
P
o
S
(
I
S
G
C
2
0
1
7
)
0
1
8

Investigating Community Detection Algorithms and
their Capacity as Markers of Brain Diseases

Eva Výtvarová
Faculty of Informatics, Masaryk University
Central European Institute of Technology, Masaryk University
E-mail: eva.vytvarova@mail.muni.cz

Jan Fousek
Faculty of Informatics, Masaryk University
E-mail: izaak@mail.muni.cz

Michal Mikl
Central European Institute of Technology, Masaryk University
E-mail: michal.mikl@ceitec.muni.cz

Irena Rektorová
Central European Institute of Technology, Masaryk University
E-mail: irena.rektorova@fnusa.cz

Eva Hladká∗
Faculty of Informatics, Masaryk University
E-mail: eva@fi.muni.cz

In this paper, we present a workflow for evaluating resting-state brain functional connectivity
with different community detection algorithms and their strengths to discriminate between health
and Parkinson’s disease (PD) and mild cognitive impairment preceding Alzheimer’s disease (AD-
MCI). We further analyze the complexity of particular pipeline steps aiming to provide guidelines
for both execution on computing infrastructure and further optimization efforts.
On a dataset of 50 controls and 70 patients we measured an increased modularity coefficient
with 81.8% accuracy of classifying PD versus controls and 76.2% accuracy of classifying AD-
MCI versus controls. Significantly higher modularity coefficient values were measured when
the random matrix theory decomposition was adapted for network construction. These results
were observed on networks of 82 nodes based on AAL atlas and 317 nodes based on multimodal
parcellation atlas.

International Symposium on Grids and Clouds 2017 -ISGC 2017-
5-10 March 2017
Academia Sinica, Taipei, Taiwan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:eva.vytvarova@mail.muni.cz
mailto:izaak@mail.muni.cz
mailto:michal.mikl@ceitec.muni.cz
mailto:irena.rektorova@fnusa.cz
mailto:eva@fi.muni.cz


P
o
S
(
I
S
G
C
2
0
1
7
)
0
1
8

Investigating Community Detection Algorithms and their Capacity as Markers of Brain Diseases
Eva Hladká

1. Introduction

The human brain consists of 1011 neurons interconnected with approximately 1014 connec-
tions creating a large, complex structure. This anatomical connectivity is a substrate for brain
function which we can both measure and model on various scales. The goal of current research is
understanding the brain as a system and its behavior as a whole, i.e. identifying the spatiotempo-
ral structure of brain function. This large-scale functional connectivity of neuronal populations is
defined as statistical relations between neural activities of distinct brain cortical regions and is usu-
ally measured by fMRI (functional magnetic resonance imaging), EEG or MEG (electro/magneto-
encephalography). A very promising tool is to model the system as a network using network sci-
ence approach, drawing inspiration from previous applications in research areas such as economics,
transportation, communication and immunology [1, 2].

Network analysis models a complex system as a set of discrete units, describes the interactions
between them, and provides ways to measure the importance of nodes and to detect communities.
Using diverse metrics, it describes system topology and whole-system events and can be used to
model growth in system size [1]. Network analysis is primarily a data-driven technique and is an
excellent tool to study real systems and to understand them. It requires interdisciplinary and big
data processing approaches.

As the median age of the population increases and life expectancy shifts upward, neurodegen-
erative diseases are becoming more prevalent. Early-stage detection of different kinds of dementia
and cognitive impairments is an extremely important task considering that we are unable to cure
them and are only able to slow down their progression and treat their symptoms. The neuroscience
community is devoting great effort into finding potential markers of disease that would be nonin-
vasive, easy to establish, and stable.

In this paper, we evaluate the strengths of community detection methods to differentiate be-
tween networks of healthy and diseased subjects using the examples of AD-MCI and PD-MCI/PD-
NC (Mild Cognitive Impairment preceding Alzheimer’s / Parkinson’s Disease, Parkinson’s Disease
with Normal Cognition) as illnesses known to influence network topology [3, 4, 5, 6]. Mild cog-
nitive impairment refers to an intermediate stage between normal aging and dementia. It includes
changes in cognitive performance, mostly memory, language, thinking and judgment [7]. The de-
cline in these functions is more serious in MCI than in normal aging. The goal of studying MCI
is early diagnosis and slowing down the onset of dementia. We have chosen community detec-
tion because it was shown that community structure is influenced by such diseases as Alzheimer’s
disease or schizophrenia [8, 9]. A possible biological interpretation is that communities represent
groups of nodes that serve different cognitive functions. It has also been shown that these groups
can change over time [10].

We apply classification analysis, including parameter sweeps of methods for data preprocess-
ing (since there is no consensual preprocessing pipeline), to quantify the ability of community
detection algorithms to distinguish between patient and control and thus evaluate each one of them
as a promising or inconclusive marker of a disease. The pipeline consists of several subsequent
steps. We also analyze time complexity, which will guide further optimization efforts. Given
the substantial amount of data, we used the computing infrastructure of MetaCentrum, CESNET,
Czech Republic, to be able to analyze the data.
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2. Methods

We divide the pipeline into six steps, as shown in Fig. 1. Time complexity was evaluated
for each step. Data acquisition from healthy subjects and patients was followed by preprocessing
and construction of a functional connectivity network for each subject. The community structure
of these networks was then detected and used as a feature for classification between health and
disease. We then computed the strength of community detection as a possible disease marker.

fMRI
data

acquisition
preprocessing

functional
connectivity

network

community
detection

classification
community
detection

as a marker?

Figure 1: The sequence of steps performed for analyses in this paper.

2.1 Data acquisition

For this study, we obtained data from 70 patients (35 women; 66.7±9.4 years) and 50 healthy
controls (34 women; 66.7±7.4 years), all of the same age category. Patients were further divided
into AD-MCI and PD subgroups according to their detailed diagnosis. There were 34 AD-MCI
patients (25 women; 70.6±7.6 years) and 36 PD patients (10 women; 63.1±9.6 years; patients were
scanned in the ON medication state without dyskinesias). The PD group contained PD patients with
normal cognition and with mild cognitive impairment [11]. A significant decrease in gray matter
volume was detected in the hippocampus bilaterally in the AD-MCI group by means of voxel-
based morphometry. No atrophy was measured in the PD group. Basic demographic and clinical
variables are shown in Table 1. For further details on the subjects included in this study, please see
the supplementary material of [12].

All subjects were scanned using a 3 T Siemens Prisma scanner and 64-channel head-neck
receive coil array. Functional scans of resting-state activity (subjects were instructed to lie still
with their eyes closed and not to think extensively about anything) were acquired using a gradient-
echo echo-planar imaging sequence: TR = 2.08 ms, TE = 30 ms, FOV = 192 mm, FA = 90◦, matrix
size 64×64, slice thickness = 3 mm, 39 transversal slices, isotropic voxel size 3×3×3 mm, 200
scans (volumes). Structural data were acquired as anatomical T1-weighted images using MPRAGE
sequence with 240 sagittal slices, TR = 2300 ms, TE = 2.36 ms, FOV = 256 mm, FA = 8◦, matrix
size 256×256, slice thickness = 1 mm, isotropic voxel size 1×1×1 mm.

2.2 Preprocessing

Certain data preprocessing is needed between data acquisition and network construction. The
essential steps consisted of realigning scans shifted by subject’s movement, co-registration with a
more detailed anatomical scan, spatial normalization to a Montreal Neurological Institute template,
and spatial smoothing with Gaussian kernel of FWHM = 5 mm.

However, there are some steps regarding noise suppression the usage of which is not consen-
sual and depends on the user. We examined 4 steps creating 16 total variants of preprocessing. The
steps are shown in Fig. 2 and are as follow:
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HC, n = 50 MCI-AD, n = 34 PD, n = 36

Age (years) 66.7 (7.4) 70.6 (7.6) 63.1 (9.6)
Education (years) 15.6 (2.6) 14.3 (4.0) 14.8 (4.3)
Sex, % male 32 26 72
MMSE 28.4 (1.3) 25.9 (2.5) 27.5 (2.1)

Average and standard deviation values are displayed.
MMSE – mini mental state exam

Table 1: Demographic and clinical variables.

• High pass filtering with cutoff at 128 s;

• Filtering of movement by 24 movement regressors: 3 translations (in x, y and z axes), 3
rotations, their time-differences, and all of them squared [13];

• Filtering of signals from white matter (WM) and cerebrospinal fluid (CSF): 4 WM and 6
CSF signals; and

• Global signal filtering: function spm_global from SPM121.

A global signal is an average signal coming from the whole brain and is sometimes filtered out in
connectivity analyses. This step, however, is highly controversial [14, 15], and we therefore chose
to include it in our analysis in order to show its influence on functional connectivity networks and
community structures.

The preprocessing was done using SPM12 by regressing out the nuisance variables by GLM
model.
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Figure 2: Preprocessing steps adopted in this analysis.

2.3 Network construction

The acquired data were parceled to 82 out of 90 anatomically defined regions of the AAL
atlas [16] – regions not fulfilling the criterion of 5% minimal coverage were not included in a
network. For each region (containing tens or hundreds of voxels) we computed a representative
signal by averaging the signals from voxels in the region. In this way we obtained 82 time series

1http://www.fil.ion.ucl.ac.uk/spm/
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that are 200 time-points long. By computing Pearson’s correlation coefficients between every pair
of time series, we obtain a correlation matrix that describes the functional connectivity network for
which the Pearson’s correlation coefficients represent the edge weights. The parcellation enables
physiological interpretation of results on a regional level.

We apply community detection methods on the networks that are first thresholded, leaving
only 15% of the strongest connections, and then further binarized. This simplification allows us
more easily to detect communities than would be possible in a complete network and also prevents
the existence of links with negative weights defined by negative correlation coefficients.

We conducted analyses also on the data parceled according to a multimodal parcellation map
based on data from the Human Connectome Project (hereinafter referred to as the HCP MMP atlas)
[17] into 317 out of 360 regions (respecting the minimal coverage criterion). The same procedure
as mentioned above for the AAL atlas was followed also for the case of HCP MMP atlas-based
regions.

2.4 Community detection algorithms

Community structure is a property of real complex systems. Communities can also be called
modules, clusters, subnetworks, or spatial or temporospatial patterns. Nodes in a network with a
community structure tend to be densely connected within communities and have sparse connections
between modules [18].

Community detection is an NP-complete problem which uses optimization methods and heuris-
tics. Repetitive computation is required to get representative results. We used iterative community
fine-tuning. We started by computing community structure and then repeated the computation us-
ing the community structure computed in the previous step to maximize the coefficient value which
indicates how well a network is able to form clusters. We repeated the fine-tuning 100 times and
compute a representative partition across these repetitions and across subjects using an algorithm
from Brain Connectivity Toolbox [19].

We used two algorithms for community detection: Louvain and Potts modularity methods.
The Louvain method [20] is a simple greedy agglomerative algorithm that is computationally fast.
It starts with the state of each node being in its own community, computing community structure
and supplying this structure again and again to the algorithm until the maximum gain in modularity
is obtained. The Potts model [21] represents the system as a spin glass where each node has a
spin state. The goal of optimization is to find a state corresponding to the maximum value for the
modularity.

Since we were dealing with the correlation character of networks, we tested not only these
two modularity methods, but also included a preliminary step using random matrix theory. The
random matrix theory identifies nonrandom properties of correlation matrices. It is based on eigen-
values computation and decomposes the correlation matrix into three components: a component for
random mode, a component for group mode, and a component for market mode. Market mode cap-
tures seasonality in the underlying time series, while random mode captures the noise [22, 23]. By
using RMT decomposition, we extracted only the group mode and used it as an input in modularity
methods.
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Combining modularity methods and random matrix theory decomposition, we obtained four
approaches to community detection. We evaluated the following features on these community
detection methods:

• Modularity coefficient Q, which reflects the ability of a network to form clusters: Q ∈
(0;1),Q→ 0 . . . random network without clusters, Q→ 1 . . . network with clearly defined
modules;

• Node classification to a community (spatial localization of modules); and

• Computational demand of methods.

2.5 Statistical evaluations

Before training a classifier to differentiate between health and disease, the statistical signifi-
cance between modularity coefficients in A) variants with and without RMT decomposition step
and B) controls and patient groups was computed using nonparametric Wilcoxon tests, because
some of the variables did not have normal distribution.

2.6 Classification

The classification analysis used modularity coefficients computed for each subject, prepro-
cessing variant, and community detection method. The results of basic statistical testing were used
to eliminate some of the combinations of preprocessing steps and modularity methods (see Results
section for detailed information). For the remaining variables, we randomly sampled subjects to
train (75% of samples) and test (25%) samples (leading to 14 healthy controls and 7 AD-MCI
in test samples in HC—AD-MCI classification, and 12 HC and 10 PD subjects in test samples
in HC—PD classification), used 10-fold cross-validation with 1000 iterations. The support vec-
tor machine (SVM) approach with radial basis function kernel was used. Age and gender were
taken into consideration as additional variables. Classification training and testing were conducted
separately for each patient group against the control group. The classification accuracy was ob-
tained together with values for sensitivity and specificity. The procedure was repeated for diverse
combinations of variables (modularity coefficients computed for networks based on different pre-
processing pipelines).

2.7 Time complexity

Finally, we also measured the time complexity of individual steps of the processing pipeline.
To better examine this, we have further created semi-simulated networks of 634, 984 and 1268
nodes. These artificial networks are based on time series of AAL and HCP MMP regions. A ran-
dom noise with an amplitude of 50% of the original time series was added in each time point. Given
that preprocessing is not influenced by network size, we evaluated only the network construction,
community detection, and classification steps for these networks.

Data were obtained in NIfTI2 format and processed in MATLAB3 R2016a with the computa-
tional times measured by the MATLAB stopwatch timer. The classification analysis was computed

2https://nifti.nimh.nih.gov/
3https://www.mathworks.com/products/matlab.html
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in STATISTICA4 64, version 13. Analysis was carried out on a Lenovo ThinkPad T430s Laptop
with Intel i5 CPU processor with 4 physical cores and 8.00 GB RAM running Windows 10 Pro N.

3. Results

3.1 The effect of RMT decomposition on the modularity coefficient

We start the description of results by showing the effect of random matrix theory decom-
position on Louvain modularity coefficient. The boxplots in Fig. 3 show different preprocessing
pipelines that precede connectivity matrix construction, either including or not including the RMT
decomposition step before modularity coefficient computation. In all cases except the one includ-
ing global signal filtering, we observed a statistically significant increase in modularity when using
only the group mode of the correlation matrix, p<0.05. This applies both to the healthy control
group as well as to the patient groups. The last boxplot in Fig. 3 is for preprocessing with filtering
out the global signal. Its usage completely changes the results, with RMT decomposition decreas-
ing the modularity coefficient. Very similar results were observed for networks based on the HCP
MMP parcellation atlas. Based on these results we excluded variants with global signal filtering
from all follow-up analyses in this paper.

3.2 Modularity alterations in AD-MCI and PD

The statistical difference between modularity coefficients in the health control and AD-MCI
and PD groups was computed across preprocessing variants and patient subgroups and is shown in
Fig. 4. A statistically significant difference indicated by a p-value less than 0.05 was observed only
for Louvain modularity, both with and without RMT decomposition. The statistically significant
differences are indicated in the boxplots by asterisks (significant differences are between groups
which are at the ends of the lines below asterisks). Modularity was higher in the PD group than in
the control group consistently across the majority of preprocessing variants, whereas the AD-MCI
group’s modularity increased as compared to the control only in one preprocessing setting. Blue
boxes are for the control group, orange for the AD-MCI patient group, and green for the PD group.
No differences between groups were measured by modularity computed with Potts algorithm no
matter the use or no use of RMT decomposition step as is shown also in Fig. 4.

Considering the results for the HCP MMP parcelated networks, the difference between con-
trols and PD was measured in networks created with high pass filtering (hpf), hpf and CSF + WM
filtering, and hpf and movement filtering. The increase in the modularity coefficient in AD-MCI as
compared to controls was measured only in hpf, WM + CSF filtering variant with random matrix
theory decomposition step.

3.3 Classification accuracy

First we established the classification accuracy for the modularity coefficients computed on
networks for each of the preprocessing pipelines individually – 8 preprocessing pipelines (exclud-
ing those with global signal regression) with and without the random matrix decomposition step,
together creating 16 preprocessing pipelines separately evaluated for their effects on modularity

4http://software.dell.com/products/statistica/
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Figure 3: The effect of RMT decomposition, Louvain modularity; shown on networks computed from data
with different preprocessing steps and AAL atlas parcellation.
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Figure 4: The effect of AD-MCI and PD on modularity coefficient using Louvain (L) and Potts (P) methods;
shown on networks computed from data with different preprocessing steps and AAL atlas parcellation.

coefficients and classification ability. These results are presented in Table 2. The table shows low
accuracy for all preprocessing pipelines with the best result for HC vs. PD classification by mod-
ularity for data with high pass filtering, regression of movement artifacts and RMT decomposition
with 77.3% accuracy, 0.73 sensitivity and 0.82 specificity. For the HC vs. AD-MCI classification,
no individual preprocessing pipelines used for classification was able to correctly sort any patient
into a patient group (number of true positives equals zero) leading to zero or not-a-number results
in sensitivity.

Second, working with the assumption that different preprocessing procedures filter out differ-
ent information from the data, we included into the classification various combinations of prepro-
cessing pipelines. We believed this would ensure that the information filtered out in one pipeline
but not the other would not be lost and would be included in the classification.

For the HC vs. AD-MCI, Table 3 shows that the best classification (76.2% accuracy with
specificity at 0.80 and sensitivity at 0.67) was obtained when modularity coefficients computed for
networks based on AAL atlas and three different preprocessing pipelines entered the classification:
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AAL, HC vs. AD-MCI

Individual preprocessing Accuracy [%] Sensitivity Specificity
pipelines for classification - RMT - RMT - RMT

No preprocessing 47.1 66.7 0 NaN 0.63 0.67
WM + CSF 66.7 66.7 NaN NaN 0.67 0.67
24 MR 66.7 61.9 NaN 0 0.67 0.65
24 MR + WM + CSF 66.7 66.7 NaN NaN 0.67 0.67
hpf 66.7 66.7 NaN NaN 0.67 0.67
hpf, WM + CSF 66.7 57.1 NaN 0.40 0.67 0.73
hpf, 24 MR 66.7 57.1 NaN 0 0.67 0.63
hpf, 24 MR + WM + CSF 66.7 66.7 NaN NaN 0.67 0.67

AAL, HC vs. PD

No preprocessing 68.2 68.2 0.62 0.62 0.78 0.78
WM + CSF 68.2 68.2 0.62 0.62 0.78 0.78
24 MR 68.2 68.2 0.62 0.62 0.78 0.78
24 MR + WM + CSF 68.2 68.2 0.62 0.62 0.78 0.78
hpf 68.2 68.2 0.62 0.62 0.78 0.78
hpf, WM + CSF 68.2 68.2 0.62 0.62 0.78 0.78
hpf, 24 MR 68.2 77.3 0.62 0.73 0.78 0.82
hpf, 24 MR + WM + CSF 68.2 68.2 0.62 0.62 0.78 0.78

Table 2: HC vs. patients classification by modularity; individual preprocessing variants. NaN . . . not-a-
number; division by zero (true positives + false negatives = 0).

preprocessing with 1. high-pass filtering, movement regression and RMT decomposition, 2. high-
pass filtering, movement regression and WM + CSF filtering, 3. high-pass filtering, movement
regression, WM + CSF filtering and RMT decomposition. Each of the preprocessing pipeline
filters out different information and this combination contains information that best differentiates
between HC and AD-MCI. All other combinations for networks constructed on the AAL atlas and
all combinations for networks constructed on the HCP MMP atlas were not able to correctly sort
any patient into the AD-MCI patient group.

For the HC vs. PD groups, the best combination yielded 81.8% classification accuracy with
specificity at 0.79 and sensitivity at 0.88 when the modularity was measured by Louvain modular-
ity and the classifier included modularity coefficients computed on networks with a higher level of
filtering in preprocessing. See Table 3 for detailed information about the combination of prepro-
cessing pipelines. Very similar accuracy was measured for modularity computed on networks based
on the HCP MMP atlas with good classification results across more combinations of preprocessing
variants.

3.4 Analysis of complexity

Fig. 5a) shows the proportions of processing steps on the time of the whole computation for
120 subjects, 16 preprocessing variants and 4 community detection methods. The data acquisition

8
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AAL, HC vs. AD-MCI

Combination of preprocessing variants
Accuracy [%] Sensitivity Specificity

used for classification

hpf, 24 MR, RMT
76.2 0.67 0.80hpf, 24 MR + WM + CSF

hpf, 24 MR + WM + CSF, RMT
AAL, HC vs. PD

24 MR, RMT

81.8 0.88 0.79

24 MR + WM + CSF
24 MR + WM + CSF, RMT
hpf, 24 MR
hpf, 24 MR, RMT
hpf, 24 MR + WM + CSF
hpf, 24 MR + WM + CSF, RMT

Table 3: HC vs. patients classification by modularity; a combination of preprocessing variants with the best
classification results.

time depends on the MR measuring sequence and is usually around 10 minutes of measuring time
and tens of minutes for subject preparation. It was excluded from this figure.

Preprocessing as the first step of fMRI data analysis and the length of its computation is influ-
enced by data quantity (MR sequence parameters), subject specifics (e.g. movement) and level of
preprocessing. For the 16 variants used, the computation took 3 to 5 minutes per subject.

Subsequent steps are strongly influenced by network size. For all subjects and all prepro-
cessing variants we measured 11.6 mins spent on network construction for a network of 82 nodes
(AAL atlas), 16.4 mins for 317 nodes (HCP MMP atlas), 37.5 mins for 634 nodes (HCP MMP
based), 65.9 mins for 984 nodes (AAL based), and 134.3 mins for 1268 nodes (HCP MMP based).
These values indicate an exponential relationship between network size and time spent on network
construction.

An exponential trend was also observed in the community detection step. Fig. 5b) captures
the dependence of the time needed for the community detection step computation on network
size. As shown in the pie charts in Fig. 5a) for networks larger than 300 nodes, the community
detection step became the most time-consuming component of the whole pipeline. We based the
SVM classification on modularity coefficients. Thus the computation did not depend on network
size because the whole network was represented by one value. We measured approximately 20 mins
for this step.

4. Discussion

Our results show that decomposition using random matrix theory, which captures the group
mode and discards the random and seasonal modes of the correlation matrix, increases the modu-
larity coefficient (ability of network to form clusters). A higher level of filtering (we used 24 move-

9
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Figure 5: a) Relative time complexity of processing pipeline steps for networks of different sizes. b) Influ-
ence of network size on community detection computation length.

ment regressors and filtered out the signals from white matter and cerebrospinal fluid) relates to a
higher modularity coefficient in community detection variants using RMT decomposition. How-
ever, RMT decomposition filtering out the global mode can be viewed as another kind of global
signal filtering. Including GS filtering in the preprocessing pipeline produces worse results with
regard to the modularity coefficient when RMT decomposition is applied, which could be caused
by this twice-applied similar filtering. Since it has been shown in other studies [14, 15] that global
signal filtering has an extreme influence on functional connectivity, we do not recommend using it
because this influence transfers also to community structure detection. Our future work will target
the appropriate use of RMT decomposition in functional brain time series.

For community detection we used the Louvain modularity method and the Potts spin-glass
model. Only with the Louvain algorithm, however, did we measure a significantly altered – in-
creased – modularity coefficient in Parkinson’s disease as compared to healthy controls. MCI
preceding Alzheimer’s disease showed increased modularity versus controls only in one prepro-
cessing variant – including high pass filtering, white matter and cerebrospinal fluid filtering, and
random matrix theory decomposition step, albeit consistently in networks created on AAL as well
as HCP MMP parcellation. High pass filtering (filtering out low frequencies and leaving frequen-
cies higher than the cutoff threshold at 128s) enhances the difference from healthy controls. Our
results differ from [8] who observed reduced modularity with increasing CDR (Clinical Dementia
Rating) in preclinical AD. This discrepancy could be caused by different subject characteristics or
the preprocessing or modularity method used.

The more prominent difference in PD from the controls can be explained by the characteristics
of the group, which included patients already being treated for Parkinson’s disease in its early
stages. Although the patients were measured in the OFF medication state, the classification could
have been even higher. On the other hand, the AD-MCI group was heterogeneous, the patients were
not treated with medication, and they only displayed deficiencies in cognitive and blood markers
known to be influenced by AD. Furthermore, the compensatory mechanisms and deficits also play
a role. A more thorough study will be conducted to map the differences between groups also in
terms of atrophy and cognitive decline. A longitudinal study (data has been obtained from patients
one year after the first measurement) will help to differentiate between patients who progress to
dementia related to AD and stable patients. This could further improve classification accuracy.

The classification analysis distinguishes between health and disease with 81.8% accuracy for
PD and with 76.2% accuracy for AD-MCI. The classification accuracy measured in this study
corresponds with that found in the literature. The study of [24] using metrics derived from diffusion
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magnetic resonance imaging shows 78.2% accuracy in classifying AD from HC, 59.2% accuracy in
classifying controls versus early AD-MCI, and 62.8% accuracy for controls versus late AD-MCI.
A higher percentage was achieved in classifying patients with amnestic AD-MCI from healthy
subjects by mean node strength of an NBS-network (network based statistics) computed on resting
state fMRI [3]. They achieved an accuracy of 85.7%. An accuracy of 89.6% was measured when
classifying Alzheimer’s disease patients by network measures on networks of cortical thickness
[25].

Since this work is mostly preliminary, we will further implement feature selection for SVM
classifier based on t-values of inter-group statistics, which could increase the accuracy of our results
even more.

Preprocessing is the most computationally demanding step for networks of small size (approx-
imately up to 100 nodes). The subsequent steps—network construction and community structure
detection—strongly depend on the number of network nodes and became the most time-consuming
components for larger networks. Except for removing variants with global signal filtering and an a
priori specification of preprocessing variants, we did not apply any sophisticated feature selection
for classification analysis. Therefore, this step is more time demanding than it might otherwise be
but still minimal when compared to other steps. It is not dependent on network size.

There are several possibilities and tools for faster and more efficient computation of individual
pipeline steps. Thanks to the Parallel Computing Toolbox, a MATLAB user can run parallel com-
putations (maximum for 12 processors). If still not sufficient, MATLAB also offers the Distributed
Computing Server. Both require a paid license. A parallel version of SPM (the tool we used for
preprocessing) is not yet available. The NeuroImaging Analysis Kit (NIAK)5 includes parallel
computing for preprocessing in MATLAB and OCTAVE. The fmriprep: A Robust Preprocessing
Pipeline for fMRI Data6 is a tool that includes parallelized steps that are significantly faster than
typical preprocessing steps. The efficiency of metrics for computing relationships between nodes
(such as mutual information and phase synchronization) is studied by [26], who show efficient
computation of network metrics. Their FastFC tool7 achieved 2 to 3 orders of magnitude faster
computation of path length and betweenness centrality than the standard BCT toolbox [19] but
slower performance for clustering coefficient and not so much difference in strength computation.
Efficient SVM classification has been implemented, for example, by [27, 28] and many others.

5. Conclusions

In this work we measured the differences in community structure of resting-state fMRI func-
tional connectivity between healthy controls and patients with mild cognitive impairment preced-
ing Alzheimer’s disease and patients with Parkinson’s disease with mild cognitive impairment or
normal cognition. These differences were measured on data with diverse preprocessing and com-
munity method variants. Increases in modularity coefficients were found in PD patients across
preprocessing variants. The SVM classifier was able to distinguish PD patients from controls with
81.8% accuracy and 87.5% sensitivity. Differences between AD-MCI and controls in modularity

5https://www.nitrc.org/projects/niak
6https://fmriprep.readthedocs.io/
7http://juangpc.github.io/FastFC/
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were found only for one preprocessing variant, and the classification accuracy was not so high
(76.2% with 66.7% sensitivity). From these results we conclude that modularity is a promising
marker for AD and PD although more extensive study of preprocessing and community detection
variants is needed. Random matrix theory decomposition influences the strength of the modularity
coefficient and its effect on localization of modules will be further studied.

Considering the complexity of the computation, the approach we used (and which is mostly
used also by other neuroscientists) becomes time consuming (especially the community detection
step of the pipeline) for networks with more than 300 nodes. Thanks to advances in acquisition pa-
rameters and more detailed parcellation atlases, the study of larger networks is becoming frequent
and meaningful. This provides opportunities for implementation of more efficient algorithms for
all pipeline steps.
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