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1. Introduction

Modified gravity, which is one of alternative theories of general relativity, has been considered
for explaining the late-time accelerated expansion of the Universe without cosmological constant.
In addition to such long-range physics, the short range properties should be also considered. The
maximal mass of relativistic stars is one of quantities which is strongly influenced by the short
range properties because it is determined by gravity and pressure from the matters inside the stars.

Recently, massive neutron stars have been discovered. A previous research shows that some
models of modified gravity theories could explain such a massive neutron stars and predict heavier
relativistic stars than those in the general relativity [1]. Therefore, the differences between modified
gravity theories and the general relativity can be found significantly in large curvature or strong
gravitational field phenomena. In this work, we consider the de Rham-Gabadadze-Tolley (dRGT)
massive gravity that describes a ghost-free massive spin-2 particle, and investigate the effects of
finite graviton mass to massive relativistic stars.

2. Modified TOV equations

The action of dRGT massive gravity [2] is given by

SdRGT =
1

2κ2

∫
d4x
√
−det(g)

[
R(g)−2m2

0

4

∑
n=0

βnen

(√
g−1 f

)]
+Smat. (2.1)

Here κ2 = 8πG is gravitational constant and m0 and βn are free parameters in this theory. The
symmetric tensor fµν is called as reference metric which is non-dynamical. The square root is
defined by (√

g−1 f
)µ

ρ

(√
g−1 f

)ρ
ν = gµρ fρν (2.2)

and the polynomials are given as follows,

[X] = X µ
µ , e0(X) = 1, e1(X) = [X], e2(X) =

1
2
([X]2 − [X2]),

e3(X) =
1
6
([X]3 −3[X][X2]+2[X3]),

e4(X) =
1
24

([X]4 −6[X]2[X2]+3[X2]2 +8[X][X3]−6[X4]) = det(X),

ek(X) = 0 for k > 4.

(2.3)

The equations of motion are

0 =Rµν(g)−
1
2

R(g)gµν

+
1
2

m2
0

3

∑
n=0

(−1)nβn

[
gµλY λ

(n)ν

(√
g−1 f

)
+gνλY λ

(n)µ

(√
g−1 f

)]
−κ2Tµν .

(2.4)
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And the matrices Y are defined by

Y λ
(n)ν(X) =

n

∑
r=0

(−1)r(Xn−r)λ
ν er(X),

Y0(X) = 1, Y1(X) = X−1[X], Y2(X) = X2 −X[X]+
1
2

1
(
[X]2 − [X2]

)
,

Y3(X) = X3 −X2[X]+
1
2

X
(
[X]2 − [X2]

)
− 1

6
1
(
[X]3 −3[X][X2]+2[X3]

)
,

Y λ
(n)ν(X) = 0, n ≥ 4.

(2.5)

If the
√

g−1 f is symmetric, the equations of motion can be written in a similar way

Gµν +m2
0Iµν = κ2Tµν ,

Iµν =
3

∑
n=0

(−1)nβngµλY λ
(n)ν

(√
g−1 f

)
.

(2.6)

The divergence of gµν leads new constraints ∇µ Iµν = 0 because of the Bianchi identities and
energy-momentum conservation.

To obtain spherical and static solutions in flat reference metric, we use following ansatz

gµνdxµdxν =−A(χ)dt2 +B(χ)dχ2 +D(χ)2(dθ 2 + sin2 θdϕ 2),

fµνdxµdxν =−dt2 +dχ2 +χ2(dθ 2 + sin2 θdϕ 2). (2.7)

For convenience, we use redefined functions A(χ) = e2ν(r) and B(χ)χ ′(r)2 = e2λ (r). Moreover
χ ≡ χ(r) is used as the inverse function of D(χ)≡ r2. Therefore the ansatz (2.7) can be rewritten
as

gµνdxµdxν =−e2ν(r)dt2 + e2λ (r)dr2 + r2(dθ 2 + sin2 θdϕ 2),

fµνdxµdxν =−h(r)dt2 +h(r)−1(χ ′(r)
)2dr2 +χ(r)2(dθ 2 + sin2 θdϕ 2). (2.8)

The function χ(r) is determined by the new constraints ∇µ Iµν = 0.

The modified TOV equations are given by

GM′ =4πGρr2 +
m2

0
2

r2It
t , − p′

p+ρ
= ν ′ =

4πGpr3 +GM−
m2

0
2

r3Ir
r

r(r−2GM)
, (2.9)

κ2 p =

(
ν ′′+ν ′2 +

ν ′

r

)(
1− 2GM

r

)
+

1
2

(
1
r
+ν ′

)(
1− 2GM

r

)′
+m2

0Iθ
θ , (2.10)
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and Iµ
ν are explicitly given by

It
t =β0 +β1

(
2χ
r

+
χ ′
√

h
e−λ
)
+β2

(
χ2

r2 +
2χχ ′

r
√

h
e−λ
)
− [β0 +3(β1 +β2)]

χ2χ ′

r2
√

h
e−λ ,

Ir
r =β0 +β1

(
2χ
r

+
√

he−ν
)
+β2

(
χ2

r2 +
2
√

hχ
r

e−ν

)
− [β0 +3(β1 +β2)]

√
hχ2

r2 e−ν ,

Iθ
θ =Iϕ

ϕ

=β0 +β1

(
χ
r
+

χ ′
√

h
e−λ +

√
he−ν

)
+β2

(
χχ ′

r
√

h
e−λ +

χ
√

h
r

e−ν +χ ′e−λ−ν

)

− [β0 +3(β1 +β2)]
χχ ′

r
e−λ−ν .

(2.11)

Then the new constraints have the following forms

0 = ∇µ Iµ
r =

χ ′

r2 e−λ−ν
{
(β0 +3(β1 +β2))χ

(
2−2eλ +χν ′eν

)
−β1

[(
2
r
+ν ′

)
e−λ − 2

r

]
r2eλ+ν

−2β2

[
r(1− eλ )+χ(1− eλ + rν ′)eν

]}
.

(2.12)

3. Numerical Results for minimal model

From the requirement that vacuum configuration gives flat solution, we should have

Iµν

(√
g−1 f

)
= (β0 +3β1 +3β2 +β3)ηµν = 0. (3.1)

This gives a relationship between free parameters as β0 + 3β1 + 3β2 + β3 = 0. In this report we
consider the minimal model for the simplicity β0 = 3, β1 = −1 and the graviton mass equals to
cosmological constant m2

0 = Λ. This tells higher polynomials vanish. Moreover we use a boundary
conditions that massive gravity solution have the same radius and central density with those in
general relativity. If we use the SLy model as the equation of state [3], we obtain numerical results
given in Fig.3. The figure shows the maximum mass of minimal model in the dRGT massive
gravity is smaller than that in the general relativity. Therefore the minimal model is not suitable for
astrophysical phenomenology.

4. Conclusion

We have shown that the minimal model in the dRGT massive gravity with flat reference metric
is not favored for the explanation of massive neutron star. Actually in our paper [4], the result
presented here has been checked also for other equations of state applied to quark stars. This is
consistent with the literature [5], which states that the minimal model does not have the Vainshtein
mechanism. However, there are still possibilities that non-minimal dRGT massive gravity can
posses solutions similar to those in the general relativity. To obtain solutions in the non-minimal
dRGT massive gravity, we have to check the discriminant of the forth-order algebraic constraint
equations with respect to χ . Moreover, we should reveal the relation between free parameters βn

and the maximal mass.
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Figure 1: Mass-radius relations in SLy model
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