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We investigate decay modes of spin-1 heavy vector bosons (V ′) from the viewpoint of perturbative
unitarity in a model independent manner. Perturbative unitarity requires some relations among
couplings, which are called unitarity sum rules. We derive the relation between V ′ couplings to the
SM fermions ( f ) and V ′ couplings to the SM gauge bosons (V ). Using the coupling relations, we
calculate partial decay widths for V ′ decays into VV and f f . We show that Br(W ′→WZ)< 0.02
in the system that contains V ′ and CP-even scalars as well as the SM particles. This result is
independent of the number of the CP-even scalars. We also discuss what kind of interactions can
make Br(V ′→VV ) larger than Br(V ′→ f f ). Our result is a useful guideline to construct models
that predict Br(W ′→WZ) > 0.02.
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1. Introduction

Spin-1 heavy vector particles (V ′) are popular particles predicted in physics beyond the stan-
dard model (BSM). An efficient way to study V ′ phenomenology at the LHC is to use effective
Lagrangians. For example, the effective Lagrangian given in Ref. [1, 2] provides a simple frame-
work for V ′ phenomenology at the LHC, and the framework is used in the analysis of ATLAS and
CMS [3, 4, 5, 6, 7, 8]. On the other hand, the effective Lagrangian violates perturbative unitarity at
higher energy scale in general. If the unitarity violation scale is as low as TeV scale, we have to take
into account a lot of higher dimentional operators. The higher dimensional operators accompany
unknown coefficients. It makes difficult to give a definite prediction due to a number of unknown
coefficients.

We can avoid the perturbative unitarity violation if the Lagrangian is renormalizable. The
effective Lagrangian given in Ref. [1, 2] includes a renormalizable model called HVT model A
in special regions of parameter space. This model predicts that V ′ mainly decay into two SM
fermions ( f ) and the decay mode into two SM gauge bosons (V ) are much smaller, Br(V ′→VV )�
Br(V ′→ f f ). However, we do not know the main decay mode of V ′ in advance of the discovery.
V ′ could be discovered in VV decay mode in future. It is thus important to prepare for the discovery
in any decay modes, and thus we should prepare other Lagrangians that predict Br(V ′ → VV ) ≥
Br(V ′→ f f ) without violating perturbative unitarity.

We investigate decay modes of spin-1 heavy vector bosons from the viewpoint of perturbative
unitarity in a model independent manner. Our purpose is to figure out the conditions that Br(V ′→
VV )≥ Br(V ′→ f f ) without relying on specific models. To this purpose, we need to know the V ′

couplings to the gauge bosons and to the fermions. We can find coupling relations by imposing
perturbative unitarity on scattering amplitudes that contain both the gauge bosons and the fermions.
The relations are called unitarity sum rules. Using the unitarity sum rules, we can obtain the
coupling relations to calculate Br(V ′→VV ) and Br(V ′→ f f ). The unitarity sum rules depend on
the matter contents of the system, and thus we can understand what kind of matter contents and
interactions can make Br(V ′→VV ) larger than Br(V ′→ f f ) from the unitarity sum rules.

2. Unitarity sum rules for f1 f̄2→V−3 V+
4

We calculate the scattering amplitude of f1 f̄2 → V−3 V+
4 denoted by iM jk, where j and k are

the twice of the helicity of f1 and f̄2, respectively. We include all the SM fermions, the SM gauge
bosons (W±,Z,γ), new heavy vector bosons (W ′±,Z′), CP-even scalars (h’s), and CP-odd scalars
(∆0’s) in our analysis. We assume CP conservation in the scalar sector. We also assume the minimal
flavour violation (MFV) [9] for simplicity. Under these assumptions, we calculate the amplitude of
f1 f̄2→V−3 V+

4 in the high energy limit,

M∓± =
s

2mV3mV4

A∓± sinθ +O(s0), (2.1)

M±± =

√
s

2mV3mV4

(
C

(0)
±±+C

(1)
±± cosθ +O(s0)

)
, (2.2)

and we obtain unitarity sum rules by imposing A−+ = A+− = C
(0)
++ = C

(0)
−− = 0. This condition is

automatically satisfied in renormalizable models. Effective V ′ models with sufficiently high cut-off
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scale also satisfy this condition in good approximation. If A−+ = A+− = 0, then C
(1)
++ and C

(1)
−−

are automatically equal to zero. The sum rules from C
(0)
++ and C

(0)
−− contain both the CP-even and

CP-odd couplings. We can separate these couplings by taking linear combinations, C
(0)
++±C

(0)
−−.

In the following sections, we apply the sum rules to two simple setups and discuss the relation
between Γ(W ′→WZ) and Γ(W ′→ f f ).

3. SM + V ′ + CP-even scalars

In this section, we apply the unitarity sum rules to the following simple setup. We consider
SU(2)0×SU(2)1×U(1)2 electroweak gauge symmetry. Left-handed fermions are SU(2)1 doublets.
Right-handed fermions are singlet under both SU(2)0 and SU(2)1. Both the left- and right-handed
fermions have appropriate U(1)2 charge. This charge assignment implies that the charged gauge
bosons do not couple to the right-handed currents. All scalars are CP-even. We do not include
CP-odd scalars in the setup here. We do not specify the number of the CP-even scalars. This setup
contains HVT model A [1, 2]. Under this setup, we obtain the uū→V−3 V+

4 unitarity sum rules as
follows.

1
2

gV3gV4 = ∑
V=γ,Z,Z′

gV+
3 V−4 V gL

ūuV , (3.1)

0 = ∑
V=γ,Z,Z′

gV+
3 V−4 V gR

ūuV , (3.2)

gV3gV4 =2∑
h

gV3V4h
gūuh

mu
, (3.3)

0 = ∑
V=Z,Z′

m2
V3
−m2

V4

m2
V

gV+
3 V−4 V (g

L
ūuV −gR

ūuV ). (3.4)

Combining these unitarity sum rules, we can erase gWW ′Z′ and obtain

gWW ′Z =−m2
Z

m2
Z′

gW gW ′

2(gL
ūuZ−gR

ūuZ)

1

1− m2
Z

m2
Z′

. (3.5)

In general, gW , gL
ūuZ , and gR

ūuZ are different from the SM prediction but should become the same as
in the SM in the decoupling limit (mW ′,Z′ → ∞). Thus the relation among gW , gL

ūuZ , gR
ūuZ , mW , and

mZ are the same as in the SM at the leading order in the large mW ′,Z′ limit. In a similar manner, we
obtain the ` ¯̀→W−W ′+ perturbative unitarity sum rules. We find

gWW ′Z '−
mW mZ

m2
Z′

gW ′ '−
mW mZ

m2
Z′

g`W ′ . (3.6)

We can see that g`W ′ ' gW ′ , and thus the relation given in Eq. (3.6) is flavor independent. From
these coupling relations, we find the following ratios of partial widths for the W ′ decays into WZ
and f f ,

Γ(W ′→WZ)
Γ(W ′→ fi f j)

' 1
4ci j

, (3.7)
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where

ci j =

{
Nc|V i j

CKM|2 (for quarks)

δ i j (for leptons)
, (3.8)

where Nc = 3, and the terms of order m2
W,Z, f /m2

W ′ have been neglected. Here we assumed m2
W ′ 'm2

Z′

to avoid the large custodial SU(2) symmetry breaking. The important consequence of Eq. (3.7) is
the suppression of Br(W ′ →WZ). Since there are three generations in both lepton and quark
sectors,

Γ(W ′→WZ)
∑ f Γ(W ′→ fi f j)

' 1
4× ((Nc +1)×3)

=
1
48

, (3.9)

where we used ∑i, j |V
i j

CKM|2 = 3. This equation implies that Br(W ′→WZ) . 2%. If we assume the
equivalent theorem relation Γ(W ′→WZ)' Γ(W ′→Wh) and the W ′ decay to W and heavy neutral
scalar is highly suppressed, we find Br(W ′→WZ)' 2% and Br(W ′→ eν)' 8% (∑ f Br(W ′→ f f )
' 96%). The assumption is justified in the case where gWWh' gSM

WWh [10]. Therefore, the branching
ratio of W ′ to the gauge bosons is much smaller than to the fermions. This result has been derived
from the f f̄ →WW ′ unitarity sum rules and does not need perturbative unitarity of other processes
such as WW →WW . In addition, the result does not depend on the number of the CP-even scalars.
Therefore our result in this section can be applied to various models.

If Br(W ′→WZ) is measured in future and if it is larger than 2%, it is implied that perturbative
unitarity of f f̄ →WW ′ is violated or the other new particles in addition to W ′,Z′ and CP-even
scalar bosons exist.

In this section we have assumed gW ′ 6= 0. If gW ′ = 0, then gWW ′Z = 0 as we can see from
Eq. (3.5), and W ′ decouples from the SM sector if gW ′ = 0.

4. SM + V ′ + CP-even scalars + CP-odd scalars

We extend the analysis in the previous section by introducing CP-odd scalars, and show that
Br(W ′→WZ) can become larger than Br(W ′→ f f ). The unitarity sum rule in Eq. (3.4) is modified
by the contributions of the CP-odd scalars. Instead of Eq. (3.4), we obtain the following unitarity
sum rule.

∑
∆0

gūu∆0

mu
gV3V4∆0 = ∑

V=Z,Z′
2gV3V4V

m2
V3
−m2

V4

m2
V

(gL
ūuZ−gR

ūuZ). (4.1)

The difference of this equation from Eq. (3.4) is that the left-hand side can be nonzero because of
the contributions of the CP-odd scalars. This is the only difference of the sum rules in this section
from the previous section. This difference can make Γ(W ′→WZ) change drastically as we will see
in the following. Using Eqs. (3.1), (3.2), (4.1), and similar unitarity sum rules from the amplitude
for ` ¯̀→W−W ′+, we find that

gWW ′Z '−
mW mZ

m2
Z′

(gW ′+ x∆) , where x∆ = ∑
∆

gūu∆

mu

gWW ′∆

gW
., (4.2)

gWW ′Z '−
mW mZ

m2
Z′

(
g`W ′+ x`∆

)
, where x`∆ = ∑

∆

g ¯̀̀ ∆

m`

gWW ′∆

g`W
. (4.3)
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Here we have neglected the terms of order m2
W,Z, f /m2

W ′ and we assumed that mW ′ ' mZ′ . Unlike
the setup discussed in Sec. 3, we cannot conclude g`W ′ ' gW ′ in this setup. We have two comments
on Eq. (4.2). First, this equation is independent of the quark flavor, although x∆ looks quark flavor
dependent. This is because x∆ '−gW ′−gWW ′Zm2

Z′/mW mZ and the right-hand side of this equation
is independent of quark flavor. Second, Eq. (4.2) implies that gWW ′Z 6= 0 even if gW ′ = 0 as long as
the CP-odd couplings exist. In the case where gW ′ = 0 and gWW ′Z 6= 0, the W ′ decay to WZ can be
the dominant decay mode. This is a big difference of the current setup from the setup discussed in
Sec. 3.

Using Eqs. (4.2) and (4.3), we find

Γ(W ′→WZ)
Γ(W ′→ uid j)

' (gW ′+ x∆)
2

4Nc|V i j
CKM|2g2

W ′
,

Γ(W ′→WZ)
Γ(W ′→ `ν)

'
(g`W ′+ x`

∆
)2

4(g`W ′)
2

, (4.4)

Γ(W ′→WZ)
∑Γ(W ′→ fi f j)

'

4Nc
3

(1+ x∆

gW ′
)2 +4

3

(1+ x`
∆

g`W ′
)2


−1

, (4.5)

where the terms of order m2
W,Z, f /m2

W ′ have been neglected. The factor three in Eq. (4.5) is the
number of the generation. We used ∑i, j |V

i j
CKM|2 = 3.

We find that gWW ′Z and Γ(W ′ →WZ) depend on gW ′ , x∆, and x`
∆
. This dependence is a dif-

ferent feature from Eqs. (3.7) and (3.9). If the CP-odd scalars are absent, then the ratio of the two
partial decay widths is uniquely determined as we have discussed in Sec. 3, see Eq. (3.9). On the
other hand, in the system with the CP-odd scalars, the ratio of the two partial decay widths is con-
trolled by gW ′ , x∆, and x`

∆
, which are model dependent parameters controlled by the CP-odd scalar

couplings. Thanks to this feature, Γ(W ′→WZ) can be comparable to or even larger than the other
decay modes. For example, Γ(W ′→WZ) ' Γ(W ′→ `ν) if x`

∆
' gW ′ or ' −3gW ′ . Γ(W ′→WZ)

is larger than Γ(W ′ → f f ) in large |x∆/gW ′ | regime. Γ(W ′ →WZ) also can become small and
even vanish for x∆ ' x`

∆
'−gW ′ . In any case, the contributions of the CP-odd scalars significantly

change the ratio of Γ(W ′→WZ) to Γ(W ′→ f f ) from the prediction without the CP-odd scalars.
In particular, it is the important feature that W ′→ f f is highly suppressed and W ′→WZ can be
the dominant decay mode in this setup with large |x∆/gW ′ |. This is the very different feature from
the setup in Sec. 3.

We estimate the maximum value of Br(W ′→ eν) as follows.

Br(W ′→ eν) =
Γ(W ′→ eν)

Γ(W ′→WZ)+∑ f Γ(W ′→ f f )+∑X Γ(W ′→ X)

≤
Γ(W ′→ eν)

Γ(W ′→WZ)+∑ f Γ(W ′→ f f )

' 4

(1+ x`
∆

g`W ′
)2

1+
36

(1+ x∆

gW ′
)2 +

12

(1+ x`
∆

g`W ′
)2


−1

≡Brmax(W ′→ eν), (4.6)

where Γ(W ′→ X) is the sum of the other partial decay widths of W ′ such as Γ(W ′→Wh), Γ(W ′→
W∆0). Brmax(W ′ → eν) corresponds to the value of Br(W ′ → eν) assuming Γ(W ′ → X) = 0.
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Figure 1: Brmax(W ′→ eν) as a function of x∆/gW ′ .

Although Γ(W ′→ X) generally takes non-zero value in the case where mW ′ > mX , Br(W ′→ eν) is
always smaller than Brmax(W ′→ eν) for any x∆/gW ′ , xl

∆
/gW ′ , and mX . Figure 1 shows Brmax(W ′→

eν) as a function of x∆/gW ′ with assuming x`
∆
= x∆ and g`W ′ = gW ′ for simplicity. We find that

Br(W ′→ eν) is highly suppressed and Br(W ′→WZ) can be large in the case with large x∆/gW ′ .
We can also see two extreme cases easily from this figure. One is x∆→ 0 limit where Brmax(W ′→
eν)' 8%. This result is consistent with the result in Sec. 3. The other case is gW ′ → 0 limit where
Br(W ′→ f f ) = 0 and W ′ to WZ can be the main decay mode. This result is again consistent with
our discussion below Eq. (4.2). Negative x∆ can also make Br(W ′ → eν) extremely small. By
measuring Br(W ′→ eν) and using Eqs. (4.2), (4.3), and (4.6), we can estimate x∆, and can obtain
information of the CP-odd scalar couplings even before the discovery of ∆0.

The existence of the CP-odd scalar couplings is important to increase Br(W ′→WZ) because
x∆ and x`

∆
can be zero if the CP-odd scalars do not couple to the fermions or the gauge bosons

as can be seen from Eqs. (4.2) and (4.3). Both g f̄ f ∆ and gWW ′∆0 need to be nonzero for making
Br(W ′ →WZ) larger than 2% by the effect of the CP-odd scalars. To obtain the nonzero g f̄ f ∆,
the scalar fields in the Yukawa terms need to contain CP-odd scalars. For non-vanishing gWW ′∆0 ,
the CP-odd scalars have to be components of scalar fields that develop vacuum expectation values
(VEVs) because gWW ′∆0 originates from kinetic terms of the scalar fields. These two conditions are
useful guidelines to construct models that predict Br(W ′→WZ)& 2%.

Let us discuss how to construct models that predict Br(W ′→WZ) & 2% by extending HVT
model A. It contains two scalar fields H and Φ which are (2, 1)1/2 and (2, 2)0 under SU(2)0×SU(2)1×U(1)2,
respectively. Since all the CP-odd scalars are eaten by the gauge bosons, we need to add other scalar
fields to increase Γ(W ′→WZ). New scalar fields should not have the same gauge charge as H and
Φ. If there are more than one scalar fields that have the same gauge charge, we can redefine the
scalar fields by taking the linear combination of them and go to a basis where only one of the scalars
develops VEV. This is equivalent to add scalars that do not develop VEVs, and thus gWW ′∆0 = 0. A
simple choice to obtain nonzero gWW ′∆0 is to add a scalar field that is (1, 2)1/2. The model with this
choice is discussed in Ref. [11, 12] and it certainly predicts large Br(W ′→WZ) with appropriate
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parameter choices. Another choice is to add scalar fields that are representations of SU(2)0 and/or
SU(2)1 larger than 2, for example (3, 3)0. However, such scalar fields break the custodial symmetry
by their VEVs in many cases, and thus constraints should be studied carefully.

5. Conclusions

Spin-1 heavy vector bosons are popular particles predicted in models beyond the SM. They
decay into various particles, such as two SM gauge bosons. In this paper, we have investigated the
relation between two decay modes, W ′ →WZ and W ′ → f f , from the viewpoint of perturbative
unitarity. We have focused on the amplitudes of f f̄ →V−V+ where V =W,W ′, and required that
these processes do not have bad high-energy behavior at the tree level. This requirement relates the
couplings in the amplitudes to each other. The coupling relations obtained from this requirement
are called unitarity sum rules.

Utilizing the unitarity sum rules for the system that contains spin-1 heavy vector bosons and
CP-even scalars as well as all the SM particles, we have shown that Γ(W ′ →WZ)/∑ f Γ(W ′ →
f f )' 1/48 where we sum over the contributions from three generations in both the quark and the
lepton sectors. Using this result, we have shown that Br(W ′ →WZ) . 2% in the system. This
result has been derived by imposing perturbative unitarity only on f f̄ →W−W ′+. The same result
is thus obtained even if perturbative unitarity is violated in other processes such as WW →WW .
The result is independent of the number of the CP-even scalars. Moreover, the ratio of the two
decay modes is independent of details of models. Hence we conclude that the result can be applied
to various models. If Br(W ′→WZ) is measured in future and is larger than 2%, then perturbative
unitarity requires new particles in addition to V ′ and CP-even scalars.

We have also shown that CP-odd scalars help to increase Br(W ′→WZ) if they couple to both
the SM fermions and the SM gauge bosons. In contrast to the case without the CP-odd scalars,
Br(W ′→WZ) depends on the parameters that are determined by the CP-odd scalar couplings and
can be much larger than 2%. Depending on the couplings, the decay mode of W ′ to the SM fermions
is highly suppressed and the decay mode of W ′ to the gauge bosons can be dominant. This is a
big difference of the models with CP-odd scalars from the models only with CP-even scalars. The
measurement of decay properties of W ′ is thus important not only for understanding the property
of W ′ itself but also for revealing the structure of the system containing W ′. For example, we can
estimate the strength of the CP-odd scalar couplings to the SM particles from the measurement
of Br(W ′ → eν) before the discovery of the CP-odd scalars. The result is also useful for model
building. For example, we can see that the CP-odd scalars must be components of scalar fields that
develop vacuum expectation values in order to obtain large Br(W ′ →WZ), because the nonzero
CP-odd couplings to W and W ′ are required for large Br(W ′→WZ) and the couplings arise from
the scalar kinetic terms.
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