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The modification of gravity leads to the emergence of new degrees of freedom described by the

dynamical field, which can play a role of the dark energy and cause the late-time accelerated

expansion of the Universe. Besides the dark energy problem, it has been suggested that the

new particle derived from the modified gravity can be a dark matter candidate. Recently, we

investigated the above scenario in theF(R) gravity. TheF(R) gravity includes the extra scalar

field in addition to the graviton. Since this scalar field originates from the gravitational theory, it

has very weak interactions with the standard model particles. Moreover, the scalar field becomes

heavy in the high-density region because of the chameleon mechanism. These two properties

suggest that the scalar field can be the cold dark matter. We discuss the nature of this scalar field

in the framework of particle physics and evaluate the lifetime of the new scalar particle.
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1. Introduction

The modified gravity theory has been intensively investigated so far to study the dark energy
(DE). The modification of gravity brings a new degree of freedom, which can mimic the role
of the cosmological constant, so that one can explain the late-time cosmic acceleration without
introducing the ad hoc cosmological constant. In addition to the DE problem, it has been suggested
that a new particle derived from the modification of gravity can be a dark matter (DM) candidate
[1]. In this scenario, one might be able to predict the ratio of the DE to the DM with respect to the
energy density today. We study the DM candidate derived from theF(R) gravity.

2. F(R) gravity and the Weyl transformation

The action ofF(R) gravity defined as follows:

S=
1

2κ2

∫
d4x

√
−gF(R)+SMatter, (2.1)

whereκ2 = 8πG = 1/M2
pl andMpl is the reduced Planck mass.F(R) is a function of the Ricci

scalarR: e.g. F(R) = R in general relativity. The matter actionSMatter is defined asSMatter =∫
d4x

√
−gLMatter(gµν ,Ψ) whereLMatter is the matter Lagrangian density andΨ denotes the matter

fields.
Next, we transform the metric asgµν → g̃µν = e2

√
1/6κϕgµν . This transformation is called the

Weyl transformation. Under the Weyl transformation with a choicee2
√

1/6κϕ ≡ FR(R), the action
(2.1) is transformed into the following form:

S=
1

2κ2

∫
d4x
√

−g̃R̃

+
∫

d4x
√

−g̃

[
−1

2
g̃µν (∂µϕ

)
(∂νϕ)− 1

2κ2

FR(R(ϕ))R(ϕ)−F(R(ϕ))
F2

R(R(ϕ))

]
+SMatter. (2.2)

Here,FR(R) = ∂RF(R) for our convention. The gravitational theory described as in the action (2.2)
is called the scalar-tensor theory: the scalar fieldϕ(x) acts as the gravitational force besides the
tensor fieldgµν .

Finally, we consider the effect of the scalar field to the matter sector. According to the Weyl
transformation, the matter sector in the action (2.2) is given by the following form:

SMatter=
∫

d4x
√
−g̃e−4

√
1/6κϕLMatter

(
gµν = e2

√
1/6κϕ g̃µν ,Ψ

)
. (2.3)

One finds that the dilatonic coupling between the scalar fieldϕ(x) to the matter fieldsΨ(x) shows
up in (2.3) after the Weyl transformation. Hereafter, we call this scalar field as scalaron.

3. Chameleon Mechanism

Constraints from the violation of the equivalence principle in the Solar System often exclude
modifications of gravity although the modifications are required for the DE on the cosmological
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scale. Therefore, we need to suppress the fifth force mediated by the new degree of freedom only
in the smaller scale. Viable models ofF(R) gravity have a chameleon mechanism to screen the
fifth force mediated by the scalaron and avoid the constraint.

We now consider the equation of motion for the scalaron field. By variation of (2.2) with
respect to the scalaron fieldϕ, we obtain the equation of motion of the scalaron:

□̃ϕ =V ′
eff(ϕ) , (3.1)

V ′
eff(ϕ)≡V ′(ϕ)+

κ√
6

e−4
√

1/6κϕTµ
µ . (3.2)

We find that the scalaron couples to the trace of the energy-momentum tensor in the equation of
motion.

To see how the chameleon mechanism works, we consider the Starobinsky model [2] for ex-
ample. The action of the Starobinsky model is defined as

F(R) = R−βRc

[
1−
(

1+
R2

R2
c

)−n
]

with constantsn, β , andRc > 0. Rc is constant curvature in the Starobinsky model, which is
comparable to the cosmological constantRc∼Λ. Moreover, we consider the non-relativistic perfect
fluid with the constant energy density for simplicity. The trace of energy-momentum tensor is then
expressed asTµ

µ = gµνTµν =−ρ. In the large curvature limitR/Rc ≫ 1, we obtain the expression
of the scalaron mass

m2
ϕ ≈ Rc

6n(2n+1)β

(
κ2ρ
Rc

)2(n+1)

. (3.3)

Therefore, ifρ is larger, the scalaron becomes heavier: in the bulk of the Universe, where the
energy density is very small, the scalaron can be very light and produce the effective cosmological
constant. On the other hand, in or around the massive objects, the Solar System or the Earth,
the scalaron becomes heavy. Then, the Compton wavelength becomes short, and the scalaron is
screened.

4. Scalaron as Dark matter

We recall the properties of the scalaron: (1) after the Weyl transformation, dilatonic interac-
tions between the scalaron and the standard model (SM) particles appear, which is suppressed by
the Planck massκ = 1/Mpl; (2) the scalaron mass is very large in the large curvature regime be-
cause of the chameleon mechanism. These two characteristic properties of the scalaron imply that
a massive field weakly coupled with SM particles emerges. Therefore, it suggests that the scalaron
could be a cold DM.

It is necessary to determine the form and magnitude of couplings between the scalaron and
the SM particles described by the action (2.3). To take into account the chameleon mechanism, we
consider the large curvature limitR≫ Rc, corresponding to the weak coupling limit|κϕ | ≪ 1. In
this limit, we can expand the dilatonic couplingeκϕ .
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In case of a massless field, the coupling with the scalaron does not appear because of the clas-
sical conformal invariance. For a massless vector fieldAµ(x), one finds that the action is invariant
under the Weyl transformation,

SMasslessVector=
∫

d4x
√

−g̃

[
−1

4
g̃αµ g̃βνFαβ Fµν

]
, (4.1)

whereFµν = ∂µAν −∂νAµ . For a massless fermion fieldψ(x), the action is transformed as

SMasslessFermion=
∫

d4x
√

−g̃

[
e−3

√
1/6κϕ iψ̄ γ̃µ∇̃µψ − 3i

2

√
1
6

κe−3
√

1/6κϕ (∂µϕ
)

ψ̄γ̃µψ

]
. (4.2)

Although the couplings between the scalaron and fermion seem to remain, one may transform the
action (4.2) into the canonical form by redefining the fermion fieldψ → ψ ′ = e−3/2

√
1/6κϕψ,

SMasslessFermion=
∫

d4x
√

−g̃iψ̄ ′γ̃µ∇̃µψ ′ . (4.3)

Thus, one can eliminate the scalaron coupling by the field redefinition in classical dynamics.
The scalaron disappears from the action but would be transferred to the path integral measure

because the field redefinition involves the scalaron field. The modified path integral measure in-
duces the scale anomaly, then, the couplings with massless vector fields with the gauge coupling
constantg show up

LMasslessVector=− 3g2

4(4π)2

(
3
2

√
1
6

κϕ

)
tr
[
F2

µν
]
+O(κ2ϕ2) . (4.4)

In case of massive fields, one finds the coupling through the mass terms. So, the coupling
between the scalaron and massive vector fieldA(x) is given by

LMassiveVector
(
g̃µν ,Aµ ,ϕ

)
=

2κϕ√
6
· 1
2

m2
V g̃µνAµAν +O(κ2ϕ2) . (4.5)

For the massive fermion fieldψ(x), after the canonical normalization (ψ ′ = e−3/2
√

1/6κϕψ), we
find

LMassiveFermion
(
ψ ′,ϕ

)
=

κϕ√
6
·mF ψ̄ ′ψ ′+O(κ2ϕ2) . (4.6)

5. An effective model and lifetime of scalaron particle

We first expand the scalaron fieldϕ around the background solutionϕ = ϕmin: ϕ = ϕ̂ +ϕmin,
and treat the fluctuation̂ϕ as a particle. As we have seen, the scalaron potential changes through
the chameleon mechanism according to the trace of the energy-momentum tensor. In order to take
the chameleon mechanism into account properly, we need to specify the energy-momentum tensor.
In this work, we assume that the bulk which consists of the SM particles is described by the perfect
fluid, and the energy densityρ is namely given asρEW ∼ (100GeV)4. Because|κϕmin| ≪ 1, the
scalaron coupling to the SM is approximately given by

SMatter≈
∫

d4x
√

−g̃e−4
√

1/6κϕ̂LSM

(
e2
√

1/6κϕ̂ g̃µν ,Ψ
)
, (5.1)
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so that we utilize the result in the previous section just by replacingϕ → ϕ̂. Note that the environ-
ment dependence still implicitly remains in the scalaron mass.

For the scalaron to be a DM candidate, the scalaron lifetime has to be longer than the age of
the universe. Studying the all decay channels to the SM particles, we find the upper limit of the
scalaron mass [3]:

mϕ ≲ 0.23GeV. (5.2)

Finally, we convert the mass bound (5.2) into the constraint on theF(R) function. For the Starobin-
sky model withβRc = 2Λ, the scalaron mass is given by substitutingρ = ρEW into Eq. (3.3). Then,
we findβ ≲ 10−69 for n= 1, andβ ≲ 10−59 for n= 4.

6. Summary and Discussion

We have studied the scalaron field in theF(R) gravity from the viewpoint of particle physics.
We have assumed that the scalaron is a DM candidate and evaluated its lifetime from the decay to
the SM particles. We finally have placed the constraint on the scalaron mass.

We have obtained the constraint on the parameterβ in the Starobinsky model and found that
β should be extremely small for the scalaron to be a DM although it is desired to beO(1) for
the modified gravity to be a solution for the DE problem. This is because that the chameleon
mechanism is designed to make the scalaron massive in the high-density region to avoid the Solar
System constraint. The scalaron, however, should not be too heavy because we expect that the
scalaron plays the role of a DM candidate in our scenario. Thus, the chameleon mechanism is the
origin of discrepancy although it is one of the essences in our scenario.

However, we are still left with open questions to avoid the incompatibility because some as-
sumptions were made to derive the constraint on the parameterβ . In order to resolve the incom-
patibility, we need to consider new methodology or effective models. Besides, we will also study
and improve the methods to study the thermal history, relic abundance, and prediction for direct
detection of the scalaron.
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