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1. Introduction

The inflation theory has been introduced to solve some cosmological problems and its trace
is presented in Cosmic Microwave Background (CMB) fluctuations. A lot of models are proposed
to explain this fluctuations. Recently we can discriminate which models viable by precisely ob-
servation. Planck Satelite gives us the observational values of the CMB fluctuations [1]. In the
slow-roll scenario, the inflation is controlled by the slow-roll parameter which is described to use
the potential of the scalar field,

ε ≡ 1
2κ2

(
1
V

∂V
∂φ

)2

, (1.1)

η ≡ 1
κ2

(
1
V

∂ 2V
∂φ 2

)
, (1.2)

ξCMB ≡
1

κ4
1

V 2
∂V
∂φ

∂ 3V
∂φ 3 , (1.3)

where κ2 ≡ 8πG. During the inflationary expansion, these parameters are less than unit. The
expansion rate of the universe is given by the e-folding number,

N = κ
2
∫

φN

φend

dφ
V (φ)

∂φV
, (1.4)

where φN means the value at the horizon crossing and φend is the one at the end of the inflation.
The e-folding number is required N ∼ 50− 60 to solve the horizon and flatness problem. CMB
fluctuations are defined by the slow-roll parameters at the horizon crossing:

ns = 1−6ε +2η , (1.5)

r = 16ε, (1.6)

αs =−24ε
2 +16εη−2ξCMB. (1.7)

2. Gauged Nambu–Jona-Lasinio inflation

We have proposed the composite inflaton scenario where the composite inflaton is given by
the fermion confinement [2]. For the one of such a model, we focus on the gauged Nambu-Jona-
Lasinio (NJL) model. The Lagrangian is described by

LgNJL = Lgauge + ψ̄i /̂Dψ +
16π2g4

8N f NcΛ2

[
(ψ̄ψ)2 +(ψ̄iγ5τ

a
ψ)2
]
, (2.1)

where Lgauge shows SU(Nc) pure gauge sector, D̂µ is the covariant derivative in curved space, g4

is defined to the dimensionless four-fermion coupling, and, Λ means the dynamical scale which is
called compositeness scale. The fermion has N f flavors and the flavor symmetry is represented by
the generators τa.
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The corresponding theory to the gauged NJL model is known as the gauge-Higgs-Yukawa
(gHY) theory,

LgHY =−1
4

FµνFµν +
1
2

∂µσ∂
µ

σ +
1
2

∂µπ
a
∂

µ
π

a− 1
2

m2(σ2 +π
a
π

a)− λ

4
(σ2 +π

a
π

a)2

−1
2

ξ R(σ2 +π
a
π

a)+ ψ̄i /̂Dψ− yψ̄i(σ + iγ5τ
a
π

a)ψ. (2.2)

with the compositeness condition,

1
y2(tΛ)

= 0,
λ (tΛ)
y4(tΛ)

= 0, ξ (tΛ) =
1
6
,

m2(tΛ)
y2(tΛ)

=
2a

16π2 Λ
2
(

1
g4
− 1

Ω(tΛ)

)
, (2.3)

where a≡ 2N f Nc, Ω(tΛ) is a function contributed to the renormalization of the mass parameter by
the gauge interaction, and tΛ = ln(µ/µ0)|µ=Λ is a renormalization group (RG) parameter. Due to
the compositeness condition (2.3), the gauged NJL model deformed by the auxilliary field method
and gHY theory rescaled by σ → σ/y are equivalent at the µ = Λ.

To be coincided both effective potential, we improve it RG invariantly. Here we assume the
fixed gauge coupling, the large Λ and no contribution from πa. Then we can obtain the RG im-
proved effective potential including the non-minimal scala-gravity interaction. The effective action
of the gravity and scalar part is described by

SJ =
∫

d4x
√
−g
[
−Ω2

2
R+

1
2

gµν
∂µσ∂νσ −U

]
, (2.4)

where we use Planck Unit κ2 = 1. Weyl factor and the effective potential is given by

Ω
2 = 1+ζ1µ

2−2n
σ

2n, (2.5)

U = λ1µ
2
σ

2 +λ2µ
4−4n

σ
4n, (2.6)

and n = (1+3αg(N2
c −1)/(4πNc))

−1 is also free parameter (αg = g2/4π). The effective coupling
λ1, λ2, and ζ1 are defined as follows:

λ1 =
1−n
nG4r

, (2.7)

λ2 =
3−2n

4n

(
a

16π2
n

1−n

)1−2n

, (2.8)

ζ1 =
1
6n

(
a

16π2
n

1−n

)1−n

. (2.9)

Due to the calculation of CMB fluctuations, we perform the conformal transformation gµν→ g̃µν =

Ω2(x)gµν and introduce a new scalar defined by

dφ

dσ
=

√
1

Ω2 +
3
2

(
1

Ω2
∂Ω2

∂σ

)2

(2.10)

to get a canonical kinetic term, then we obtain

SE =
∫

dx4
√
−g̃
[
−1

2
R̃+

1
2

g̃µν
∂µφ∂νφ −V

]
. (2.11)
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3. Analysis of CMB fluctuations

Evaluating the CMB fluctuations (1.7), we obtain three type solutions, so that the general
chaotic inflation, R2 inflation, and the another one. The chaotic inflation like solutions is given
when we choice large αgNc with small N f . Such a parameter region is beyond the scope of per-
turbative expansion, however, we expect that the fermion loop correction has no large contribution
to CMB fluctuations in this region by the fixed gauge coupling. In this case we can choose n
arbitrarily, so that we obtain [3]

ns =


1− 2

N

1− 2n+1
N

r =


8
N
16n
N

αs =


− 2

N2 (2n < 1 and λ1 6= 0),

−2n+1
N2 (2n > 1 and/or λ1 = 0).

(3.1)

We notice that the large αgNc limit means the limit of n→ 0 but the small n enhance the mass
term. Then the small n limit predict the specific prediction, namely φ 2 chaotic inflation, not but the
general one.

If we consider the large N f limit, the prediction of CMB fluctuations correspond to the ones of
Higgs inflaion or R2 inflation. It is caused by the large effective non-minimal coupling (2.9). The
Weyl factor can be written by the canonical scalar φ , and if the mass term can drop, the potential
in Einstein frame VE is described by

VE =
U
Ω4 = λ̂ (1− exp(−

√
2/3φ))2. (3.2)

where λ̂ is an effective coupling defined by

λ̂ ≡ λ2

ζ 2
1
=

144π2

a
(3−2n)(1−n), (3.3)

As is known, such a potential gives the famous prediction of CMB fluctuations,

ns ∼ 1− 2
N
, r ∼ 12

N2 , αs ∼−
2

N2 , (3.4)

and they predict the suitable fluctuations.
The weak gauge coupling limit, g→ 0, give us interesting results. The effective potential U

and Weyl factor Ω2 in this limit is rewritten as follows:

U =
3αg(N2

c −1)
4πNc

[
µ2

G4r
σ

2 +
4π2

a
σ

4
]
+O(α2

g ) (3.5)

Ω
2 = 1+

1
6

[
1+

3αg(N2
c −1)

4πNc

(
1− ln

(
aNcµ2

12παg(N2
c −1)σ2

))]
σ

2 +O(α2
g ). (3.6)

From these expression, we can analytically evaluate CMB fluctuation,

ns ∼ 1− 2
N
, r ∼ 24

N2 , αs ∼−
2

N2 , (3.7)

especially the tensor-to-scalar ratio r has comparable value with Higgs inflation.
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Figure 1: The attractor behavior of g (solid
line) and N f (dashed line) in ns− r plane for
G4r = 1010. Two fixed point ? and � are con-
sistent for the observation from Planck.
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Figure 2: The attractor behavior of g (solid line)
and N f (dashed line) in ns−αs plane for G4r =

1010. The fixed points predicts almost same value.

ns r αs

n→ 0 0.961 0.16 -0.0076
large N f 0.962 0.0042 -0.0076
small g 0.961 0.0084 -0.0076
observation 0.9645±0.0049 < 0.1 -0.0057±0.0071

Table 1: The prediction of each limit and the observational value of CMB fluctuations [1].

From above analysis, it is found that CMB fluctuations evaluated from gauged NJL inflation
have two attractor behavior. Such behaviors are shown in Fig. 1 and Fig. 2. The symbols �, ?, and
� means the prediction of φ 2 inflation, R2 inflation, and the gauged NJL inflation in weak gauge
coupling limit. The dotted line shows the general prediction of chaotic inflation. The behavior
of varying N f is depicted by the dashed line. The prediction of R2 inflation can be reproduced in
sufficient large N f . This attractor behavior corresponds to the one of Higgs inflation. The solid lines
denote the behavior for g dependence. It is found such a attractor behavior can be distinguished the
one of the Higgs inflation. The numerical results of these attractor points are in Tab. 1 and we find
the different CMB fluctuations of each limit.

4. Conclusion

We have studied the CMB fluctuations of the gauged NJL inflation as a candidate of a realistic
inflation theory. In this model some interesting limits exist. The predictions of CMB fluctuations
are explicitly expressed by (3.4) and (3.7). The attractor behavior is found and shown in Fig. 1 and
Fig. 2. Especially, the attractor with respect to the gauge coupling and its small limit characterizes
the NJL inflation.
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