
need in the following.

4. Half-maximal consistent truncations

So far we have discussed how to describe a general 10- or 11-dimensional supergravity back-
ground in exceptional field theory which admits half the full number of spinors. We now want to
describe a truncation of the theory on such a background in order to obtain a half-maximal gauged
SUGRA, and discuss the requirements for consistency. Here, a consistent truncation is one where
any solution of the lower-dimensional gauged SUGRA is also a solution of the original higher-
dimensional SUGRA.

A key feature in obtaining consistency will be to remove any doublets of SU(2)S from the
truncation. Any such mode would correspond to additional spinors on the background, i.e. the
background would admit more than half-supersymmetry. In terms of supergravity fields removing
these modes is equivalent to projecting out the massive gravitino multiplets associated to the broken
supersymmetries.

7
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4.1 Truncation Ansatz

We make an Ansatz for our truncation by expanding the SU(2)-structure in terms of a set of
objects which depend only on the internal coordinates Y ab, and are related to the modes that we
keep in the truncation. The coefficients of these objects are scalar functions of the external seven
coordinates xµ and become the scalars of the half-maximal gauged SUGRA. In order to have a
half-maximal SUGRA we expand the SU(2)-structure in such a way that there are no doublets of
SU(2)S. To be explicit we take

〈Aa〉(x,Y ) = ρ
3(Y )na(Y )e−2d(x) , 〈Âa〉(x,Y ) = ρ

2(Y )n̂a(Y ) ,

〈Bu
ab〉(x,Y ) = ρ(Y )ωM

ab(Y )bu
M(x) , 〈κ〉(x,Y ) = ρ(Y )e−2d(x)/5 ,

(4.1)

and we make a warped Ansatz for the external seven-dimensional metric

〈gµν〉(x,Y ) = ρ
2(Y )ĝµν(x)e−4d(x)/5 . (4.2)

Here the angled brackets 〈〉 denote the truncated objects, ρ(Y ) is a scalar density and ωM
ab(Y ),

na(Y ) and n̂a(Y ) satisfy

nan̂a = 1 , ωM
abn̂a = 0 ,

1
4

ωM
ab

ωN
cd

εabcde = ηMN n̂e , (4.3)

and M = 1, . . . ,n+ 3 with n in principle arbitrary and ηMN has signature (3,n). These objects
are the half-maximal analogue of twist matrices in the generalised Scherk-Schwarz procedure [7–
13, 30, 31]. As we will see n corresponds to the number of vector multiplets of the half-maximal
gauged SUGRA that we obtain. Throughout this paper we will use ηMN to raise and lower the M,N
indices.

The functions d(x), bu
M(x) are the scalars of the lower-dimensional gauged SUGRA. Due to

the compatibility condition (3.2), bu
M must satisfy

bu
Mbv

N
ηMN = δuv . (4.4)

This imposes six constraints on the 3n+ 9 scalars bu
M. Additionally, we will identify any scalars

related by the action of SU(2)R. This removes another three degrees of freedom. The remaining
3n+1 scalars bu

M and d parameterise the coset space

Mscalar =
O(3,n)

O(3)×O(n)
×R+ . (4.5)

The coset structure can be made more explicit by writing

bu,Mbu
N =

1
2
(ηMN−HMN) , (4.6)

where HMN satisfies
HMPHNQη

PQ = ηMN . (4.7)

It is useful to also define

ωM,ab =
1
4

εabcdeωM
cdne , ω̃M

ab = ρωM
ab , (4.8)

where ω̃M
ab are generalised vectors. The truncation Ansatz for the gauge fields Aµ

ab, Bµν ,a, etc.
makes use of the same modes ρ , ωM

ab, na and n̂a as determined by their SL(5) structure.

8
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4.2 Consistency conditions and embedding tensor

Our discussion so far has been purely algebraic. We now need to impose a set of differential
constraints in order to obtain a consistent truncation, and we do this via the intrinsic torsion. Firstly,
we must make sure that derivatives of the SU(2)-structure do not source doublets of SU(2)S since
we have removed these from the truncation Ansatz. This means that the doublets of SU(2)S in the
intrinsic torsion must vanish.

Secondly, we need to ensure that the finite set of modes that we do keep, i.e. ρ , ωM
ab, n̂a

and na do not source other modes. Thus the intrinsic torsion should close into this set of modes.
Together these two requirements imply that we can write

Lω̃M ω̃N
ab = fMNPω̃

P,ab +ηMN f P
ω̃P

ab +2 f[Mω̃N]
ab , Lω̃M ρ

5 = ρ
5
ξM ,

Lω̃M

(
ρ

3na)= ρ
3na (ξM−2 fM) , ∂ba

(
ρ

3nb
)
= ρ

2n̂aθ .
(4.9)

By the structure of the generalised Lie derivative fMNP = f[MNP] is totally antisymmetric and the
right-hand side is the most general allowed subject to the conditions discussed above. The objects
fMNP, fM, ξM and θ are exactly the right representations to form the embedding tensor of half-
maximal gauged SUGRA [32, 33] coupled to n vector mutliplets, that is they satisfies the linear
constraint gauged SUGRA. Indeed, we will see that this is the correct interpretation and thus the
embedding tensor can be thought of as the intrinsic torsion of the SU(2)-structure background.

The final consistency condition we need to impose that fMNP, fM, ξM and θ are constant.
This final condition is completely analogous to the case of maximally supersymmetric consistent
truncation. It is important to highlight that the construction presented here naturally leads to the
full embedding tensor including the deformation parameter θ .

4.3 Truncated intrinsic torsion and scalar potential

Before evaluating the scalar potential with the truncation Ansatz let us first compute the in-
trinsic torsion. With the truncation Ansatz (4.1) and the differential constraints (4.9) one finds

〈Tu〉= 3ρ
−1e2d/5bu

M fM , 〈T ab〉= 3ρ
−1

ωM
abe4d/5P+M

N f N ,

〈Uu〉= ρ
−1e2d/5bu

M
ξM , 〈P〉= ρ

−1e−8d/5
θ ,

〈Ruvw〉= ρ
−1e2d/5bu

Mbv
Nbw

P fMNP , 〈Ruv
ab〉= ρ

−1
ωM

abe4d/5bu
Nbv

PP+M
Q fNP

Q ,

(4.10)

where

P−MN = bu
Mbu,N =

1
2
(
η

MN−H MN) , P+MN = η
MN−bu

Mbu,N =
1
2
(
η

MN +H MN) , (4.11)

are left- and right-moving projectors. In the language of half-maximal gauged SUGRA one could
say that the intrinsic torsion becomes the T-tensor, the “flattened” version of the embedding tensor.

We can now compute the scalar potential of the truncated theory. For this we will take the
trombone tensor to vanish, i.e. ξM = 0. Otherwise, one does not obtain a consistent action principle
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and the gauged SUGRA would only be defined at the level of the equations of motion. We find

〈|e|V 〉= ρ
5|ê|
[
−1

4
e−2d fMNP fQRS

(
1

12
H MQH NRH PS− 1

4
H MQ

η
NR

η
PS +

1
6

η
MQ

η
NR

η
PS
)

+
1
2

e−2d fM fNH MN +
1
8

e−6d
θ

2−
√

2
12

e−4d
θH MNP fMNP

]
.

(4.12)

This is precisely the scalar potential of half-maximal gauged SUGRA, in particular with the singlet
deformation parameter θ and the term f MNP fMNP which vanishes by section condition but appears
here automatically with the right relative coefficient.

We now see why it was crucial that the embedding tensor fMNP, fM, ξM and θM are constant.
Just as in the maximal case, see e.g. [12], this means that the Y ab-dependence in the action factorises
and thus any solutions of the lower-dimensional half-maximal gauged SUGRA can be uplifted to a
solution of the full exceptional field theory, and thus, subject to solving the section condition, to 10-
or 11-dimensional SUGRA. Another nice feature of the formulation given here is that if ρ , ωM

ab,
n̂a and na satisfy the section condition, then the quadratic constraint of the half-maximal gauged
SUGRA is automatically fulfilled. However, there are also be solutions of the quadratic constraint
which violate the section condition, again analogously to the maximal case, for example [9, 14].

5. From exceptional field theory to heterotic double field theory

The construction presented above can also be used to relate exceptional field theory to heterotic
double field theory. This relation is reminiscent of the M-theory / heterotic duality [19].

5.1 Ansatz and consistency condition

We begin by considering exceptional field theory with an internal space admitting an SU(2)-
structure. We now expand this SU(2)-structure in the same way as in our truncation Ansatz (4.1)

〈Aa〉(x,Y ) = ρ
3(Y )na(Y )e−2d(x,Y ) , 〈Âa〉(x,Y ) = ρ

2(Y )n̂a(Y ) ,

〈Bu
ab〉(x,Y ) = ρ(Y )ωM

ab(Y )bu
M(x,Y ) , 〈κ〉(x,Y ) = ρ(Y )e−2d(x,Y )/5 ,

〈gµν〉(x,Y ) = ρ
2(Y )ĝµν(x)e−4d(x)/5 ,

(5.1)

but we now allow the “scalar fields” bu
M(x,Y ) and d(x,Y ) to depend on both the external seven-

dimensional coordinates xµ as well as the ten Y ab, although we will soon restrict this dependence
in a controlled manner. The fields bu

M(x,Y ) become the left-moving frame fields of the heterotic
double field theory and d(x,Y ) becomes the generalised dilaton of the theory. One proceeds sim-
ilarly for the gauge fields Aµ

ab, etc. We will call the theory thus obtain the “gauged” theory to
differentiate it from the exceptional field theory we started off with.

The above Ansatz means that we do not obtain a truncated theory in seven dimensions, but still
have a higher-dimensional theory. This procedure of making a truncation-like Ansatz but allowing
the scalar fields to still depend on (some) of the Y ab’s has recently been shown [34] to reproduce
the massive IIA theory [35] using exceptional field theory. We will show that the procedure here
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instead gives rise to the heterotic double field theory [36–38], or heterotic supergravity once the
section condition is solved.

We begin by imposing the same differential constraints on ρ , ωM
ab, n̂a and na, i.e. (4.9) as for

consistent truncations. In order to make comparison with the heterotic double field theory of [38]
we will take

fM = ξM = θ = 0 , (5.2)

although it is easy to consider a heterotic double field theory with some of these additional gaugings
turned on. We will see that fMNP determines the gauge group of the heterotic double field theory.
Note that this implies that the gauge group is necessarily a subgroup of O(3,n).

We must also ensure that derivatives of the scalar fields bu
M(x,Y ) and d(x,Y ) do not source

doublets of SU(2)S. Additionally, just as in (4.9), we need to ensure that any excitations that they
do source are captured in the truncation. We do this by imposing that

∂abd(x,Y ) =
1
2

ω
M

abωM
cd

∂cdd(x,Y ) , ∂abbu
M(x,Y ) =

1
2

ω
M

abωM
cd

∂cdbu
M(x,Y ) , (5.3)

and similarly for any other field of the gauged theory. In particular, this means that

na
∂abd(x,Y ) = na

∂abbu
M(x,Y ) = 0 , (5.4)

so that the theory effective has a six-dimensional internal space.
It is now natural to introduce the twisted derivatives

DM =
1
2

ω̃M
ab

∂ab , (5.5)

which we wish to identify with the n+3 derivatives of the heterotic double field theory. To do so,
we require that they commute. However, the commutator is given by

[DM,DN ] =
1

2ρ
fMN

PDP−
3
2

ω̃[N
[cd

∂cdω̃M]
ab]

∂ab . (5.6)

This vanishes if impose the section condition as well as

fMN
PDP = 0 , (5.7)

on any field in the gauged theory. This latter condition is also required from the perspective of the
heterotic double field theory [38]. Given that we take these conditions to be fulfilled we can now
write the twisted derivatives as a partial derivative

∂M = DM . (5.8)

5.2 Local symmetries of heterotic double field theory

We can now compute the generalised Lie derivative acting on fields in the gauged theory.
Consider two generalised vectors with the heterotic Ansatz (5.1)

Λ
ab(x,Y ) = ρ(Y )ωM

ab(Y )ΛM(x,Y ) , V ab(x,Y ) = ρ(Y )ωM
ab(Y )V M(x,Y ) , (5.9)

11
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with ΛM and V M satisfying the conditions (5.3) and (5.7). It is now straightforward to show that

LΛV ab = ρωM
ab (

Λ
N

∂NV M−V N
∂NΛ

M +V N
∂

M
ΛN + fNP

M
Λ

NV P) , (5.10)

which is the heterotic generalised Lie derivative with gauging determined by fMNP.
Similarly the section condition

∂[abΛ
M

∂cd]V
N =

1
4!

εabcdene
η

PQ
∂PΛ

M
∂QV N (5.11)

becomes the heterotic double field theory section condition. We thus recover the local symmetries
and section condition of the heterotic double field theory.

5.3 Intrinsic torsion and heterotic action

Let us now evaluate the heterotic action and begin by calculating the intrinsic torsion. With
(5.1), (5.3) and (4.9) one finds that the only non-vanishing components of the intrinsic torsion are

Uu = ρ
−1e2d/5

Ωu , Ruvw = ρ
−1e2d/5

Ωuvw ,

Ruv
ab = ρ

−1
ωM

abe4d/5ew̄
M

Ωuv
w̄ , κ

−2LBu (κUu) = ρ
−2e4d/5bu

M
∂MΩ

u ,
(5.12)

where we defined

Ωu = e2d
∂M

(
bu

Me−2d
)
, Ωuvw = Lb[ubv

Mbw]M , Ωuvw̄ = Lb[ubv
Mbw̄]M , (5.13)

exactly as in [39]. Here bū
M denote the ū = 1, . . . ,n right-moving frame fields of the generalised

metric, satisfying
P+M

Nbū
N = bū

M . (5.14)

Furthermore, we have used LΛV M to represent the heterotic generalised Lie derivative (5.10)

LΛV M = Λ
N

∂NV M−V N
∂NΛ

M +V N
∂

N
ΛN + fMNPΛ

NV P . (5.15)

With these results one finds that the scalar kinetic terms (3.16) become

〈|e|Lkin〉=
1
2

ρ
5e−2d ĝµνDµH MNDνHMN +4ρ

5e−2d ĝµνDµdDνd , (5.16)

where Dµ = ∂µ−LAµ
represents the gauge-covariant derivative of the heterotic double field theory.

Furthermore, the scalar potential reduces to

〈|e|V 〉= ρ
5|ê|e−2d

[
bu

M
∂MΩ

u +
1
2

ΩuΩ
u− 1

12
ΩuvwΩ

uvw− 1
4

Ωuvw̄Ω
uvw̄

−1
4
H MN

∂Mĝµν∂N ĝµν

]
.

(5.17)

This matches the scalar kinetic terms and scalar potential of the heterotic double field theory in the
frame formulation [39, 40]. One can similarly obtain the full action from exceptional field theory.
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6. Conclusions

Here we have shown how to use exceptional field theory to describe backgrounds admitting
half the number of spinors. Such backgrounds admit a generalised SU(2)-structure which can be
defined by having certain non-vanishing generalised tensor fields, which can be thought of as the
generalisation of complex and Kähler structure on K3 surfaces. We showed how to reformulate
exceptional field theory in terms of the SU(2)-structure thus making N = 2 SUSY manifest.

We then showed how one can define consistent truncations on such generalised SU(2)-structure
manifolds. The truncation Ansatz is made by expanding the SU(2)-structure in terms of a set
of modes which only depend on the internal space, with coefficients corresponding to seven-
dimensional scalar fields. The consistency conditions are naturally encoded by the generalised
Lie derivative and allow us to identify the embedding tensor of the half-maximal gauged SUGRA,
including the singlet deformation parameter θ . With the truncation Ansatz, the action reproduces
the action of half-maximal gauged SUGRA.

Finally, we showed how one can use the methods described here to obtain the heterotic dou-
ble field theory, using an Ansatz for all fields similar to the truncation Ansatz, but allowing the
“gauged” fields to still depend on a subset of the 10 coordinates Y ab. The intrinsic torsion of the
SU(2)-structure background now determines the gauge group of the heterotic theory. Furthermore,
the generalised Lie derivative of exceptional field theory naturally gives rise to the heterotic double
field theory Lie derivative, and the action reproduces that of the heterotic double field theory.

As we stressed in the introduction, dualities appear as ambiguities in exceptional field the-
ory. The framework allows one to easily see when a lower-dimensional theory has two different,
dual, higher-dimensional origins. With the results presented here one can also see when a lower-
dimensional supergravity has a heterotic uplift in addition to type II. This happens for example, in
K3 compactifications of 11-dimensional supergravity, where there is also an uplift to the heterotic
SUGRA on T 3 with the gauge group broken to the Cartan subgroup [19].

The construction presented here can be generalised to other dimensions [29] as well as less
SUSY, using the results of [41]. It would be interesting to apply these results to find new half-
maximal consistent truncations which can amongst other things be used to find new vacua of 10-
and 11-dimensional SUGRA. Another interesting aspect would be to study the moduli space of
half-maximal vacua, similar to [42].
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