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1. Introduction

General relativity is the most successful theory of gravity. Although this theory has been stud-
ied for about 100 years, because the field equation is nonlinear equation, its behavior is nontrivial.
So, numerical relativity is a powerful method to understand the nonlinear phenomena. About 20
years ago, Choptuik studied a gravitational collapse of a spherically symmetric massless scalar sys-
tem by using numerical relativity, and discovered a critical collapse, which is a universal behavior
of gravitational system.[1][3]

In this study[2], we focus on the spherically symmetric domain wall collapse in the following
system:

S =
∫

d4x
√
−g

{
R

16π
− 1

2
∇µΦ∇µΦ−V (Φ)

}
, (1.1)

and discuss the critical behavior of a domain wall collapse. The critical collapse of this system is
discussed in [9], and type II critical collapse appears. Nevertheless, since this system has a typical
length scale, it is expected that non trivial phase diagram appears.[7][8] In this study, in order to
investigate the non trivial phase diagram of this system, we study the critical collapse of this system
in different parameter space.

2. Method

In order to analyze the time evolution of the gravitational collapse of the spherically symmetric
domain wall, we developed the numerical code. In this section, we explain our formulation and
construction of the initial data.

2.1 formulation

We take a spherical metric ansatz as follows:

ds2 = −α2(t,r)dt2 +ψ4(t,r)
{

γ(t,r)−2(dr+ rβ (t,r)dt)2 + γ(t,r)r2dΩ2} , (2.1)

where dΩ2 is the solid angle element, and ψ , α , β and γ are independent functions of t and r.
Because the extrinsic curvature Ki j of each time slice has two independent components, we can
decompose Ki j into K and A, which are defined as follows:

K ≡ γ i jKi j, A ≡ (Kθθ −
1
3

Kγθθ )/(ψ4r2), (2.2)

where γi j = ψ4diag(γ−2,γr2,γr2 sin2 θ) is a special metric. Substituting the metric form (2.1) into
the Einstein equations we get the following time evolution equations:

(∂t − rβ∂r)ψ =
1
6

ψ(3β + rβ ′−αK), (2.3)

(∂t − rβ∂r)K = α
{

1
3

K2 +6
A2

γ2 +8πΠ2 −8πV (Φ)

}
−ψ−4γ2

{
∆α +2α ′(

ψ ′

ψ
+

γ ′

γ
)

}
, (2.4)

(∂t − rβ∂r)γ = −2αA− 2
3

rγβ ′, (2.5)
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(∂t − rβ∂r)A = αKA−2α
A2

γ
− 2

3
rAβ ′+ψ−4

{
−1

6
γ3(∆α −3α ′′)− 1

3
αγ3(

∆ψ
ψ

−3
ψ ′′

ψ
)

−1
6

α(1+ γ)∆γ +
1
6

α(1+ γ + γ2)γ ′′− 1
3

α(1+ γ + γ2)(−γ −1
r2 +

γ ′

r
)+

1
6

α ′γ2γ ′

−4
3

α ′γ3 ψ ′

ψ
+

1
3

αγ2γ ′
ψ ′

ψ
−2αγ3 ψ ′2

ψ2 +
8
3

παγ3Φ′2
}
, (2.6)

(∂t − rβ∂r)Φ = −αΠ, (2.7)

(∂t − rβ∂r)Π = αΠK −ψ−4αγ2
{

∆Φ+2Φ′(
γ ′

γ
+

ψ ′

ψ
+

α ′

2α
)

}
+αV ′(Φ), (2.8)

where Π is the conjugate momentum of Φ. The constraint equation is as follows:

∆ψ
ψ

+
1
8
(5

∆γ
γ

−3
γ ′′

γ
)+πΦ′2 +2πγ−2ψ4V (Φ)+

(γ2 + γ +1)(γ −1)
4γ3r2

+
γ ′

γ
(2

ψ ′

ψ
+

3
16

γ ′

γ
)+

ψ4

γ2 (
3A2

4γ2 +πΠ2 − 1
12

K2) = 0, (2.9)

A′+
γ
3

K′+4πγΠΦ′+
3A
r

+
Aγ ′

2γ
+6A

ψ ′

ψ
= 0. (2.10)

We developed the numerical code based on the above formulation.

2.2 Initial data

The initial profile of this study is the momentary static domain wall. From the momentary
static condition, we assume that K, A and Π vanish on the initial time slice. In order to express the
domain wall we assume that the profile of the scalar filed is as follows:

Φ(r, t = 0) = σ tanh
(

r− r0

l

)
+σ

{
−1− tanh

(
r− r0

l

)}
exp

{
−
(r

l

)4
}
, (2.11)

where first term corresponds to the domain wall profile, second term corresponds to the regulariza-

tion term, ,l is a width of the domain wall which is given by l = 2
σ

√
3
λ , and r0 is a initial radius of

the domain wall In this study, we investigate the relation between the initial radius of the domain
wall r0 and the mass of the black hole MBH.

3. Result

We calculate the time evolution, and get the relation between the initial radius of a domain wall
and mass of a black hole (see Fig.1). As is shown in Fig.1, the relation between r0 and MBH obeys
the scaling low with periodic function:lnMBH = ν ln |p− p∗|+ c+ f (ln |p− p∗|).[4] The indexes
ν of the mass scaling are 0.37 0.38, and it agrees with the massless scalar case. Furthermore, we
could check the period of the fine structure also agree with the massless scalar case.[4]

4. Summary and discusion

In this study, we investigate the critical behavior of a spherically symmetric domain wall col-
lapse. By numerical simulation, we show that the type II critical behaviors appears, and the index
of the mass scaling and the period of its fine structure agree with the massless scalar case.
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Figure 1: The left panel shows the mass scaling for the λ = 1000µ2 case, and the right panel shows the
mass scaling for the λ = 2000µ2 case.

Since this system has a typical length scale, it is expected that type I critical behavior also
appears. (see [7][8]) In the case of the massive scalar field, the soliton star which is long life time
localized solution plays an important role in the non-trivial phase diagram. In our system,
although no body know such a longevity solution, there is such solution in the scalar filed with
double well potential in Minkwski spacetime, which is called as Oscillon. Therefore, if we could
construct the Oscillon with gravity, it is expected that it plays the important role in the nontrivial
phase diagram of the domain wall collapse. The construction of the Osciilon with gravity is future
work of this study.
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