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Neutrinos Propogation in Matter Stephen J. Parke

1. Neutrino Propagation in Matter

The evolution of a neutrino flavor state in matter is given by

i d
dx ν = Hν with ν =




νe

νµ

ντ


 and H = 1

2E





U




0 0 0
0 ∆m2

21 0
0 0 ∆m2

31


U† +




a(x) 0 0
0 0 0
0 0 0







,

where “a” is the matter potential, a = 2
√

2GFNeE.
We have developed a single perturbative expansion for the oscillation probabilities in constant

matter that satisfies the following criteria, see [1];

1. valid and accurate for all baseline divided by neutrino energy and all values of matter poten-
tial, i.e. over the full (L/E, Y ρE) plane,

2. has the universal form for the L/E dependence of the oscillation probabilities i.e. three sin
squared terms and a CP violating triple sin term,

3. since the atmospheric and solar resonance have to be dealt with in a non-perturbative fashion,
we need to use

√·· · function but will use nothing more complex1,

4. the form of the mass eigenvalues squared in matter is particularly simple which leads to sim-
ple forms for the mixing angles in matter at zeroth order, providing an enhanced understand
of oscillation probabilities in matter.

Our perturbative expansion should be compared to other perturbative expansions in the literature,
see [3], which do not satisfy all of the above criteria.

To develop a perturbation theory for the neutrino mass squared’s in matter as well as the
elements of MNS in matter, we first need to take care of the resonance regions non-perturbatively.
We start by splitting the Hamiltonian, H, into two pieces, the diagonal part, H0, and the non-
diagonal part H1 such that H = H0 +H1:

H0 =
1

2E




λa

λb

λc


 where





λa ≡ a+ s2
13∆m2

ee

λb ≡ (c2
12− s2

12)∆m2
21

λc ≡ c2
13∆m2

ee

, (1.1)

where ∆m2
ee ≡ ∆m2

31− s2
12∆m2

21 = ∆m2
32 + c2

12∆m2
21. Note, λa, λb and λc are the asymptotic values2

of the mass squared eigenstates as |a| → ∞, including terms of O(a0).
The non-diagonal part, H1, is given by

H1 = s13c13
∆m2

ee

2E




1
0

1


+ c13 s12c12

∆m2
21

2E




1
1 0

0


− s13 s12c12

∆m2
21

2E




0
0 1

1


 . (1.2)

Given that

s13c13 ∼ 0.15, c13s12c12(∆m2
21/∆m2

ee)∼ 0.015 and s13s12c12(∆m2
21/∆m2

ee)∼ 0.002,
1Compared to the exact results which involve the cos[ 1

3 arccos(· · ·)] expressions that appear in [2].
2The constant s2

12∆m2
21 has been subtracted from all eigenvalue compared to [1].
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there is a hierarchy in the size of the three terms in H1. So it is natural to perform first a rotation in
the 1-3 space followed by a rotation in the 1-2 space. After, these rotations, the level crossings that
existed in H0 of eqn 1.1, as one varied the matter potential, no longer exist in the new H0 given by:

H0 =
1

2E




λ1

λ2

λ3


 and H1 = sin(φ −θ13)s12c12

∆m2
21

2E




0 0 −sψ

0 0 cψ

−sψ cψ 0


 (1.3)

where λi are the square of the neutrino mass in matter and φ , ψ are the mixing angles θ13, θ12 in
matter. Note, in vacuum, sin(φ − θ13) = 0 so that H1 = 0. Expressions for λi, φ and ψ will be
given in next section.

At this point, one could perform a further rotation. For NO, if one performs an additional
rotation in the 1-3 space, then the new H1 will be proportional to sin(φ −θ13)cψ whose magnitude
for all “a” is < s13. Similarly for IO, if the rotation is performed in the 2-3 space and the new H1

wiil be proportional to sin(φ −θ13)sψ . These rotations would significantly improve the 0th order
approximation especially in the region where sin(φ −θ13)∼ c13.

Instead, to keep one perturbative expansion for both mass orderings, we will do perturbation
theory using the results of the first two rotations, i.e. eqn 1.3.

2. A Simple, Accurate Method for Calculate Oscillation Probabilities in Matter

A simple and accurate way to evaluate oscillation probabilities, see [1], is given in this section.
Details as to the why’s and how’s of this method are contained in this paper.

After performing a rotation in the 1-3 space:

λ0 = λb, λ± =
1
2

(
λc +λa± sign(∆m2

ee)
√

(λc−λa)2 +(2s13c13∆m2
ee)

2

)

=
1
2

(
∆m2

ee +a ± sign(∆m2
ee)
√

(∆m2
ee cos2θ13−a)2 +(2s13c13∆m2

ee)
2

)

sinφ =

√
λ+−λc

λ+−λ−
with 0≤ φ ≤ π/2,

which satisfies

φ(a) =
π

2
−φ(2∆m2

ee cosθ13−a) and φNO(a) = φIO(−a). (2.1)

φ is θ13 in matter and (λa,λb,λc)→ (λ−,λ0,λ+). When |λc−λa|� 2s13c13|∆m2
ee| then (λ−,λ+)≈

(λa,λc) or (λc,λa). If a = 0, φ = θ13 and (λ−,λ0,λ+) = (0,(c2
12− s2

12)∆m2
21,∆m2

ee).

It is simple to show that

sin(φ −θ13) = sign(a∆m2
ee)
√
(λ−−ac2

φ
)/∆m2

ee ≈ s13c13(a/∆m2
ee)+O[(a/∆m2

ee)
2],

which ultimately will determine the size of the perturbing Hamiltonian. Note, that for a neutrino
energy of 3 GeV and earth crust density sin(φ −θ13)≈ 0.04.
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Then, performing a rotation in the 1-2 space: with λ3 = λ+ and

λ2,1 =
1
2

(
λ0 +λ−±

√
(λ0−λ−)2 +(2cos(φ −θ13)s12c12∆m2

21)
2

)

≈ 1
2

(
∆m2

21 cos2θ12 +a c2
13 ±

√
(∆m2

21 cos2θ12−a c2
13)

2 +(2s12c12∆m2
21)

2

)

for |a/∆m2
ee| � 1

sinψ =

√
λ2−λ0

λ2−λ1
, with 0≤ ψ ≤ π/2.

which satisfies

ψ(a) ≈ π

2
−ψ(2∆m2

21 cosθ12/c2
13−a) and φNO(a)≈ φIO(a). (2.2)

ψ is θ12 in matter and (λ−,λ0,λ+)→ (λ1,λ2,λ3). When |λ0−λ−| � 2s12c12∆m2
21 then (λ1,λ2)≈

(λ−,λ0) or (λ0,λ−). If a = 0, ψ = θ12 and (λ1,λ2,λ3) = (−s2
12∆m2

21,c
2
21∆m2

21,∆m2
ee), thus, in

vacuum, ∆λ jk ≡ λ j−λk = ∆m2
jk. See Appendix for further details.

To calculate the oscillation probabilities, to 0th order, use the above ∆λ jk instead of ∆m2
jk and

replace the vacuum MNS matrix as follows3

U0
MNS ≡U23(θ23)U13(θ13,δ )U12(θ12) ⇒ UM

MNS ≡U23(θ23)U13(φ ,δ )U12(ψ). (2.3)

That is, replace

∆m2
jk→ ∆λ jk θ13→ φ , θ12→ ψ, (2.4)

it is that simple. θ23 and δ remain unchanged. Our expansion parameter is
∣∣∣sin(φ −θ13) s12c12

∆m2
21

∆m2
ee

∣∣∣≤
0.015, which is small and vanishes in vacuum, so that our perturbation theory reproduces the vac-
uum oscillation probabilities exactly. A summary of the relevant expressions are given in Fig. 1
and alternative summary using a more conventional notation is given in Appendix II.

2.1 Higher Orders

If the 0th order is not accurate enough, going to 1st order is simple and gives another two
orders of magnitude in accuracy. First the eigenvalues λ j remain unchanged but the mixing matrix
is modified by

UM
MNS ⇒ V ≡UM

MNS(1+W1), (2.5)

where the matrix W1 is given by4

W1 = sin(φ −θ13) s12c12 ∆m2
21




0 0 −sψe−iδ/∆λ31

0 0 +cψe−iδ/∆λ32

+sψe+iδ/∆λ31 −cψe+iδ/∆λ32 0


 . (2.6)

The ∆λ jk and the V -mixing matrix can be used to calculate the oscillation probabilities and improve
the accuracy so that ∆P < 10−6. The next highest order is also discussed in [1].

3For the rest of this paper we use the standard parameterization of the MNS matrix for the reader’s convenience, as
oppose to the parametrization used in [1].

4The phase in W1 differ from [1] because here we use the standard parameterization of UMNS.
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DMP Summary:

Summary:

�m2
ee ⌘ �m2

31 � s2
12�m2

21

�a ⌘ a + s2
13�m2

ee

�b ⌘ (c2
12 � s2

12)�m2
21

�c ⌘ c2
13�m2

ee

� is ✓13 in matter:

– Typeset by FoilTEX – 1

�⌥ =
1

2

h
(�a + �c) ⌥ sign(�m2

ee)
p

(�a � �c)2 + (2s13c13�m2
ee)

2
i

�0 = �b

s� =

s
�+ � �c

�+ � ��

 is ✓12 in matter:

– Typeset by FoilTEX – 2

�⌥ =
1

2

h
(�a + �c) ⌥ sign(�m2

ee)
p

(�a � �c)2 + (2s13c13�m2
ee)

2
i

�0 = �b

s� =

s
�+ � �c

�+ � ��

 is ✓12 in matter:

– Typeset by FoilTEX – 2

�1,2 =
1

2


(�0 + ��) ⌥

q
(�0 � ��)2 + (2c��✓13s12c12�m2

21)
2

�

�3 = �+

s =

r
�2 � �0

�2 � �1

(where cos2(�� ✓13) = (�+ � ac2
13)/(�+ � ��).)

✓23, � unchanged.

(��31, ��21) are (�m2
31, �m2

21) in matter:

– Typeset by FoilTEX – 3

�1,2 =
1

2


(�0 + ��) ⌥

q
(�0 � ��)2 + (2c��✓13s12c12�m2

21)
2

�

�3 = �+

s =

r
�2 � �0

�2 � �1

(where cos2(�� ✓13) = (�+ � ac2
13)/(�+ � ��).)

✓23, � unchanged.

(��31, ��21) are (�m2
31, �m2

21) in matter:

– Typeset by FoilTEX – 3

Summary:

where

�m2
ee ⌘ �m2

31 � s2
12�m2

21

a = 2
p

2GFNeE⌫ (1)

�a ⌘ a + s2
13�m2

ee

�b ⌘ (c2
12 � s2

12)�m2
21

�c ⌘ c2
13�m2

ee

– Typeset by FoilTEX – 1

Summary:

where

�m2
ee ⌘ �m2

31 � s2
12�m2

21

a = 2
p

2GFNeE⌫ (1)

�a ⌘ a + s2
13�m2

ee

�b ⌘ (c2
12 � s2

12)�m2
21

�c ⌘ c2
13�m2

ee

– Typeset by FoilTEX – 1

� is ✓13 in matter:

�⌥ =
1

2

h
(�a + �c) ⌥ sign(�m2

ee)
p

(�a � �c)2 + (2s13c13�m2
ee)

2
i

�0 = �b

s� =

s
�+ � �c

�+ � ��

 is ✓12 )  in matter:

– Typeset by FoilTEX – 2

� is ✓13 ) � in matter:

�⌥ =
1

2

h
(�a + �c) ⌥ sign(�m2

ee)
p

(�a � �c)2 + (2s13c13�m2
ee)

2
i

�0 = �b

s� =

s
�+ � �c

�+ � ��

 is ✓12 )  in matter:

– Typeset by FoilTEX – 2

�1,2 =
1

2


(�0 + ��) ⌥

q
(�0 � ��)2 + (2c��✓13s12c12�m2

21)
2

�

�3 = �+

s =

r
�2 � �0

�2 � �1

(where cos2(�� ✓13) = (�+ � ac2
13)/(�+ � ��).)

✓23, � are unchanged.

(�m2
31, �m2

21) ) (��31, ��21) in matter:

(�m2
31, �m2

21, ✓12, ✓13, ✓23, �) in matter replace is replaced by

(��31, ��21,  , �, ✓23, �)

– Typeset by FoilTEX – 3

�1,2 =
1

2


(�0 + ��) ⌥

q
(�0 � ��)2 + (2c��✓13s12c12�m2

21)
2

�

�3 = �+

s =

r
�2 � �0

�2 � �1

(where cos2(�� ✓13) = (�+ � ac2
13)/(�+ � ��).)

✓23, � are unchanged.

(�m2
31, �m2

21) ) (��31, ��21) in matter:

(�m2
31, �m2

21, ✓12, ✓13, ✓23, �) in matter replace is replaced by

(��31, ��21,  , �, ✓23, �)

– Typeset by FoilTEX – 3

Corrections are O
⇣
s��✓13s12c12

�m2
21

�m2
ee

⌘
< 10�3 at DUNE

– Typeset by FoilTEX – 4

�1,2 =
1

2


(�0 + ��) ⌥

q
(�0 � ��)2 + (2c��✓13s12c12�m2

21)
2

�

�3 = �+

s =

r
�2 � �0

�2 � �1

old wrong: (where cos2(�� ✓13) = (�+ � ac2
13)/(�+ � ��).)

where cos2(�� ✓13) = (�+ � as2
�)/�m2

ee

✓23, � are unchanged.

(�m2
31, �m2

21) ) (��31, ��21) in matter:

– Typeset by FoilTEX – 3

Figure 1: Summary of DMP perturbation theory, 0th order, see [1], for the mixing angles and mass squared
eigenvalues in matter. Replacing (θ12, θ13, θ23, δ , ∆m2

31, ∆m2
21) with (ψ, φ , θ23, δ , ∆λ31, ∆λ21) in

the vacuum oscillation expressions gives oscillation probability in matter to 0th order. Only 6 square root
operations are required to go from the vacuum to matter parameters, not counting the simple (+,−,∗,/)
operations. No other time consuming operations like sine, cosine, arcsine, arccosine etc are needed.

0.0

0.1

0.2

P

νµ → νe, L = 1300 (km), δ = 3π/2, NO

0.3 1.0 10
E (GeV)

10−13

10−11

10−9

10−7

10−5

10−3

10−1

|∆
P

|/P

Zeroth First Second

0.0

0.1

0.2

P

ν̄µ → ν̄e, L = 1300 (km), δ = 3π/2, NO

0.3 1.0 10
E (GeV)

10−13

10−11

10−9

10−7

10−5

10−3

10−1

|∆
P

|/P

Zeroth First Second

Figure 2: Dune νµ → νe and ν̄µ → ν̄e appearance probabilities, top panel. The bottom panel, shows the
fractional difference between the 0th, 1st and 2nd order approximations to the exact probabilities assuming
a constant matter density.
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In Fig. 2 we have compared the exact oscillation probability with our approximation. One sees
that the 0th order oscillation probabilities, relevant for the DUNE experiment, have a difference,
from the exact calculation, |∆P|< 10−4 and |∆P|/P < 10−3. Higher orders are even more accurate.

3. Conclusions

We have summarized our perturbation theory in matter for the neutrino oscillation probabil-
ities, that gives the neutrino mass eigenvalues squared in matter in simple terms only involving
the
√·· · function. We also show how the mixing angles in matter can be obtained directly once

one knows the matter mass squareds. Higher orders are simple to obtain and increase the accuracy
by about two orders of magnitude per order. However, the zeroth order approximations are good
enough for all current and future accelerator experiments; T2K, NOνA, DUNE and T2HK/T2HKK
due to the uncertainties associated with the matter density profile, height and shape, between neu-
trino production and detection.

4. Appendix

For NO we give approximate expressions for the λ ’s, in the different regions of interest;

λ3 ≈





a+ s2
13∆m2

ee, a� ∆m2
ee

1
2

(
∆m2

ee +a

+
√
(∆m2

ee cos2θ13−a)2 +(2s13c13∆m2
ee)

2
)
, a≈ ∆m2

ee

∆m2
ee + s2

13a, |a| � ∆m2
ee

c2
13∆m2

ee, −a� ∆m2
ee.

One can obtain similar expressions for λ− using λ− = ∆m2
ee +a−λ3. Also,

λ1 ≈





cos2θ12∆m2
21, a� ∆m2

21
1
2

(
∆m2

21 cos2θ12 +a c2
13

−
√
(∆m2

21 cos2θ12−a c2
13)

2 +(2s12c12∆m2
21)

2
)
, a≈ ∆m2

21

−s2
12∆m2

21 + c2
12c2

13a, |a| � ∆m2
21

a+ s2
13∆m2

ee, −a� ∆m2
ee.

To obtain λ2 in all regions of interest, we use λ2 = ∆m2
ee + cos2θ12∆m2

21 +a−λ3−λ1;

λ2 ≈





c2
13∆m2

ee, a� ∆m2
ee

1
2

(
∆m2

ee +a

−
√
(∆m2

ee cos2θ13−a)2 +(2s13c13∆m2
ee)

2
)
, a≈ ∆m2

ee
1
2

(
∆m2

21 cos2θ12 +a c2
13

+
√
(∆m2

21 cos2θ12−a c2
13)

2 +(2s12c12∆m2
21)

2
)
, a≈ ∆m2

21

c2
12∆m2

21 + s2
12c2

13a, |a| � ∆m2
21

(c2
12− s2

12)∆m2
21, −a� ∆m2

ee.

Since ψ and φ are given in terms of the eigenvalues earlier, approximations for all variables
can be easily derived from these λ ’s. For IO, one can give similar expressions for λ ’s.
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5. Appendix II

We have written everything in terms of the matter eigenvalues, the λ ’s, since if you know the
λ ’s you can easily calculate the matter mixing angles, φ (= θ̃13 ) and ψ (= θ̃12), this is summarized
in Fig. 1.

However, the mixing angles in matter, which we denote by a θ̃13 and θ̃12 here, can also be
calculated in the following way, using ∆m2

ee ≡ cos2 θ12∆m2
31 + sin2

θ12∆m2
32, as follows5:

cos2θ̃13 =
(cos2θ13−a/∆m2

ee)√
(cos2θ13−a/∆m2

ee)
2 + sin2 2θ13

, (5.1)

where a≡ 2
√

2GFNeE is the standard matter potential, and

cos2θ̃12 =
(cos2θ12−a ′/∆m2

21)√
(cos2θ12−a ′/∆m2

21)
2 + sin2 2θ12 cos2(θ̃13−θ13)

, (5.2)

where a ′ ≡ a cos2
θ̃13 +∆m2

ee sin2(θ̃13−θ13) is the 13-modified matter potential.

In these two flavor rotations, both θ̃13 and θ̃12 are in range [0,π/2].

θ23 and δ are unchanged in matter for this approximation.

The neutrino mass squared differences in matter, i.e. the ∆m2
jk in matter, which we denote by

∆ m̃2
jk, are given by

∆ m̃221 = ∆m2
21

√
(cos2θ12−a ′/∆m2

21)
2 + sin2 2θ12 cos2(θ̃13−θ13) ,

∆ m̃231 = ∆m2
31 +

1
2

(
2a−3a′+ ∆m̃221−∆m2

21

)
, (5.3)

∆ m̃232 = ∆ m̃231−∆ m̃221 = ∆m2
32 +

1
2

(
2a−3a ′− ∆ m̃221 +∆m2

21

)

Note, the same square root appears, as for the θ12 mixing angle in matter6. These expressions
are valid for both NO, ∆m2

31 > 0 and IO, ∆m2
31 < 0. For anti-neutrinos, just change the sign of a

and δ .

If Pνα→νβ
(∆m2

31,∆m2
21,θ13,θ12,θ23,δ ) is the oscillation probability in vacuum then

Pνα→νβ
(∆ m̃231,∆ m̃221, θ̃13, θ̃12,θ23,δ ) is the oscillation probability in matter, i.e. use the same

function but replace the mass squared differences and mixing angles with the matter values given
in eq. 5.1-5.3. The resulting oscillation probabilities are identical to the zeroth order approximation
given in Denton, Minakata and Parke, [1].

5Vacuum values to be used in calculating ∆m2
ee.

6If a = 0, then θ̃13 = θ13 and since a′ = 0 then θ̃12 = θ12 and both
√·· · = 1, also ∆ m̃2

jk = ∆m2
jk for all ( j,k) as

required.
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